Introduction

Today: two more examples of dynamic programming
 - *Longest Common Subsequence* (strings)
 - *Optimal Binary Search Tree* (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)
Longest Common Subsequence
Definitions

String: Sequence of elements of some *alphabet* \(\{0, 1\}\), or \(\{A - Z\} \cup \{a - z\}\), etc.

Definition: A sequence \(Z = (z_1, \ldots, z_k)\) is a *subsequence* of \(X = (x_1, \ldots, x_m)\) if there exists a strictly increasing sequence \((i_1, i_2, \ldots, i_k)\) such that \(x_{i_j} = z_j\) for all \(j \in \{1, 2, \ldots, k\}\).

Example: \((B, C, D, B)\) is a subsequence of \((A, B, C, B, D, A, B)\)
- Allowed to skip positions, unlike substring!
Definitions

String: Sequence of elements of some alphabet (\{0, 1\}, or \{A – Z\} \cup \{a – z\}, etc.)

Definition: A sequence \(Z = (z_1, \ldots, z_k) \) is a subsequence of \(X = (x_1, \ldots, x_m) \) if there exists a strictly increasing sequence \((i_1, i_2, \ldots, i_k) \) such that \(x_{i_j} = z_j \) for all \(j \in \{1, 2, \ldots, k\} \).

Example: \((B, C, D, B)\) is a subsequence of \((A, B, C, B, D, A, B)\)

- Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings \(X = (x_1, \ldots, x_m) \) and \(Y = (y_1, \ldots, y_n) \). Need to find the longest \(Z \) which is a subsequence of both \(X \) and \(Y \).
Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: X and Y might not even be same length!

Prefixes of strings

$X_i = (x_1, x_2, \ldots, x_i)$ (so $X = X_m$)

$Y_j = (y_1, y_2, \ldots, y_j)$ (so $Y = Y_n$)

Definition:

Let $OPT(i, j)$ be longest common subsequence of X_i and Y_j.

So looking for optimal solution $OPT = OPT(m, n)$

Last time OPT denotes value of solution, here denotes solution. Be flexible in notation.

Two-dimensional table!
Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: X and Y might not even be the same length!

Prefixes of strings

- $X_i = (x_1, x_2, \ldots, x_i)$ (so $X = X_m$)
- $Y_j = (y_1, y_2, \ldots, y_j)$ (so $Y = Y_n$)

Definition: Let $OPT(i, j)$ be the longest common subsequence of X_i and Y_j. So looking for the optimal solution $OPT = OPT(m, n)$.

Last time OPT denotes the value of the solution, here it denotes the solution. Be flexible in notation.
Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: X and Y might not even be same length!

Prefixes of strings

- $X_i = (x_1, x_2, \ldots, x_i)$ (so $X = X_m$)
- $Y_j = (y_1, y_2, \ldots, y_j)$ (so $Y = Y_n$)

Definition: Let $OPT(i, j)$ be longest common subsequence of X_i and Y_j

So looking for optimal solution $OPT = OPT(m, n)$

- Last time OPT denotes value of solution, here denotes solution. Be flexible in notation
Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: X and Y might not even be same length!

Prefixes of strings

- $X_i = (x_1, x_2, \ldots, x_i)$ (so $X = X_m$)
- $Y_j = (y_1, y_2, \ldots, y_j)$ (so $Y = Y_n$)

Definition: Let $OPT(i, j)$ be longest common subsequence of X_i and Y_j

So looking for optimal solution $OPT = OPT(m, n)$

- Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i, j)$).

1. If $x_i = y_j$:
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i, j)$).

1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-1)$
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i, j)$).

1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-1)$
2. If $x_i \neq y_j$ and $z_k \neq x_i$:
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i, j)$).

1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-i)$
2. If $x_i \neq y_j$ and $z_k \neq x_i$: then $Z = \text{OPT}(i-1, j)$
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i, j)$).

1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i - 1, j - i)$
2. If $x_i \neq y_j$ and $z_k \neq x_i$: then $Z = \text{OPT}(i - 1, j)$
3. If $x_i \neq y_j$ and $z_k \neq y_j$:
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i,j)$).

1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-1)$
2. If $x_i \neq y_j$ and $z_k \neq x_i$: then $Z = \text{OPT}(i-1, j)$
3. If $x_i \neq y_j$ and $z_k \neq y_j$: then $Z = \text{OPT}(i, j-1)$
Optimal Substructure: Proof (I)

Case 1: If \(x_i = y_j \), then \(z_k = x_i = y_j \) and \(Z_{k-1} = \text{OPT}(i-1, j-i) \)

Proof Sketch.

