Lecture 13: Basic Graph Algorithms

Michael Dinitz

October 12, 2021
601.433/633 Introduction to Algorithms

Introduction

Next 3-4 weeks: graphs!

- Super important abstractions, used all over the place in CS
- Most of my research is in graph algorithms (particularly when graph represents computer/communication network)
- Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, one or two new

- Going to move pretty quickly, since much review: see CLRS for details!

Basic Definitions

Definition

A graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is a pair where \mathbf{V} is a set and $\mathbf{E} \subseteq\binom{\mathbf{V}}{2}$ (unordered pairs) or $\mathbf{E} \subseteq \mathbf{V} \times \mathbf{V}$ (ordered pairs).

Notation:

- Elements of \mathbf{V} are called vertices or nodes
- Elements of \mathbf{E} are called edges or arcs.
- If $\mathbf{E} \subseteq\binom{\mathbf{V}}{2}$ then graph is undirected, if $\mathbf{E} \subseteq \mathbf{V} \times \mathbf{V}$ graph is directed
- $|\mathbf{V}|=\mathbf{n}$ and $|\mathbf{E}|=\mathbf{m}$ (usually)
- So "size of input" $=\mathbf{n}+\mathbf{m}$

Representations

Adjacency List:

- Array A of length n
- $\mathbf{A}[\mathbf{v}]$ is linked list of vertices adjacent to \mathbf{v} (edge from \mathbf{u} to \mathbf{v})

Adjacency Matrix:

- $A \in\{0,1\}^{n \times n}$
- $A_{i j}= \begin{cases}\mathbf{1} & \text { if }(\mathbf{i}, \mathbf{j}) \in E \\ \mathbf{0} & \text { otherwise }\end{cases}$

		1	2	3	4	5
	1	0	1	0		1
	2	1	0	1	1	1
	3	0	1	0		0
	4	0	1	1	0	1
	5	1	1	0		0
	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0		0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Representations (cont'd)

Adjacency List:

- Pros:
- $\mathbf{O}(\mathbf{n}+\mathbf{m})$ space
- Can iterate through edges adjacent to \mathbf{v} very efficiently
- Cons:
- Hard to check of an edge exists: $\mathbf{O}(\mathbf{d}(\mathbf{u}))$ or $\mathbf{O}(\mathbf{d}(\mathbf{v}))$ (where \mathbf{d} is the degree of \mathbf{v} : \# edges with \mathbf{v} as endpoint)

Adjacency Matrix:

- Pros:
- Can check if $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ an edge in $\mathbf{O (1)}$ time
- Cons:
- Takes $\boldsymbol{\Theta}\left(\mathbf{n}^{\mathbf{2}}\right)$ space: if \mathbf{m} small, lots wasted!
- Iterating through edges incident on \mathbf{v} takes time $\boldsymbol{\Theta}(\mathbf{n})$, even if $\mathbf{d}(\mathbf{v})$ small.

Representations (cont'd)

Adjacency List:

- Pros:
- $\mathbf{O}(\mathbf{n}+\mathbf{m})$ space
- Can iterate through edges adjacent to \mathbf{v} very efficiently
- Cons:
- Hard to check of an edge exists: $\mathbf{O}(\mathbf{d}(\mathbf{u}))$ or $\mathbf{O}(\mathbf{d}(\mathbf{v}))$ (where \mathbf{d} is the degree of \mathbf{v} : \# edges with \mathbf{v} as endpoint)

Adjacency Matrix:

- Pros:
- Can check if $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ an edge in $\mathbf{O (1)}$ time
- Cons:
- Takes $\boldsymbol{\Theta}\left(\mathbf{n}^{\mathbf{2}}\right)$ space: if \mathbf{m} small, lots wasted!
- Iterating through edges incident on \mathbf{v} takes time $\boldsymbol{\Theta}(\mathbf{n})$, even if $\mathbf{d}(\mathbf{v})$ small.

This class: adjacency list unless otherwise specified.

Representations (cont'd)

Adjacency List:

- Pros:
- $\mathbf{O}(\mathbf{n}+\mathbf{m})$ space
- Can iterate through edges adjacent to \mathbf{v} very efficiently
- Cons:
- Hard to check of an edge exists: $\mathbf{O}(\mathbf{d}(\mathbf{u}))$ or $\mathbf{O}(\mathbf{d}(\mathbf{v}))$ (where \mathbf{d} is the degree of \mathbf{v} : \# edges with \mathbf{v} as endpoint)

Adjacency Matrix:

- Pros:
- Can check if $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ an edge in $\mathbf{O (1)}$ time
- Cons:
- Takes $\boldsymbol{\Theta}\left(\mathbf{n}^{\mathbf{2}}\right)$ space: if \mathbf{m} small, lots wasted!
- Iterating through edges incident on \mathbf{v} takes time $\boldsymbol{\Theta}(\mathbf{n})$, even if $\mathbf{d}(\mathbf{v})$ small.

