Lecture 13: Basic Graph Algorithms

Michael Dinitz

October 12, 2021 601.433/633 Introduction to Algorithms

Introduction

Next 3-4 weeks: graphs!

- Super important abstractions, used all over the place in CS
- Most of my research is in graph algorithms (particularly when graph represents computer/communication network)
- Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, one or two new

· Going to move pretty quickly, since much review: see CLRS for details!

Basic Definitions

Definition

A graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ is a pair where \mathbf{V} is a set and $\mathbf{E} \subseteq {\binom{\mathbf{V}}{2}}$ (unordered pairs) or $\mathbf{E} \subseteq \mathbf{V} \times \mathbf{V}$ (ordered pairs).

Notation:

- Elements of V are called vertices or nodes
- Elements of **E** are called *edges* or *arcs*.
- If $\mathbf{E} \subseteq \binom{\mathbf{V}}{2}$ then graph is *undirected*, if $\mathbf{E} \subseteq \mathbf{V} \times \mathbf{V}$ graph is *directed*
- $|\mathbf{V}| = \mathbf{n}$ and $|\mathbf{E}| = \mathbf{m}$ (usually)
- So "size of input" = $\mathbf{n} + \mathbf{m}$

Representations

Adjacency List:

- Array A of length n
- A[v] is linked list of vertices adjacent to v (edge from u to v)

Adjacency Matrix:

$$\textbf{A} \in \{0,1\}^{n \times n} \\ \textbf{A}_{ij} = \begin{cases} 1 & \text{if } (i,j) \in \textbf{E} \\ 0 & \text{otherwise} \end{cases}$$

 $\frac{3}{0}$ $\frac{4}{0}$ $\frac{5}{1}$

0

0

0 0

Adjacency List:

- Pros:
 - ▶ O(n + m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d is the degree of v: # edges with v as endpoint)

Adjacency Matrix:

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - Takes Θ(n²) space: if m small, lots wasted!
 - Iterating through edges incident on ν takes time Θ(n), even if d(ν) small.

Adjacency List:

- Pros:
 - ▶ O(n + m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d is the degree of v: # edges with v as endpoint)

This class: adjacency list unless otherwise specified.

Adjacency Matrix:

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - Takes Θ(n²) space: if m small, lots wasted!
 - Iterating through edges incident on v takes time Θ(n), even if d(v) small.

Adjacency List:

- Pros:
 - ▶ O(n + m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d is the degree of v: # edges with v as endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?

Adjacency Matrix:

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - Takes Θ(n²) space: if m small, lots wasted!
 - Iterating through edges incident on v takes time Θ(n), even if d(v) small.

Adjacency List:

- Pros:
 - ▶ O(n + m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d is the degree of v: # edges with v as endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?

- ▶ Replace adjacency *list* with adjacency *structure*: Red-black tree, hash table, etc.
- Not traditional, doesn't gain us much, and more complicated. But better!

Adjacency Matrix:

Pros:

- Can check if e = (u, v) an edge in O(1) time
- Cons:
 - Takes Θ(n²) space: if m small, lots wasted!
 - Iterating through edges incident on v takes time Θ(n), even if d(v) small.

Breadth-First Search (BFS)


```
BFS(G = (V, E), s) {
   Set mark(s) = True;
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
      v = Dequeue();
      forall neighbors \mathbf{u} of \mathbf{v} {
          if(mark(u) == False) {
             mark(u) = True;
             Enqueue(u);
```

```
BFS(G = (V, E), s) {
   Set mark(s) = True;
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
      v = Dequeue():
      forall neighbors \mathbf{u} of \mathbf{v} {
          if(mark(u) == False) {
             mark(u) = True;
             Enqueue(u);
```

Running Time:

```
BFS(G = (V, E), s) {
   Set mark(s) = True;
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
      v = Dequeue():
      forall neighbors \mathbf{u} of \mathbf{v} {
          if(mark(u) == False) {
             mark(u) = True;
             Enqueue(u);
```

Running Time: O(n + m)

```
BFS(G = (V, E), s) {
   Set mark(s) = True;
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
      v = Dequeue():
      forall neighbors \mathbf{u} of \mathbf{v} {
          if(mark(u) == False) {
             mark(u) = True;
             Enqueue(u);
```

Running Time: O(n + m)

- O(n) for initialization
- O(m) for main while loop
 - Examine every edge twice: when each endpoint dequeued
 - Or (equivalent): Adjacency list scanned only when vertex dequeued

Correctness / Shortest Paths

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Correctness / Shortest Paths

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch:

Assume false for contradiction, let \boldsymbol{u} be closest node to \boldsymbol{s} where $\mathsf{BFS}(\boldsymbol{s})$ doesn't give shortest path

d(s,w') < d(s,w)

- \implies w' dequeued before w (since w' has correct distance by def of u)
 - → u will be enqueued from w', not w. Contradiction.

