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Introduction

Next 3-4 weeks: graphs!

▸ Super important abstractions, used all over the place in CS

▸ Most of my research is in graph algorithms (particularly when graph represents
computer/communication network)

▸ Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, one or two new

▸ Going to move pretty quickly, since much review: see CLRS for details!
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Basic Definitions

Definition

A graph G = (V,E) is a pair where V is a set and E ⊆ (V
2
) (unordered pairs) or E ⊆ V ×V

(ordered pairs).

Notation:
▸ Elements of V are called vertices or nodes
▸ Elements of E are called edges or arcs.
▸ If E ⊆ (V

2
) then graph is undirected, if E ⊆ V ×V graph is directed

▸ ∣V∣ = n and ∣E∣ = m (usually)
▸ So “size of input” = n +m
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Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.
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Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is
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Representations
Adjacency List:

▸ Array A of length n

▸ A[v] is linked list of vertices adjacent to v
(edge from u to v)

Adjacency Matrix:

▸ A ∈ {0,1}n×n

▸ Aij = ⎧⎪⎪⎨⎪⎪⎩
1 if (i, j) ∈ E

0 otherwise590 Chapter 22 Elementary Graph Algorithms
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Representations (cont’d)

Adjacency List:
▸ Pros:

▸ O(n +m) space
▸ Can iterate through edges adjacent to v

very efficiently

▸ Cons:
▸ Hard to check of an edge exists:

O(d(u)) or O(d(v)) (where d is the
degree of v: # edges with v as endpoint)

Adjacency Matrix:
▸ Pros:

▸ Can check if e = (u,v) an edge in O(1)
time

▸ Cons:
▸ Takes Θ(n2) space: if m small, lots

wasted!
▸ Iterating through edges incident on v

takes time Θ(n), even if d(v) small.

This class: adjacency list unless otherwise specified.

Any way to improve these?

▸ Replace adjacency list with adjacency structure: Red-black tree, hash table, etc.

▸ Not traditional, doesn’t gain us much, and more complicated. But better!
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Breadth-First Search (BFS)
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Pseudocode
Idea: explore with a queue (LIFO)

BFS(G = (V,E), s) {
Set mark(s) = True;
Set mark(v) = False for all v ∈ V ∖ {s};
Enqueue(s);
while(queue not empty) {

v = Dequeue();
forall neighbors u of v {

if(mark(u) == False) {
mark(u) = True;
Enqueue(u);

}
}

}
}

Running Time: O(n +m)
▸ O(n) for initialization
▸ O(m) for main while loop

▸ Examine every edge twice:
when each endpoint dequeued

▸ Or (equivalent): Adjacency list
scanned only when vertex
dequeued
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch:
Assume false for contradiction, let u be closest node to s where BFS(s) doesn’t give shortest
path

Pet Distance dk.us from n ta v is min

HF edges in any path from u to v

The BFS s gives shortest paths from

s t all other nodes

sketch contradiction Assure false

BFS path
chest node to s where

g o o o o o T qc.IR s doesn't give
te't path

shortest path

xp

d(s,w′) < d(s,w)Ô⇒ w′ dequeued before w (since w′

has correct distance by def of u)Ô⇒ u will be enqueued from w′, not
w. Contradiction.
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Depth-First Search (DFS)
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we’ve already seen, then backtrack!

Init: for each v ∈ V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) ∈ A[v] {

if mark(u) == False then DFS(u);
}

}

for each arc (vw) in adjacency-list(v) {

if mark(w) == F then DFS(w)

}

Basically, we look at each arc and if the other side has not already been visited yet, we recursively
visit it. Here’s an example. The labeled nodes are the ones visited by calling DFS(A). The dashed
edges are the ones not traversed, the dotted ones were not even looked at.

A

B

C

D E

F

A node w is reachable from v in G if there is a path v = v0, v1, v2, . . . , vk = w such that each
(vi, vi+1) is an arc of G.

Fact 1 When DFS(v) terminates, it has visited (marked) all the nodes that can be reached from v.

Proof: The simple proof is by induction. We will terminate because every call to DFS(v) is to an
unmarked node, and each such call marks a node. There are n nodes, hence n calls, before we stop.

Now suppose some node w that is reachable from v and is not marked when DFS(v) terminates.
Since w is reachable, there is a path v = v0, v1, v2, . . . , vk = w from v to w, and a first node vi

on this path that is not marked. But this is impossible, because we marked vi�1 and would have
examined the arc (vi�1, vi). ⌅
Of course, it may be the case that not all the nodes in G are reachable from v. So really we should
do the following

DFS-graph(graph G)

for all v in V, mark(v) = F.