This class: adjacency list unless otherwise specified.
Any way to improve these?

Representations (cont'd)

Adjacency List:

- Pros:
- $\mathbf{O}(\mathbf{n}+\mathbf{m})$ space
- Can iterate through edges adjacent to v very efficiently
- Cons:
- Hard to check of an edge exists: $\mathbf{O}(\mathbf{d}(\mathbf{u}))$ or $\mathbf{O}(\mathbf{d}(\mathbf{v}))$ (where \mathbf{d} is the degree of \mathbf{v} : \# edges with \mathbf{v} as endpoint)

Adjacency Matrix:

- Pros:
- Can check if $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ an edge in $\mathbf{O (1)}$ time
- Cons:
- Takes $\boldsymbol{\Theta}\left(\mathbf{n}^{\mathbf{2}}\right)$ space: if \mathbf{m} small, lots wasted!
- Iterating through edges incident on \mathbf{v} takes time $\boldsymbol{\Theta}(\mathbf{n})$, even if $\mathbf{d}(\mathbf{v})$ small.

This class: adjacency list unless otherwise specified.
Any way to improve these?

- Replace adjacency list with adjacency structure: Red-black tree, hash table, etc.
- Not traditional, doesn't gain us much, and more complicated. But better!

Breadth-First Search (BFS)

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Definition

Idea: explore graph in levels or layers from source s

BFS Pseudocode

Idea: explore with a queue (LIFO)

```
BFS(G = (V, E), s) {
    Set mark(s) = True;
    Set mark(v) = False for all v \in V\{s};
    Enqueue(s);
    while(queue not empty) {
        v = Dequeue();
        forall neighbors u}\mathrm{ of v {
            if(mark(u) == False) {
            mark(u) = True;
            Enqueue(u);
        }
        }
    }
}
```


BFS Pseudocode

Idea: explore with a queue (LIFO)

```
BFS(G = (V, E), s) {
    Set mark(s) = True;
    Set mark(v) = False for all v \in V\{s};
    Enqueue(s);
    while(queue not empty) {
        v = Dequeue();
        forall neighbors u}\mathrm{ of v {
        if(mark(u) == False) {
            mark(u) = True;
            Enqueue(u);
        }
        }
    }
}
```


BFS Pseudocode

Idea: explore with a queue (LIFO)

```
BFS(G = (V, E), s) {
    Set mark(s) = True;
    Set mark(v) = False for all v \in V\{s};
    Enqueue(s);
    while(queue not empty) {
        v = Dequeue();
        forall neighbors u}\mathrm{ of v {
        if(mark(u) == False) {
            mark(u) = True;
            Enqueue(u);
        }
        }
    }
}
```


BFS Pseudocode

Idea: explore with a queue (LIFO)

```
BFS(G = (V, E), s) {
    Set mark(s) = True;
    Set mark(v)= False for all v \in V\{s};
    Enqueue(s);
    while(queue not empty) {
        v = Dequeue();
        forall neighbors u}\mathrm{ of v {
        if(mark(u) == False) {
            mark(u) = True;
            Enqueue(u);
        }
    }
    }
}
```


Correctness / Shortest Paths

Definition: Distance $\mathbf{d}(\mathbf{u}, \mathbf{v})$ from \mathbf{u} to \mathbf{v} is min \# edges in any path from \mathbf{u} to \mathbf{v}
Theorem (informal): BFS(s) gives shortest paths from \mathbf{s} to all other nodes

Correctness / Shortest Paths

Definition: Distance $\mathbf{d}(\mathbf{u}, \mathbf{v})$ from \mathbf{u} to \mathbf{v} is min \# edges in any path from \mathbf{u} to \mathbf{v}
Theorem (informal): BFS(s) gives shortest paths from \mathbf{s} to all other nodes

Proof Sketch:

Assume false for contradiction, let \mathbf{u} be closest node to \mathbf{s} where BFS(s) doesn't give shortest path

$$
\mathbf{d}\left(\mathbf{s}, \mathbf{w}^{\prime}\right)<\mathbf{d}(\mathrm{s}, \mathrm{w})
$$

$\Longrightarrow \mathbf{w}^{\prime}$ dequeued before \mathbf{w} (since \mathbf{w}^{\prime} has correct distance by def of \mathbf{u})
$\Longrightarrow \mathbf{u}$ will be enqueued from \mathbf{w}^{\prime}, not
w. Contradiction.