Depth-First Search (DFS)

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v ∈ V, mark(v) = False;
DFS(v) {
    mark(v) = True;
    for each edge (v, u) ∈ A[v] {
        if mark(u) == False then DFS(u);
    }
}
```


Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v ∈ V, mark(v) = False;
DFS(v) {
    mark(v) = True;
    for each edge (v, u) ∈ A[v] {
        if mark(u) == False then DFS(u);
    }
}
```


Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v ∈ V, mark(v) = False;
DFS(v) {
    mark(v) = True;
    for each edge (v, u) ∈ A[v] {
        if mark(u) == False then DFS(u);
    }
}
```


Running time: O(m + n)

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v ∈ V, mark(v) = False;
DFS(v) {
    mark(v) = True;
    for each edge (v, u) ∈ A[v] {
        if mark(u) == False then DFS(u);
    }
}
```


Running time: O(m + n)

- O(n) initialization
- Every edge considered at most twice

Definition: u is *reachable* from **v** if there is a path $\mathbf{v} = \mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k = \mathbf{u}$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in \mathbf{E}$ for all $i \in \{0, 1, \dots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose **u** reachable from **v** but not marked when $DFS(\mathbf{v})$ terminates.

Definition: u is *reachable* from **v** if there is a path $\mathbf{v} = \mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k = \mathbf{u}$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in \mathbf{E}$ for all $i \in \{0, 1, \dots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose **u** reachable from **v** but not marked when DFS(v) terminates.

Definition: u is *reachable* from **v** if there is a path $\mathbf{v} = \mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k = \mathbf{u}$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in \mathbf{E}$ for all $i \in \{0, 1, \dots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose **u** reachable from **v** but not marked when $DFS(\mathbf{v})$ terminates.

 \mathbf{x} is marked so DFS(\mathbf{x}) must have been called

Definition: u is *reachable* from **v** if there is a path $\mathbf{v} = \mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k = \mathbf{u}$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in \mathbf{E}$ for all $i \in \{0, 1, \dots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose **u** reachable from **v** but not marked when $DFS(\mathbf{v})$ terminates.

 \mathbf{x} is marked so DFS(\mathbf{x}) must have been called

 \implies y was either marked or DFS(y) called and it became marked.

Definition: u is *reachable* from **v** if there is a path $\mathbf{v} = \mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k = \mathbf{u}$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in \mathbf{E}$ for all $i \in \{0, 1, \dots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose **u** reachable from **v** but not marked when $DFS(\mathbf{v})$ terminates.

 \mathbf{x} is marked so DFS(\mathbf{x}) must have been called

 \implies **y** was either marked or DFS(**y**) called and it became marked. Contradiction.

Michael Dinitz
Graph variant

After $DFS(\mathbf{v})$, node marked if and only if reachable from \mathbf{v} .

Might want to continue until all nodes marked.

```
DFS(G) {
  for all v ∈ V, set mark(v) = False;
  while there exists an unmarked node v {
     DFS(v);
  }
}
```

Timestamps

Explicitly keep track of "start" and "finishing" times

Replaces mark

DFS(**G**) { t = 0;for all $\mathbf{v} \in \mathbf{V}$ { start(v) = 0;finish(v) = 0;while $\exists v \in V$ with start(v) = 0 { $DFS(\mathbf{v})$:

DFS(v) {
 t = t + 1;
 start(v) = t;
 for each edge (v, u) ∈ A[v] {
 if start(u) == 0 then DFS(u);
 }
 t = t + 1;
 finish(v) = t;
}

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of v (includes tree edges)

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of v

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u
descendent of v (includes tree edges)
start(v) < start(u) < finish(u) < finish(v)</pre>

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (ν, u) such that u neither a descendent nor an ancestor of ν

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u
descendent of v (includes tree edges)
start(v) < start(u) < finish(u) < finish(v)</pre>

Back Edges: (v, u) such that u an ancestor of v

start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of v

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u
descendent of v (includes tree edges)
start(v) < start(u) < finish(u) < finish(v)</pre>

Back Edges: (v, u) such that u an ancestor of v

start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of v start(u) < finish(u) < start(v) < finish(v)

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition

A topological sort v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form (v_i, v_j) with i < j.