Contradiction.
Optimal Substructure: Proof (I)

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-i)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$.
Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have LCS, longer than longest LCS. Contradiction.
Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i - 1, j - 1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have LCS, longer than longest LCS. Contradiction

Part 2: Suppose $Z_{k-1} \neq \text{OPT}(i - 1, j - 1)$.

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have LCS, longer than longest LCS. Contradiction

Part 2: Suppose $Z_{k-1} \neq \text{OPT}(i-1, j-1)$.

$\implies \exists W$ LCS of X_{i-1}, Y_{j-1} of length $> k-1 \implies \geq k$

$\implies (W, a)$ common subsequence of X_i, Y_j of length $> k$

\implies Contradiction to Z being LCS of X_i and Y_j
Optimal Substructure: Proof (II)

Case 2: If $x_i \neq y_j$ and $z_k \neq x_i$ then $Z = \text{OPT}(i-1, j)$
Optimal Substructure: Proof (II)

Case 2: If $x_i \neq y_j$ and $z_k \neq x_i$ then $Z = \text{OPT}(i - 1, j)$

Proof.

Since $z_k \neq x_i$, Z a common subsequence of X_{i-1}, Y_j
Case 2: If $x_i \neq y_j$ and $z_k \neq x_i$ then $Z = \text{OPT}(i - 1, j)$

Proof.

Since $z_k \neq x_i$, Z a common subsequence of X_{i-1}, Y_j

$\text{OPT}(i - 1, j)$ a common subsequence of X_i, Y_j

$\implies |\text{OPT}(i - 1, j)| \leq |\text{OPT}(i, j)| = |Z|$ (def of $\text{OPT}(i, j)$ and Z)
Case 2: If \(x_i \neq y_j \) and \(z_k \neq x_i \) then \(Z = \text{OPT}(i-1, j) \)

Proof.

Since \(z_k \neq x_i \), \(Z \) a common subsequence of \(X_{i-1}, Y_j \)

\(\text{OPT}(i-1, j) \) a common subsequence of \(X_i, Y_j \)

\[|\text{OPT}(i-1, j)| \leq |\text{OPT}(i, j)| = |Z| \quad \text{(def of } \text{OPT}(i, j) \text{ and } Z) \]

\[\implies Z = \text{OPT}(i-1, j) \]
Case 3: If $x_i \neq y_j$ and $z_k \neq y_j$ then $Z = \text{OPT}(i, j - 1)$

Proof.
Symmetric to Case 2.
Structure Corollary

Corollary

\[
\text{OPT}(i, j) = \begin{cases}
\emptyset & \text{if } i = 0 \text{ or } j = 0, \\
\text{OPT}(i - 1, j - 1) \circ x_i & \text{if } i, j > 0 \text{ and } x_i = y_j \\
\max(\text{OPT}(i, j - 1), \text{OPT}(i - 1, j)) & \text{if } i, j > 0 \text{ and } x_i \neq y_j
\end{cases}
\]
Structure Corollary

Corollary

\[
\text{OPT}(i, j) = \begin{cases}
\emptyset & \text{if } i = 0 \text{ or } j = 0, \\
\text{OPT}(i - 1, j - 1) \circ x_i & \text{if } i, j > 0 \text{ and } x_i = y_j \\
\max(\text{OPT}(i, j - 1), \text{OPT}(i - 1, j)) & \text{if } i, j > 0 \text{ and } x_i \neq y_j
\end{cases}
\]

Gives obvious recursive algorithm
- Can take exponential time (good exercise at home!)

Dynamic Programming!
- Top-Down: are problems getting “smaller”? What does “smaller” mean?
- Bottom-Up: two-dimensional table! What order to fill it in?
Dynamic Programming Algorithm

LCS(X, Y) {
 for (i = 0 to m) M[i, 0] = 0;
 for (j = 0 to n) M[0, j] = 0;
 for (i = 1 to m) {
 for (j = 1 to n) {
 if (x_i = y_j)
 M[i, j] = 1 + M[i - 1, j - 1];
 else
 M[i, j] = max(M[i, j - 1], M[i - 1, j]);
 }
 }
 return M[m, n];
}
Dynamic Programming Algorithm

LCS(X,Y) {
 for(i = 0 to m) M[i, 0] = 0; \(O(m)\)
 for(j = 0 to n) M[0, j] = 0; \(O(n)\)
 for(i = 1 to m) {
 for(j = 1 to n) {
 if\((x_i = y_j) \)
 \(M[i, j] = 1 + M[i - 1, j - 1] \);
 else
 \(M[i, j] = \max(M[i, j - 1], M[i - 1, j]) \);
 }
 }
 return M[m, n];
}

Running Time: \(O(mn)\)
Correctness

Theorem

\[M[i,j] = |OPT(i,j)| \]
Correctness

Theorem

\[M[i,j] = |OPT(i,j)| \]

Proof.