Depth-First Search (DFS)

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

Init: for each $\mathbf{v} \in \mathbf{V}, \operatorname{mark}(\mathbf{v})=$ False;

```
DFS(v) {
    mark(v) = True;
    for each edge (v,\mathbf{u})\in\mathbf{A}[\mathbf{v}] {
        if mark(u) == False then DFS(u);
    }
}
```


DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

Init: for each $\mathbf{v} \in \mathbf{V}, \operatorname{mark}(\mathbf{v})=$ False;

```
DFS(v) {
    mark(v) = True;
    for each edge (v,u) \in A[v] {
        if mark(u) == False then DFS(u);
    }
}
```


Running time:

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

Init: for each $\mathbf{v} \in \mathbf{V}, \operatorname{mark}(\mathbf{v})=$ False;

```
DFS(v) {
    mark(v) = True;
    for each edge (v,u) \in A[v] {
        if mark(u) == False then DFS(u);
    }
}
```


Running time: $\mathbf{O}(\mathbf{m}+\mathrm{n})$

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each \(\mathbf{v} \in \mathbf{V}\), mark( \(\mathbf{v})=\) False;
DFS(v) \{
    \(\operatorname{mark}(v)=\) True;
    for each edge \((\mathbf{v}, \mathbf{u}) \in \mathbf{A}[\mathbf{v}]\{\)
        if \(\operatorname{mark}(\mathbf{u})==\) False then \(\operatorname{DFS}(\mathbf{u})\);
    \}
\}
```


Running time: $\mathbf{O}(\mathbf{m}+\mathrm{n})$

- $\mathbf{O}(n)$ initialization
- Every edge considered at most twice

DFS: Correctness

Definition: \mathbf{u} is reachable from \mathbf{v} if there is a path $\mathbf{v}=\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}=\mathbf{u}$ such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+\mathbf{1}}\right) \in \mathbf{E}$ for all $\mathbf{i} \in\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{k}-\mathbf{1}\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from \mathbf{v}.

Proof.

Suppose \mathbf{u} reachable from \mathbf{v} but not marked when DFS(v) terminates.

DFS: Correctness

Definition: \mathbf{u} is reachable from \mathbf{v} if there is a path $\mathbf{v}=\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}=\mathbf{u}$ such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}\right) \in \mathbf{E}$ for all $\mathbf{i} \in\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{k}-\mathbf{1}\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from \mathbf{v}.

Proof.

Suppose \mathbf{u} reachable from \mathbf{v} but not marked when DFS(v) terminates.

DFS: Correctness

Definition: \mathbf{u} is reachable from \mathbf{v} if there is a path $\mathbf{v}=\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}=\mathbf{u}$ such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}\right) \in \mathbf{E}$ for all $\mathbf{i} \in\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{k}-\mathbf{1}\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from \mathbf{v}.

Proof.

Suppose \mathbf{u} reachable from \mathbf{v} but not marked when DFS(v) terminates.

\mathbf{x} is marked so $\operatorname{DFS}(\mathbf{x})$ must have been called

DFS: Correctness

Definition: \mathbf{u} is reachable from \mathbf{v} if there is a path $\mathbf{v}=\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}=\mathbf{u}$ such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}\right) \in \mathbf{E}$ for all $\mathbf{i} \in\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{k}-\mathbf{1}\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from \mathbf{v}.

Proof.

Suppose \mathbf{u} reachable from \mathbf{v} but not marked when DFS(v) terminates.

\mathbf{x} is marked so $\operatorname{DFS}(\mathbf{x})$ must have been called
$\Longrightarrow \mathbf{y}$ was either marked or $\operatorname{DFS}(\mathbf{y})$ called and it became marked.

DFS: Correctness

Definition: \mathbf{u} is reachable from \mathbf{v} if there is a path $\mathbf{v}=\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}=\mathbf{u}$ such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}\right) \in \mathbf{E}$ for all $\mathbf{i} \in\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{k}-\mathbf{1}\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from \mathbf{v}.

Proof.

Suppose \mathbf{u} reachable from \mathbf{v} but not marked when DFS(v) terminates.

\mathbf{x} is marked so $\operatorname{DFS}(\mathbf{x})$ must have been called
$\Longrightarrow \mathbf{y}$ was either marked or $\operatorname{DFS}(\mathbf{y})$ called and it became marked.
Contradiction.

Graph variant

After DFS(\mathbf{v}), node marked if and only if reachable from \mathbf{v}.
Might want to continue until all nodes marked.

```
DFS(G) {
    for all v}\in\mathbf{V}\mathrm{ , set mark(v)= False;
    while there exists an unmarked node v {
        DFS(v);
    }
}
```


Timestamps

Explicitly keep track of "start" and "finishing" times

- Replaces mark

```
DFS(G) {
    t = 0;
    for all v \in V {
        start(v) = 0;
        finish(v) = 0;
    }
    while }\exists\mathbf{v}\in\mathbf{V}\mathrm{ with start(v)=0 {
        DFS(v);
    }
}
```