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition

A topological sort v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form (v_i, v_j) with i < j.

Can use DFS to characterize DAGs and compute topological sort!

Theorem

A directed graph **G** is a DAG if and only if $DFS(\mathbf{G})$ has no back edges.

Theorem

A directed graph **G** is a DAG if and only if $DFS(\mathbf{G})$ has no back edges.

Proof.

Only if: contrapositive. If **G** has a back edge:

Theorem

A directed graph **G** is a DAG if and only if $DFS(\mathbf{G})$ has no back edges.

Proof.

Only if: contrapositive. If \mathbf{G} has a back edge: Directed cycle! Not a DAG.

Theorem

A directed graph **G** is a DAG if and only if $DFS(\mathbf{G})$ has no back edges.

Proof.

Only if: contrapositive. If **G** has a back edge: Directed cycle! Not a DAG.

If: contrapositive. If G has a directed cycle C:

Theorem

A directed graph **G** is a DAG if and only if $DFS(\mathbf{G})$ has no back edges.

Proof.

Only if: contrapositive. If ${\bm G}$ has a back edge: Directed cycle! Not a DAG.

If: contrapositive. If ${\boldsymbol{\mathsf{G}}}$ has a directed cycle ${\boldsymbol{\mathsf{C}}}$:

- Let $\mathbf{u} \in \mathbf{C}$ with minimum start value, \mathbf{v} predecessor in cycle
- ${\scriptstyle \bullet}$ All nodes in C reachable from $u \implies$ all nodes in C descendants of u
- (v, u) a back edge

- Run DFS(G)
 - ${\boldsymbol{\mathsf{\nu}}}$ When $\mathsf{DFS}({\boldsymbol{\mathsf{v}}})$ returns, put ${\boldsymbol{\mathsf{v}}}$ at beginning of list

- Run DFS(G)
 - ${\boldsymbol{\mathsf{\nu}}}$ When $\mathsf{DFS}({\boldsymbol{\mathsf{v}}})$ returns, put ${\boldsymbol{\mathsf{v}}}$ at beginning of list

Correctness: Since ${\boldsymbol{\mathsf{G}}}$ a DAG, never see back edge

- \implies Every edge (ν, u) out of ν a forward or cross edge
- \implies finish(u) < finish(v)
- → **u** already in list

- Run DFS(G)
 - When $DFS(\mathbf{v})$ returns, put \mathbf{v} at beginning of list

Correctness: Since ${\boldsymbol{\mathsf{G}}}$ a DAG, never see back edge

- \implies Every edge (ν, u) out of ν a forward or cross edge
- \implies finish(u) < finish(v)
- \implies **u** already in list

Running Time: O(m + n)

Strongly Connected Components (SCC): Sketch

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!

 $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ a directed graph.

Definition

 $C \subseteq V$ is a *strongly connected component (SCC)* if it is a *maximal* subset such that for all $u, v \in C$, u can reach v and vice versa.

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!

 $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ a directed graph.

Definition

 $C \subseteq V$ is a strongly connected component (SCC) if it is a maximal subset such that for all $u, v \in C$, u can reach v and vice versa.

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!

 $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ a directed graph.

Definition

 $C \subseteq V$ is a *strongly connected component (SCC)* if it is a *maximal* subset such that for all $u, v \in C$, u can reach v and vice versa.

Fact: There is a *unique* partition of \mathbf{V} into SCCs

Proof: Bireachability is an equivalence relation

Trivial Algorithm:

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where P(n(m + n))

Running time: O(n(m + n))

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where
 Running time: O(n(m + n))

Can we do better? O(m + n)?