Induction on \(i + j \) (or could do on iterations in the algorithm)
Correctness

Theorem

\[M[i,j] = |OPT(i,j)| \]

Proof.

Induction on \(i + j\) (or could do on iterations in the algorithm)

Base Case: \(i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |OPT(i,j)| \)
Correctness

Theorem

\[M[i,j] = |\text{OPT}(i,j)| \]

Proof.

Induction on \(i + j \) (or could do on iterations in the algorithm)

Base Case: \(i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |\text{OPT}(i,j)| \)

Inductive Step: Divide into three cases

1. If \(i = 0 \) or \(j = 0 \), then \(M[i,j] = 0 = |\text{OPT}(i,j)| \)
Correctness

Theorem

\[M[i,j] = |\text{OPT}(i,j)| \]

Proof.

Induction on \(i + j \) (or could do on iterations in the algorithm)

Base Case: \(i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |\text{OPT}(i,j)| \)

Inductive Step: Divide into three cases

1. If \(i = 0 \) or \(j = 0 \), then \(M[i,j] = 0 = |\text{OPT}(i,j)| \)
2. If \(x_i = y_j \), then \(M[i,j] = 1 + M[i-1,j-1] = 1 + |\text{OPT}(i-1,j-1)| = |\text{OPT}(i,j)| \)
3. If \(x_i \neq y_j \), then \(M[i,j] = \max(M[i,j-1], M[i-1,j]) \) (def of algorithm)
Correctness

Theorem

\[M[i,j] = |OPT(i,j)| \]

Proof.

Induction on \(i + j \) (or could do on iterations in the algorithm)

Base Case: \(i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |OPT(i,j)| \)

Inductive Step: Divide into three cases

1. If \(i = 0 \) or \(j = 0 \), then \(M[i,j] = 0 = |OPT(i,j)| \)
2. If \(x_i = y_j \), then \(M[i,j] = 1 + M[i-1,j-1] = 1 + |OPT(i-1,j-1)| = |OPT(i,j)| \)
3. If \(x_i \neq y_j \), then

\[
M[i,j] = \max(M[i,j-1], M[i-1,j])
\]

\[
= \max(|OPT(i,j-1)|, |OPT(i-1,j)|)
\]

\[
= |OPT(i,j)|
\]
Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 15.4
Optimal Binary Search Trees
Problem Definition

Input: probability distribution / search frequency of keys

- \(n \) distinct keys \(k_1 < k_2 < \cdots < k_n \)
- For each \(i \in [n] \), probability \(p_i \) that we search for \(k_i \) (so \(\sum_{i=1}^{n} p_i = 1 \))

What’s the best binary search tree for these keys and frequencies?
Problem Definition

Input: probability distribution / search frequency of keys
 - n distinct keys $k_1 < k_2 < \cdots < k_n$
 - For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^{n} p_i = 1$)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree T is $\text{depth}_T(k_i) + 1$ (say depth of root = 0)

$$\implies E[\text{cost of search in } T] = \sum_{i=1}^{n} p_i(\text{depth}_T(k_i) + 1)$$
Problem Definition

Input: probability distribution / search frequency of keys

- n distinct keys $k_1 < k_2 < \cdots < k_n$
- For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^{n} p_i = 1$)

What’s the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree T is $\text{depth}_T(k_i) + 1$ (say depth of root = 0)

$$\implies E[\text{cost of search in } T] = \sum_{i=1}^{n} p_i (\text{depth}_T(k_i) + 1)$$

Definition: $c(T) = \sum_{i=1}^{n} p_i (\text{depth}_T(k_i) + 1)$

Problem: Find search tree T minimizing cost.
Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?
Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \ldots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)
Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \ldots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

\[E[\text{cost of search in } T] \approx \frac{n}{2} \]
Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \ldots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

\[E[\text{cost of search in } T] \approx n \cdot 2^{n/2} \]
Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \ldots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

\[E[\text{cost of search in } T] \approx \frac{\pi}{2} \]

Balanced search tree: $E[\text{cost}] \leq O(\log n)$
Suppose root is k_r. What does optimal tree look like?
Intuition

Suppose root is k_r. What does optimal tree look like?