```
DFS(v) {
    t=t+1;
    start(v) = t;
    for each edge (v,\mathbf{u})\in\mathbf{A}[\mathbf{v}] {
        if \boldsymbol{start}(\mathbf{u})==\mathbf{0}}\mathrm{ then DFS(u);
    }
    t=t+1;
    finish(v)=t;
}
```


Edge Types

DFS naturally gives a spanning forest: edge (\mathbf{v}, \mathbf{u}) if $\operatorname{DFS}(\mathbf{v})$ calls $\operatorname{DFS}(\mathbf{u})$
Forward Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} descendent of \mathbf{v} (includes tree edges)

Back Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} an ancestor of v

Cross Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} neither a descendent nor an ancestor of \mathbf{v}

Edge Types

DFS naturally gives a spanning forest: edge (\mathbf{v}, \mathbf{u}) if $\operatorname{DFS}(\mathbf{v})$ calls $\operatorname{DFS}(\mathbf{u})$
Forward Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} descendent of \mathbf{v} (includes tree edges) start(v) < start(u) < finish (u) < finish(v)

Back Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} an ancestor of v

Cross Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} neither a descendent nor an ancestor of \mathbf{v}

Edge Types

DFS naturally gives a spanning forest: edge (\mathbf{v}, \mathbf{u}) if $\operatorname{DFS}(\mathbf{v})$ calls $\operatorname{DFS}(\mathbf{u})$
Forward Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} descendent of \mathbf{v} (includes tree edges) start(v) < start(u) < finish (u) < finish(v)

Back Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} an ancestor of v
$\operatorname{start}(\mathrm{u})<\operatorname{start}(\mathrm{v})<\operatorname{finish}(\mathrm{v})<\operatorname{finish}(\mathrm{u})$
Cross Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} neither a descendent nor an ancestor of \mathbf{v}

Edge Types

DFS naturally gives a spanning forest: edge (\mathbf{v}, \mathbf{u}) if $\operatorname{DFS}(\mathbf{v})$ calls $\operatorname{DFS}(\mathbf{u})$
Forward Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} descendent of \mathbf{v} (includes tree edges) start(v) < start(u) < finish (u) < finish(v)

Back Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} an ancestor of v
$\operatorname{start}(\mathrm{u})<\operatorname{start}(\mathrm{v})<\operatorname{finish}(\mathrm{v})<\operatorname{finish}(\mathrm{u})$
Cross Edges: (\mathbf{v}, \mathbf{u}) such that \mathbf{u} neither a descendent nor an ancestor of \mathbf{v} $\operatorname{start}(\mathbf{u})<$ finish(u) < start (v) < finish (v)

Topological Sort

Definitions

Definition

A directed graph \mathbf{G} is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition

A topological sort $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ of a DAG is an ordering of the vertices such that all edges are of the form $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)$ with $\mathbf{i}<\mathbf{j}$.

Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition

A topological sort $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ of a DAG is an ordering of the vertices such that all edges are of the form $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)$ with $\mathbf{i}<\mathbf{j}$.

Can use DFS to characterize DAGs and compute topological sort!

Characterizing DAGs

Theorem

A directed graph \mathbf{G} is a $D A G$ if and only if $\operatorname{DFS}(\mathbf{G})$ has no back edges.

Characterizing DAGs

Theorem

A directed graph \mathbf{G} is a DAG if and only if $\operatorname{DFS}(\mathbf{G})$ has no back edges.

Proof.

Only if: contrapositive. If G has a back edge:

Characterizing DAGs

Theorem

A directed graph \mathbf{G} is a DAG if and only if $\operatorname{DFS}(\mathbf{G})$ has no back edges.

Proof.

Only if: contrapositive. If G has a back edge: Directed cycle! Not a DAG.

Characterizing DAGs

Theorem

A directed graph \mathbf{G} is a $D A G$ if and only if $\operatorname{DFS}(\mathbf{G})$ has no back edges.

Proof.

Only if: contrapositive. If G has a back edge: Directed cycle! Not a DAG. If: contrapositive. If \mathbf{G} has a directed cycle \mathbf{C} :

Characterizing DAGs

Theorem

A directed graph \mathbf{G} is a DAG if and only if $\operatorname{DFS}(\mathbf{G})$ has no back edges.

Proof.

Only if: contrapositive. If G has a back edge: Directed cycle! Not a DAG.
If: contrapositive. If \mathbf{G} has a directed cycle \mathbf{C} :