Graph of SCCs

Definition: Let $\hat{\boldsymbol{G}}$ be graph of SCCs:

- Vertex v(C) for each SCC C
- Edge (v(C), v(C')) if $\exists u \in C, v \in C'$ such that $(u, v) \in E$

Graph of SCCs

Definition: Let $\hat{\boldsymbol{G}}$ be graph of SCCs:

- Vertex v(C) for each SCC C
- Edge (v(C), v(C')) if $\exists u \in C, v \in C'$ such that $(u, v) \in E$

Theorem	
Ĝ is a DAG.	

Graph of SCCs

Definition: Let $\boldsymbol{\hat{G}}$ be graph of SCCs:

- Vertex v(C) for each SCC C
- Edge (v(C), v(C')) if $\exists u \in C, v \in C'$ such that $(u, v) \in E$

Theorem		
Ĝ is a DAG.		

Since $\boldsymbol{\hat{G}}$ a DAG, has a topological sort

Since $\hat{\mathbf{G}}$ a DAG, has a topological sort

Definition: SCC C is a *sink* SCC if no outgoing edges

At least one sink SCC exists

Since $\hat{\mathbf{G}}$ a DAG, has a topological sort

Definition: SCC C is a *sink* SCC if no outgoing edges

At least one sink SCC exists

What happens if we run $DFS(\mathbf{v})$ where \mathbf{v} in a sink SCC?

Since $\hat{\mathbf{G}}$ a DAG, has a topological sort

Definition: SCC C is a *sink* SCC if no outgoing edges

At least one sink SCC exists

What happens if we run $DFS(\mathbf{v})$ where \mathbf{v} in a sink SCC?

• See exactly nodes in **C**!

Since $\hat{\mathbf{G}}$ a DAG, has a topological sort

Definition: SCC C is a *sink* SCC if no outgoing edges

At least one sink SCC exists

What happens if we run $DFS(\mathbf{v})$ where \mathbf{v} in a sink SCC?

• See exactly nodes in **C**!

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

SCCs and DFS

Run DFS(G), and let $finish(C) = max_{v \in C} finish(v)$

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish $(C_1) > finish(C_2)$.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

Run DFS(G), and let $finish(C) = max_{v \in C} finish(v)$

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish $(C_1) > finish(C_2)$.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS • If $x \in C_1$:

Run DFS(G), and let $finish(C) = max_{v \in C} finish(v)$

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish $(C_1) > finish(C_2)$.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

If x ∈ C₁: all of C₂ reachable from x, so DFS(x) does not complete until all of C₂ finished

Run DFS(G), and let $finish(C) = max_{v \in C} finish(v)$

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish $(C_1) > finish(C_2)$.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

If x ∈ C₁: all of C₂ reachable from x, so DFS(x) does not complete until all of C₂ finished

▶ If **x** ∈ **C**₂:

Run DFS(G), and let $finish(C) = max_{v \in C} finish(v)$

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish $(C_1) > finish(C_2)$.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

- If x ∈ C₁: all of C₂ reachable from x, so DFS(x) does not complete until all of C₂ finished
- If x ∈ C₂: all of C₂ reachable from x but nothing from C₁, so x finishes before any node in C₁ starts

Run DFS(G), and let $finish(C) = max_{v \in C} finish(v)$

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish $(C_1) > finish(C_2)$.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

- If x ∈ C₁: all of C₂ reachable from x, so DFS(x) does not complete until all of C₂ finished
- If x ∈ C₂: all of C₂ reachable from x but nothing from C₁, so x finishes before any node in C₁ starts

So node with max finish time in a *source* SCC. Want sink.

Run DFS(G), and let $finish(C) = max_{v \in C} finish(v)$

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish $(C_1) > finish(C_2)$.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

- If x ∈ C₁: all of C₂ reachable from x, so DFS(x) does not complete until all of C₂ finished
- If x ∈ C₂: all of C₂ reachable from x but nothing from C₁, so x finishes before any node in C₁ starts

So node with max finish time in a source SCC. Want sink. Reverse all edges!

Run DFS(G), and let $finish(C) = max_{v \in C} finish(v)$

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish $(C_1) > finish(C_2)$.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

- If x ∈ C₁: all of C₂ reachable from x, so DFS(x) does not complete until all of C₂ finished
- If x ∈ C₂: all of C₂ reachable from x but nothing from C₁, so x finishes before any node in C₁ starts

So node with max finish time in a source SCC. Want sink. Reverse all edges!