![Diagram showing the optimal tree structure with root k_r. The diagram illustrates the optimal tree for the set $\{k_1, \ldots, k_{r-1}\}$ on the left and the optimal tree for the set $\{k_{r+1}, \ldots, k_n\}$ on the right.](image)
Subproblems

Definition

Let $\text{OPT}(i, j)$ with $i \leq j$ be optimal tree for keys $\{k_i, k_{i+1}, \ldots, k_j\}$: tree T minimizing

$$c(T) = \sum_{a=i}^{j} p_a (\text{depth}_T(k_a) + 1)$$

By convention, if $i > j$ then $\text{OPT}(i, j)$ empty

So overall goal is to find $\text{OPT}(1, n)$.
Subproblems

Definition

Let $OPT(i, j)$ with $i \leq j$ be optimal tree for keys $\{k_i, k_2, \ldots, k_j\}$: tree T minimizing $c(T) = \sum_{a=i}^{j} p_a(\text{depth}_T(k_a) + 1)$

By convention, if $i > j$ then $OPT(i, j)$ empty
So overall goal is to find $OPT(1, n)$.

Theorem (Optimal Substructure)

Let k_r be the root of $OPT(i, j)$. Then the left subtree of $OPT(i, j)$ is $OPT(i, r - 1)$, and the right subtree of $OPT(i, j)$ is $OPT(r + 1, j)$.
Proof Sketch of Optimal Substructure

Definitions:

- Let $T = \text{OPT}(i, j)$, T_L its left subtree, T_R its right subtree.
- Suppose for contradiction $T_L \neq \text{OPT}(i, r - 1)$, let $T' = \text{OPT}(i, r - 1)$.
 $\implies c(T') < c(T_L)$ (def of $\text{OPT}(i, r - 1)$)
- Let \hat{T} be tree get by replacing T_L with T'
Proof Sketch of Optimal Substructure

Definitions:

- Let $T = \text{OPT}(i, j)$, T_L its left subtree, T_R its right subtree.
- Suppose for contradiction $T_L \neq \text{OPT}(i, r - 1)$, let $T' = \text{OPT}(i, r - 1)$
 $\implies c(T') < c(T_L)$ (def of $\text{OPT}(i, r - 1)$)
- Let \hat{T} be tree get by replacing T_L with T'

Whole bunch of math (see lecture notes): get that $c(\hat{T}) < c(T)$

Contradicts $T = \text{OPT}(i, j)$
Proof Sketch of Optimal Substructure

Definitions:

- Let $T = \text{OPT}(i, j)$, T_L its left subtree, T_R its right subtree.
- Suppose for contradiction $T_L \neq \text{OPT}(i, r - 1)$, let $T' = \text{OPT}(i, r - 1)$.
 \[\implies c(T') < c(T_L)\] (def of $\text{OPT}(i, r - 1)$)
- Let \hat{T} be the tree get by replacing T_L with T'

Whole bunch of math (see lecture notes): get that $c(\hat{T}) < c(T)$
Contradicts $T = \text{OPT}(i, j)$

Symmetric argument works for $T_R = \text{OPT}(r + 1, j)$
Cost Corollary

Corollary

\[c(\text{OPT}(i, j)) = \sum_{a=i}^{j} p_a + \min_{i \leq r \leq j} (c(\text{OPT}(i, r - 1)) + c(\text{OPT}(r + 1, j))) \]

Let \(k_r \) be root of \(\text{OPT}(i, j) \)

\[c(\text{OPT}(i, j)) = \sum_{a=i}^{j} p_a (\text{depth}_{\text{OPT}(i,j)}(k_a) + 1) \]

\[= \sum_{a=i}^{j} (p_a (\text{depth}_{\text{OPT}(i,r-1)}(k_a) + 2)) + p_r + \sum_{a=r+1}^{j} p_a (\text{depth}_{\text{OPT}(r+1,j)}(k_a) + 2) \]

\[= \sum_{a=i}^{j} p_a + \sum_{a=i}^{r-1} (p_a (\text{depth}_{\text{OPT}(i,r-1)}(k_a) + 1)) + \sum_{a=r+1}^{j} p_a (\text{depth}_{\text{OPT}(r+1,j)}(k_a) + 1) \]

\[= \sum_{a=i}^{j} p_a + c(\text{OPT}(i, r - 1)) + c(\text{OPT}(r + 1, j)). \]
Cost Corollary