- Let $\mathbf{u} \in \mathbf{C}$ with minimum start value, \mathbf{v} predecessor in cycle
- All nodes in \mathbf{C} reachable from $\mathbf{u} \Longrightarrow$ all nodes in \mathbf{C} descendants of \mathbf{u}
- (\mathbf{v}, \mathbf{u}) a back edge

Topological Sort

- Run DFS(G)
- When DFS(v) returns, put \mathbf{v} at beginning of list

Topological Sort

- Run $\operatorname{DFS}(\mathbf{G})$
- When DFS(v) returns, put \mathbf{v} at beginning of list

Correctness: Since G a DAG, never see back edge
\Longrightarrow Every edge (\mathbf{v}, \mathbf{u}) out of \mathbf{v} a forward or cross edge
\Longrightarrow finish $(\mathbf{u})<$ finish (\mathbf{v})
$\Longrightarrow \mathbf{u}$ already in list

Topological Sort

- Run $\operatorname{DFS}(\mathbf{G})$
- When DFS(v) returns, put \mathbf{v} at beginning of list

Correctness: Since G a DAG, never see back edge
\Longrightarrow Every edge (\mathbf{v}, \mathbf{u}) out of \mathbf{v} a forward or cross edge
\Longrightarrow finish $(\mathbf{u})<$ finish (\mathbf{v})
$\Longrightarrow \mathbf{u}$ already in list

Running Time: $\mathbf{O}(\mathbf{m}+\mathbf{n})$

Strongly Connected Components (SCC): Sketch

Definitions

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!
$\mathbf{G}=(\mathbf{V}, \mathbf{E})$ a directed graph.

Definition

$\mathbf{C} \subseteq \mathbf{V}$ is a strongly connected component (SCC) if it is a maximal subset such that for all $\mathbf{u}, \mathbf{v} \in \mathbf{C}, \mathbf{u}$ can reach \mathbf{v} and vice versa.

Definitions

Another application of DFS. "Kosaraju's Algorithm": Developed by Roo Kosaraju, professor emeritus at JHU CS!
$\mathbf{G}=(\mathbf{V}, \mathbf{E})$ a directed graph.

Definition

$\mathbf{C} \subseteq \mathbf{V}$ is a strongly connected component (SCC) if it is a maximal subset such that for all $\mathbf{u}, \mathbf{v} \in \mathbf{C}, \mathbf{u}$ can reach \mathbf{v} and vice versa.

Definitions

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!
$\mathbf{G}=(\mathbf{V}, \mathbf{E})$ a directed graph.

Definition

$\mathbf{C} \subseteq \mathbf{V}$ is a strongly connected component (SCC) if it is a maximal subset such that for all $\mathbf{u}, \mathbf{v} \in \mathbf{C}, \mathbf{u}$ can reach \mathbf{v} and vice versa.

Fact: There is a unique partition of \mathbf{V} into SCCs

Proof: Bireachability is an equivalence relation

SCC Problem

Problem: Give G compute SCCs (partition V into the SCCs)

SCC Problem

Problem: Give G compute SCCs (partition V into the SCCs)

Trivial Algorithm:

SCC Problem

Problem: Give G compute SCCs (partition V into the SCCs)
Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

SCC Problem

Problem: Give G compute SCCs (partition V into the SCCs)
Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

- Running time: $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n}))$

SCC Problem

Problem: Give G compute SCCs (partition V into the SCCs)
Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

- Running time: $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n}))$

Can we do better? $\mathbf{O}(\mathbf{m}+\mathbf{n})$?

Graph of SCCs

Definition: Let $\hat{\mathbf{G}}$ be graph of SCCs:

- Vertex $\mathbf{v}(\mathbf{C})$ for each SCC C
- Edge $\left(\mathbf{v}(\mathbf{C}), \mathbf{v}\left(\mathbf{C}^{\prime}\right)\right)$ if $\exists \mathbf{u} \in \mathbf{C}, \mathbf{v} \in \mathbf{C}^{\prime}$ such that $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$

Graph of SCCs

Definition: Let \mathbf{G} be graph of SCCs:

- Vertex $\mathbf{v}(\mathbf{C})$ for each SCC C
- Edge $\left(\mathbf{v}(\mathbf{C}), \mathbf{v}\left(\mathbf{C}^{\prime}\right)\right)$ if $\exists \mathbf{u} \in \mathbf{C}, \mathbf{v} \in \mathbf{C}^{\prime}$ such that $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$

Theorem
Ĝ is a DAG.

Graph of SCCs
Definition: Let $\hat{\mathbf{G}}$ be graph of SCCs:

- Vertex $\mathbf{v}(\mathbf{C})$ for each SCC C
- Edge $\left(\mathbf{v}(\mathbf{C}), \mathbf{v}\left(\mathbf{C}^{\prime}\right)\right)$ if $\exists \mathbf{u} \in \mathbf{C}, \mathbf{v} \in \mathbf{C}^{\prime}$ such that $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$

Theorem
$\hat{\mathbf{G}}$ is a DAG.

Sink SCC
Since $\hat{\mathbf{G}}$ a DAG, has a topological sort

Sink SCC

Since $\hat{\mathbf{G}}$ a DAG, has a topological sort

Definition: SCC C is a sink SCC if no outgoing edges