While there exists an unmarked node v

DFS(v)

This process will visit all the nodes of the graph (just by the definition of the procedure). Here’s
the old example.

A

B

C

D E

F

G

H

I

It will help to have a few more pieces of data defined, which will make reasoning about DFS much
easier. One is active(v), which is a flag that indicates that v is currently on the recursion stack.
Two other numbers are pre(v) and post(v) which are “times” at which we add v to the recursion
stack, and when we remove v from it. (In 15-210, these were the times at which you enter v and
exit v.)

Here is the depth first search procedure:

2

Running time: O(m + n)
▸ O(n) initialization

▸ Every edge considered at most
twice
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on this path that is not marked. But this is impossible, because we marked vi�1 and would have
examined the arc (vi�1, vi). ⌅
Of course, it may be the case that not all the nodes in G are reachable from v. So really we should
do the following

DFS-graph(graph G)

for all v in V, mark(v) = F.

While there exists an unmarked node v

DFS(v)

This process will visit all the nodes of the graph (just by the definition of the procedure). Here’s
the old example.

A

B

C

D E

F

G

H

I

It will help to have a few more pieces of data defined, which will make reasoning about DFS much
easier. One is active(v), which is a flag that indicates that v is currently on the recursion stack.
Two other numbers are pre(v) and post(v) which are “times” at which we add v to the recursion
stack, and when we remove v from it. (In 15-210, these were the times at which you enter v and
exit v.)

Here is the depth first search procedure:

2

Running time: O(m + n)

▸ O(n) initialization

▸ Every edge considered at most
twice
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DFS: Definition
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DFS: Correctness
Definition: u is reachable from v if there is a path v = v0,v1, . . . ,vk = u such that(vi,vi+1) ∈ E for all i ∈ {0,1, . . . ,k − 1}.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

Thin when DFS u terminates it has
visited marked all nodes reachable from v

PI Terminates

Sps u reachable from u but not marked

x Y
g o o o o o o q

first unmarked node on path
C ntradictin would have marked y

Dalal I
let ma k v False V veV

while F unmarked n de v DFS u

Timestamps i keep track f start finish times

Replaces mark

x is marked so DFS(x) must have been calledÔ⇒ y was either marked or DFS(y) called and it became marked.
Contradiction.
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Graph variant

After DFS(v), node marked if and only if reachable from v.

Might want to continue until all nodes marked.

DFS(G) {
for all v ∈ V, set mark(v) = False;
while there exists an unmarked node v {

DFS(v);
}

}
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Timestamps

Explicitly keep track of “start” and “finishing” times

▸ Replaces mark

DFS(G) {
t = 0;
for all v ∈ V {

start(v) = 0;
finish(v) = 0;

}
while ∃v ∈ V with start(v) = 0 {

DFS(v);
}

}

DFS(v) {
t = t + 1;
start(v) = t;
for each edge (v,u) ∈ A[v] {

if start(u) == 0 then DFS(u);
}
t = t + 1;
finish(v) = t;

}
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Edge Types

DFS naturally gives a spanning forest: edge (v,u) if DFS(v) calls DFS(u)

Forward Edges: (v,u) such that u
descendent of v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v,u) such that u an ancestor of
v

start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v,u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 15 / 27



Edge Types

DFS naturally gives a spanning forest: edge (v,u) if DFS(v) calls DFS(u)

Forward Edges: (v,u) such that u
descendent of v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)
Back Edges: (v,u) such that u an ancestor of
v

start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v,u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 15 / 27



Edge Types

DFS naturally gives a spanning forest: edge (v,u) if DFS(v) calls DFS(u)

Forward Edges: (v,u) such that u
descendent of v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)
Back Edges: (v,u) such that u an ancestor of
v

start(u) < start(v) < finish(v) < finish(u)
Cross Edges: (v,u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 15 / 27



Edge Types

DFS naturally gives a spanning forest: edge (v,u) if DFS(v) calls DFS(u)

Forward Edges: (v,u) such that u
descendent of v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)
Back Edges: (v,u) such that u an ancestor of
v

start(u) < start(v) < finish(v) < finish(u)
Cross Edges: (v,u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)
Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 15 / 27



Topological Sort
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Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition

A topological sort v1,v2, . . . ,vn of a DAG is an ordering of the vertices such that all edges are
of the form (vi,vj) with i < j.

Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition

A topological sort v1,v2, . . . ,vn of a DAG is an ordering of the vertices such that all
edges are of the form (vi,vj) with i < j.