Kosaraju's Algorithm

Definition: G^T is **G** with all edges reversed.

```
 \begin{aligned} \mathsf{DFS}(\mathbf{G}^\mathsf{T}) \text{ to get finishing times} \\ \text{while}(\mathbf{G} \text{ non-empty}) \left\{ \\ & \text{Let } \mathbf{v} \text{ be vertex in } \mathbf{G} \text{ with largest finishing time (from original DFS of } \mathbf{G}^\mathsf{T}) \\ & \text{Run DFS}(\mathbf{v}), \text{ let } \mathbf{C} \text{ be all nodes found} \\ & \text{Delete } \mathbf{C} \text{ from } \mathbf{G} \text{ as an SCC} \end{aligned}
```

Kosaraju's Algorithm

Definition: G^T is **G** with all edges reversed.

```
\begin{array}{l} \mathsf{DFS}(\mathbf{G}^{\mathsf{T}}) \text{ to get finishing times} \\ \texttt{while}(\mathbf{G} \text{ non-empty}) \left\{ \\ & \mathsf{Let} \ \mathbf{v} \text{ be vertex in } \mathbf{G} \text{ with largest finishing time (from original DFS of } \mathbf{G}^{\mathsf{T}}) \\ & \mathsf{Run} \ \mathsf{DFS}(\mathbf{v}), \ \mathsf{let} \ \mathbf{C} \text{ be all nodes found} \\ & \mathsf{Delete} \ \mathbf{C} \text{ from } \mathbf{G} \text{ as an SCC} \end{array} \right\}
```

Some implementation details missing (repeatedly finding max finishing time without using heap): see book

Kosaraju's Algorithm

Definition: G^T is **G** with all edges reversed.

```
\begin{array}{l} \mathsf{DFS}(\mathbf{G}^{\mathsf{T}}) \text{ to get finishing times} \\ \texttt{while}(\mathbf{G} \text{ non-empty}) \left\{ \\ & \mathsf{Let} \ \mathbf{v} \text{ be vertex in } \mathbf{G} \text{ with largest finishing time (from original DFS of } \mathbf{G}^{\mathsf{T}}) \\ & \mathsf{Run} \ \mathsf{DFS}(\mathbf{v}), \ \mathsf{let} \ \mathbf{C} \text{ be all nodes found} \\ & \mathsf{Delete} \ \mathbf{C} \text{ from } \mathbf{G} \text{ as an SCC} \end{array} \right\}
```

Some implementation details missing (repeatedly finding max finishing time without using heap): see book

Running Time: O(m + n)

Let C_1,C_2,\ldots,C_k be set identified by algorithm (in order)

Theorem

$$C_i$$
 is a sink SCC of $G \setminus \left(\bigcup_{j=1}^{i-1} C_j \right)$

Let C_1,C_2,\ldots,C_k be set identified by algorithm (in order)

Theorem

$$C_i$$
 is a sink SCC of $G \setminus \left(\bigcup_{j=1}^{i-1} C_j \right)$

Induction on i.

Let C_1,C_2,\ldots,C_k be set identified by algorithm (in order)

Theorem

$$\mathbf{C}_{i}$$
 is a sink SCC of $\mathbf{G} \setminus \left(\bigcup_{j=1}^{i-1} \mathbf{C}_{j} \right)$

Induction on i.

Base case: i = 1. By previous argument, largest finishing time in $G^T \implies$ in sink SCC of $G \implies C_1$ is sink SCC of G

Let C_1,C_2,\ldots,C_k be set identified by algorithm (in order)

Theorem

$$C_i$$
 is a sink SCC of $G \setminus \left(\bigcup_{j=1}^{i-1} C_j \right)$

Induction on i.

Base case: i = 1. By previous argument, largest finishing time in $G^T \implies$ in sink SCC of $G \implies C_1$ is sink SCC of G

Inductive case: Let v node remaining with largest finishing time.

- \blacktriangleright By induction, current graph is ${\bm G}$ minus ${\bm i}-{\bm 1}$ SCCs of ${\bm G}$
- Implies v must be in sink SCC of remaining graph, so get an SCC of remaining graph when run DFS
- By induction, also an SCC of original graph