- At least one sink SCC exists

Sink SCC

Since $\hat{\mathbf{G}}$ a DAG, has a topological sort

Definition: SCC C is a sink SCC if no outgoing edges

- At least one sink SCC exists

What happens if we run $\operatorname{DFS}(\mathbf{v})$ where \mathbf{v} in a sink SCC ?

Sink SCC

Since $\hat{\mathbf{G}}$ a DAG, has a topological sort

Definition: SCC C is a sink SCC if no outgoing edges

- At least one sink SCC exists

What happens if we run $\operatorname{DFS}(\mathbf{v})$ where \mathbf{v} in a sink SCC?

- See exactly nodes in C!

Sink SCC

Since $\hat{\mathbf{G}}$ a DAG, has a topological sort

Definition: SCC C is a sink SCC if no outgoing edges

- At least one sink SCC exists

What happens if we run DFS(v) where \mathbf{v} in a sink SCC?

- See exactly nodes in C!

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

SCCs and DFS

Run $\operatorname{DFS}(\mathbf{G})$, and let $\boldsymbol{f i n i s h}(\mathbf{C})=\boldsymbol{m a x}_{\mathbf{v} \in \mathbf{C}} \mathbf{f i n i s h}(\mathbf{v})$

Lemma

Let $\mathbf{C}_{1}, \mathbf{C}_{\mathbf{2}}$ distinct SCCs s.t. $\left(\mathbf{v}\left(\mathbf{C}_{1}\right), \mathbf{v}\left(\mathbf{C}_{2}\right)\right) \in \mathbf{E}(\hat{\mathbf{G}})$. Then finish $\left(\mathbf{C}_{1}\right)>$ finish $\left(\mathbf{C}_{2}\right)$.

Let $\mathbf{x} \in \mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}$ be first node encountered by DFS

SCCs and DFS

Run $\operatorname{DFS}(\mathbf{G})$, and let $\boldsymbol{f i n i s h}(\mathbf{C})=\boldsymbol{m a x}_{\mathbf{v} \in \mathbf{C}} \mathbf{f i n i s h}(\mathbf{v})$

Lemma

Let $\mathbf{C}_{1}, \mathbf{C}_{\mathbf{2}}$ distinct SCCs s.t. $\left(\mathbf{v}\left(\mathbf{C}_{1}\right), \mathbf{v}\left(\mathbf{C}_{2}\right)\right) \in \mathbf{E}(\hat{\mathbf{G}})$. Then finish $\left(\mathbf{C}_{1}\right)>$ finish $\left(\mathbf{C}_{2}\right)$.

Let $\mathbf{x} \in \mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}$ be first node encountered by DFS

- If $x \in C_{1}$:

SCCs and DFS

Run $\operatorname{DFS}(\mathbf{G})$, and let $\boldsymbol{f i n i s h}(\mathbf{C})=\boldsymbol{m a x}_{\mathbf{v} \in \mathbf{C}} \mathbf{f i n i s h}(\mathbf{v})$

Lemma

Let $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}$ distinct SCCs s.t. $\left(\mathbf{v}\left(\mathbf{C}_{1}\right), \mathbf{v}\left(\mathbf{C}_{2}\right)\right) \in \mathbf{E}(\hat{\mathbf{G}})$. Then $\mathbf{f i n i s h}\left(\mathbf{C}_{\mathbf{1}}\right)>\boldsymbol{f i n i s h}\left(\mathbf{C}_{\mathbf{2}}\right)$.

Let $\mathbf{x} \in \mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}$ be first node encountered by DFS

- If $\mathbf{x} \in \mathbf{C}_{1}$: all of \mathbf{C}_{2} reachable from \mathbf{x}, so $\operatorname{DFS}(\mathbf{x})$ does not complete until all of \mathbf{C}_{2} finished

SCCs and DFS

Run $\operatorname{DFS}(\mathbf{G})$, and let $\boldsymbol{f i n i s h}(\mathbf{C})=\boldsymbol{m a x}_{\mathbf{v} \in \mathbf{C}} \mathbf{f i n i s h}(\mathbf{v})$

Lemma

Let $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}$ distinct SCCs s.t. $\left(\mathbf{v}\left(\mathbf{C}_{1}\right), \mathbf{v}\left(\mathbf{C}_{2}\right)\right) \in \mathbf{E}(\hat{\mathbf{G}})$. Then $\mathbf{f i n i s h}\left(\mathbf{C}_{\mathbf{1}}\right)>\boldsymbol{f i n i s h}\left(\mathbf{C}_{\mathbf{2}}\right)$.

Let $\mathbf{x} \in \mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}$ be first node encountered by DFS

- If $\mathbf{x} \in \mathbf{C}_{\mathbf{1}}$: all of \mathbf{C}_{2} reachable from \mathbf{x}, so $\operatorname{DFS}(\mathbf{x})$ does not complete until all of \mathbf{C}_{2} finished
- If $x \in C_{2}$:

SCCs and DFS

Run $\operatorname{DFS}(\mathbf{G})$, and let $\boldsymbol{f i n i s h}(\mathbf{C})=\boldsymbol{m a x}_{\mathbf{v} \in \mathbf{C}} \mathbf{f i n i s h}(\mathbf{v})$

Lemma

Let $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}$ distinct SCCs s.t. $\left(\mathbf{v}\left(\mathbf{C}_{1}\right), \mathbf{v}\left(\mathbf{C}_{2}\right)\right) \in \mathbf{E}(\hat{\mathbf{G}})$. Then $\mathbf{f i n i s h}\left(\mathbf{C}_{\mathbf{1}}\right)>\boldsymbol{f i n i s h}\left(\mathbf{C}_{2}\right)$.

Let $\mathbf{x} \in \mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}$ be first node encountered by DFS

- If $\mathbf{x} \in \mathbf{C}_{\mathbf{1}}$: all of \mathbf{C}_{2} reachable from \mathbf{x}, so $\operatorname{DFS}(\mathbf{x})$ does not complete until all of \mathbf{C}_{2} finished