Corollary

\[c(\text{OPT}(i, j)) = \sum_{a=i}^{j} p_a + \min_{i \leq r \leq j} (c(\text{OPT}(i, r-1)) + c(\text{OPT}(r+1, j))) \]

Let \(k_r \) be root of \(\text{OPT}(i, j) \)

\[
\begin{align*}
 c(\text{OPT}(i, j)) &= \sum_{a=i}^{j} p_a (\text{depth}_{\text{OPT}(i, j)}(k_a) + 1) \\
 &= \sum_{a=i}^{r-1} (p_a (\text{depth}_{\text{OPT}(i, r-1)}(k_a) + 2)) + p_r + \sum_{a=r+1}^{j} p_a (\text{depth}_{\text{OPT}(r+1, j)}(k_a) + 2) \\
 &= \sum_{a=i}^{j} p_a + \sum_{a=i}^{r-1} (p_a (\text{depth}_{\text{OPT}(i, r-1)}(k_a) + 1)) + \sum_{a=r+1}^{j} p_a (\text{depth}_{\text{OPT}(r+1, j)}(k_a) + 1) \\
 &= \sum_{a=i}^{j} p_a + c(\text{OPT}(i, r-1)) + c(\text{OPT}(r+1, j)).
\end{align*}
\]

Same logic holds for any possible root \(\implies \) take min
Algorithm

Fill in table M:

$$M[i, j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j \end{cases}$$
Algorithm

Fill in table M:

$$M[i, j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller?
Algorithm

Fill in table M:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r-1] + M[r+1, j] \right) & \text{if } i \leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $j - i$ decreases in every recursive call.
Algorithm

Fill in table M:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $j - i$ decreases in every recursive call.

Correctness. Claim $M[i,j] = c(OPT(i,j))$. Induction on $j - i$.

Algorithm

Fill in table M:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $j - i$ decreases in every recursive call.

Correctness. Claim $M[i,j] = c(\text{OPT}(i,j))$. Induction on $j - i$.

- Base case: if $j - i < 0$ then $M[i,j] = \text{OPT}(i,j) = 0$
Algorithm

Fill in table M:

$$
M[i, j] = \begin{cases}
0 & \text{if } i > j \\
\min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j
\end{cases}
$$

Top-Down (memoization): are problems getting smaller? Yes! $j - i$ decreases in every recursive call.

Correctness. Claim $M[i, j] = c(OPT(i, j))$. Induction on $j - i$.

- Base case: if $j - i < 0$ then $M[i, j] = OPT(i, j) = 0$
- Inductive step:

$$
M[i, j] = \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) \quad \text{(alg def)}
$$

$$
= \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + c(OPT(i, r - 1)) + c(OPT(r + 1, j)) \right) \quad \text{(induction)}
$$

$$
= c(OPT(i, j)) \quad \text{(cost corollary)}
$$
Algorithm: Bottom-up

What order to fill the table in?

- Obvious approach: for\(i = 1\) to \(n - 1\) for\(j = i + 1\) to \(n\) Doesn’t work!
Algorithm: Bottom-up

What order to fill the table in?

- Obvious approach: for(i = 1 to n - 1) for(j = i + 1 to n) Doesn’t work!
- Take hint from induction: j - i

```java
OBST {
    Set M[i,j] = 0 for all j > i;
    Set M[i,i] = p_i for all i
    for(ℓ = 1 to n - 1) {
        for(i = 1 to n - ℓ) {
            j = i + ℓ
            M[i,j] = min_{i \leq r \leq j} \left( \sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1,j] \right);
        }
    }
    return M[1,n];
}
```
Analysis

Correctness: same as top-down

Running Time:
Analysis

Correctness: same as top-down

Running Time:
- # table entries:
Analysis

Correctness: same as top-down

Running Time:
- # table entries: $O(n^2)$
Analysis

Correctness: same as top-down

Running Time:
- Number of table entries: $O(n^2)$
- Time to compute table entry $M[i,j]$: $O(j - i) = O(n)$

Total running time: $O(n^3)$
Analysis

Correctness: same as top-down

Running Time:
- # table entries: $O(n^2)$
- Time to compute table entry $M[i,j]$: $O(j - i) = O(n)$
Analysis

Correctness: same as top-down

Running Time:
- # table entries: $O(n^2)$
- Time to compute table entry $M[i, j]$: $O(j - i) = O(n)$

Total running time: $O(n^3)$