Can use DFS to characterize DAGs and compute topological sort!

so

Can use DFS to characterize DAGs and compute topological sort!
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Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if: contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If: contrapositive. If G has a directed cycle C:

▸ Let u ∈ C with minimum start value, v predecessor in cycle

▸ All nodes in C reachable from u Ô⇒ all nodes in C descendants of u

▸ (v,u) a back edge

 

ki n Kai Koti ska

Y
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Topological Sort

▸ Run DFS(G)
▸ When DFS(v) returns, put v at beginning of list

Correctness: Since G a DAG, never see back edgeÔ⇒ Every edge (v,u) out of v a forward or cross edgeÔ⇒ finish(u) < finish(v)Ô⇒ u already in list

Running Time: O(m + n)
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Strongly Connected Components (SCC): Sketch
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Definitions

Another application of DFS. “Kosaraju’s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V,E) a directed graph.

Definition

C ⊆ V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v ∈ C, u can reach v and vice versa.

Runningtime
i

OCamth

1 4 4 7

Strongly Connected Components Scs

Kosaraju's Algorithm

Pet C EV is a strongly connected coupon t

if maximal subset s t

V w e C u ca reach u a d ice versa

go 700

Fact hive directed graph h there is a

unique partition of into SCC

PI Reachability is an equivalence relation

Fact: There is a unique partition of V into
SCCs

Proof: Bireachability is an equivalence relation
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SCC Problem

Problem: Give G compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what’s reachable from where

▸ Running time: O(n(m + n))
Can we do better? O(m + n)?
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Graph of SCCs
Definition: Let Ĝ be graph of SCCs:

▸ Vertex v(C) for each SCC C
▸ Edge (v(C),v(C′)) if ∃ u ∈ C,v ∈ C′ such that (u,v) ∈ E

Theorem

Ĝ is a DAG.

Prohley Given 6 compete Scc

Trivial Alg Do DFSCBfg from each a de

keep track of h t's reachake from
where
0cm Cantu

Det Let be graph of sacs
vertex UCC for each SCC C
edge ucc ucc'll if I net vet

un cC

The is a DAG

E
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Sink SCC

Since Ĝ a DAG, has a topological sort

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Definition: SCC C is a sink SCC if no outgoing edges

▸ At least one sink SCC exists

What happens if we run DFS(v) where v in a sink SCC?

▸ See exactly nodes in C!

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat
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Since Ĝ a DAG, has a topological sort

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Definition: SCC C is a sink SCC if no outgoing edges

▸ At least one sink SCC exists

What happens if we run DFS(v) where v in a sink SCC?

▸ See exactly nodes in C!

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 24 / 27



Sink SCC
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What happens if we run DFS(v) where v in a sink SCC?

▸ See exactly nodes in C!

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat
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SCCs and DFS

Run DFS(G), and let finish(C) = maxv∈C finish(v)
Lemma

Let C1,C2 distinct SCCs s.t. (v(C1),v(C2)) ∈ E(Ĝ). Then finish(C1) > finish(C2).

I 0 0
2

Let xe GUCL he first node encountered

by DFS

If xc.cz

If xc.ci

f node with largest finishing time in a

soiree 5 no incoming edges

want n.de in sink SCC

Let x ∈ C1 ∪C2 be first node encountered by DFS

▸ If x ∈ C1: all of C2 reachable from x, so DFS(x)
does not complete until all of C2 finished

▸ If x ∈ C2: all of C2 reachable from x but nothing
from C1, so x finishes before any node in C1 starts

So node with max finish time in a source SCC. Want sink. Reverse all edges!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 25 / 27



SCCs and DFS

Run DFS(G), and let finish(C) = maxv∈C finish(v)
Lemma

Let C1,C2 distinct SCCs s.t. (v(C1),v(C2)) ∈ E(Ĝ). Then finish(C1) > finish(C2).
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Kosaraju’s Algorithm

Definition: GT is G with all edges reversed.

DFS(GT) to get finishing times
while(G non-empty) {

Let v be vertex in G with largest finishing time (from original DFS of GT)
Run DFS(v), let C be all nodes found
Delete C from G as an SCC

}

Some implementation details missing (repeatedly finding max finishing time without using
heap): see book

Running Time: O(m + n)
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Correctness Sketch

Let C1,C2, . . . ,Ck be set identified by algorithm (in order)

Theorem

Ci is a sink SCC of G ∖ (⋃i−1
j=1

Cj)

Induction on i.

Base case: i = 1. By previous argument, largest finishing time in GT Ô⇒ in sink SCC of GÔ⇒ C1 is sink SCC of G

Inductive case: Let v node remaining with largest finishing time.

▸ By induction, current graph is G minus i − 1 SCCs of G

▸ Implies v must be in sink SCC of remaining graph, so get an SCC of remaining graph
when run DFS

▸ By induction, also an SCC of original graph
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