- If $x \in \mathbf{C}_{2}$: all of \mathbf{C}_{2} reachable from x but nothing from $\mathbf{C}_{\mathbf{1}}$, so \mathbf{x} finishes before any node in $\mathbf{C}_{\mathbf{1}}$ starts

SCCs and DFS

Run $\operatorname{DFS}(\mathbf{G})$, and let $\operatorname{finish}(\mathbf{C})=\boldsymbol{m a x}_{\mathbf{v} \in \mathbf{C}}$ finish(\mathbf{v})

Lemma

Let $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}$ distinct SCCs s.t. $\left(\mathbf{v}\left(\mathbf{C}_{1}\right), \mathbf{v}\left(\mathbf{C}_{2}\right)\right) \in \mathbf{E}(\hat{\mathbf{G}})$. Then finish $\left(\mathbf{C}_{\mathbf{1}}\right)>$ finish $\left(\mathbf{C}_{2}\right)$.

Let $\mathbf{x} \in \mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}$ be first node encountered by DFS

- If $\mathbf{x} \in \mathbf{C}_{\mathbf{1}}$: all of \mathbf{C}_{2} reachable from \mathbf{x}, so $\operatorname{DFS}(\mathbf{x})$ does not complete until all of \mathbf{C}_{2} finished
- If $x \in C_{2}$: all of \mathbf{C}_{2} reachable from x but nothing from $\mathbf{C}_{\mathbf{1}}$, so \mathbf{x} finishes before any node in $\mathbf{C}_{\mathbf{1}}$ starts

So node with max finish time in a source SCC. Want sink.

SCCs and DFS

Run $\operatorname{DFS}(\mathbf{G})$, and let $\operatorname{finish}(\mathbf{C})=\boldsymbol{m a x}_{\mathbf{v} \in \mathbf{C}}$ finish(\mathbf{v})

Lemma

Let $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}$ distinct SCCs s.t. $\left(\mathbf{v}\left(\mathbf{C}_{1}\right), \mathbf{v}\left(\mathbf{C}_{2}\right)\right) \in \mathbf{E}(\hat{\mathbf{G}})$. Then finish $\left(\mathbf{C}_{\mathbf{1}}\right)>$ finish $\left(\mathbf{C}_{2}\right)$.

Let $\mathbf{x} \in \mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}$ be first node encountered by DFS

- If $\mathbf{x} \in \mathbf{C}_{\mathbf{1}}$: all of \mathbf{C}_{2} reachable from \mathbf{x}, so $\operatorname{DFS}(\mathbf{x})$ does not complete until all of \mathbf{C}_{2} finished
- If $x \in C_{2}$: all of \mathbf{C}_{2} reachable from x but nothing from $\mathbf{C}_{\mathbf{1}}$, so \mathbf{x} finishes before any node in $\mathbf{C}_{\mathbf{1}}$ starts

So node with max finish time in a source SCC. Want sink. Reverse all edges!

SCCs and DFS

Run $\operatorname{DFS}(\mathbf{G})$, and let $\operatorname{finish}(\mathbf{C})=\boldsymbol{m a x}_{\mathbf{v} \in \mathbf{C}}$ finish(\mathbf{v})

Lemma

Let $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}$ distinct SCCs s.t. $\left(\mathbf{v}\left(\mathbf{C}_{1}\right), \mathbf{v}\left(\mathbf{C}_{2}\right)\right) \in \mathbf{E}(\hat{\mathbf{G}})$. Then finish $\left(\mathbf{C}_{\mathbf{1}}\right)>$ finish $\left(\mathbf{C}_{2}\right)$.

Let $\mathbf{x} \in \mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}$ be first node encountered by DFS

- If $\mathbf{x} \in \mathbf{C}_{\mathbf{1}}$: all of \mathbf{C}_{2} reachable from \mathbf{x}, so $\operatorname{DFS}(\mathbf{x})$ does not complete until all of \mathbf{C}_{2} finished
- If $x \in C_{2}$: all of \mathbf{C}_{2} reachable from x but nothing from $\mathbf{C}_{\mathbf{1}}$, so \mathbf{x} finishes before any node in $\mathbf{C}_{\mathbf{1}}$ starts

So node with max finish time in a source SCC. Want sink. Reverse all edges!

Kosaraju's Algorithm

Definition: $\mathbf{G}^{\mathbf{\top}}$ is \mathbf{G} with all edges reversed.
$\operatorname{DFS}\left(\mathbf{G}^{\mathbf{T}}\right)$ to get finishing times
while(\mathbf{G} non-empty) \{
Let \mathbf{v} be vertex in \mathbf{G} with largest finishing time (from original DFS of $\mathbf{G}^{\mathbf{T}}$)
Run DFS(v), let \mathbf{C} be all nodes found
Delete \mathbf{C} from \mathbf{G} as an SCC
\}

Kosaraju's Algorithm

Definition: $\mathbf{G}^{\mathbf{\top}}$ is \mathbf{G} with all edges reversed.
$\operatorname{DFS}\left(\mathbf{G}^{\mathbf{T}}\right)$ to get finishing times while(\mathbf{G} non-empty) \{

Let \mathbf{v} be vertex in \mathbf{G} with largest finishing time (from original DFS of $\mathbf{G}^{\mathbf{T}}$)
Run DFS(v), let \mathbf{C} be all nodes found
Delete \mathbf{C} from \mathbf{G} as an SCC
\}
Some implementation details missing (repeatedly finding max finishing time without using heap): see book

Kosaraju's Algorithm

Definition: $\mathbf{G}^{\mathbf{\top}}$ is \mathbf{G} with all edges reversed.

```
DFS(G\boldsymbol{T}})\mathrm{ to get finishing times
while(G non-empty) {
    Let v be vertex in \mathbf{G}}\mathrm{ with largest finishing time (from original DFS of G}\mp@subsup{\mathbf{G}}{}{\mathbf{T}}\mathrm{ )
    Run DFS(v), let C be all nodes found
    Delete C from G as an SCC
}
```

Some implementation details missing (repeatedly finding max finishing time without using heap): see book

Running Time: $\mathbf{O}(\mathbf{m}+\mathbf{n})$

Correctness Sketch

Let $\mathbf{C}_{1}, \mathbf{C}_{2}, \ldots, \mathbf{C}_{\mathrm{k}}$ be set identified by algorithm (in order)
Theorem
C_{i} is a $\operatorname{sink} \operatorname{SCC}$ of $\mathrm{G}, ~\left(\cup_{j=1}^{i-1} \mathrm{C}_{\mathrm{j}}\right)$

Correctness Sketch

Let $\mathbf{C}_{1}, \mathbf{C}_{2}, \ldots, \mathbf{C}_{\mathrm{k}}$ be set identified by algorithm (in order)

Theorem

C_{i} is a sink SCC of $\mathrm{G}, ~\left(\mathrm{U}_{\mathrm{j}=1}^{\mathrm{i}-1} \mathrm{C}_{\mathrm{j}}\right)$
Induction on \mathbf{i}.

Correctness Sketch

Let $\mathbf{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$ be set identified by algorithm (in order)

Theorem

$\mathbf{C}_{\mathbf{i}}$ is a sink SCC of $\mathbf{G}, ~\left(\cup_{j=1}^{i-1} \mathrm{C}_{\mathrm{j}}\right)$
Induction on \mathbf{i}.
Base case: $\mathbf{i}=\mathbf{1}$. By previous argument, largest finishing time in $\mathbf{G}^{\boldsymbol{\top}} \Longrightarrow$ in sink SCC of \mathbf{G} $\Longrightarrow C_{1}$ is sink SCC of \mathbf{G}

Correctness Sketch

Let $\mathbf{C}_{1}, \mathbf{C}_{2}, \ldots, \mathbf{C}_{\mathbf{k}}$ be set identified by algorithm (in order)

Theorem

$\mathbf{C}_{\mathbf{i}}$ is a sink SCC of $\mathbf{G}, ~\left(\cup_{j=1}^{i-1} \mathrm{C}_{\mathrm{j}}\right)$
Induction on \mathbf{i}.
Base case: $\mathbf{i}=\mathbf{1}$. By previous argument, largest finishing time in $\mathbf{G}^{\boldsymbol{\top}} \Longrightarrow$ in sink SCC of \mathbf{G} $\Longrightarrow C_{1}$ is sink SCC of \mathbf{G}

Inductive case: Let v node remaining with largest finishing time.

- By induction, current graph is G minus $\mathbf{i}-\mathbf{1}$ SCCs of G
- Implies v must be in sink SCC of remaining graph, so get an SCC of remaining graph when run DFS
- By induction, also an SCC of original graph

