Lecture 12: Dynamic Programming II

Michael Dinitz

October 7, 2021
601.433/633 Introduction to Algorithms

Introduction

Today: two more examples of dynamic programming

- Longest Common Subsequence (strings)
- Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming Both in CLRS (unlike Weighted Interval Scheduling)

Longest Common Subsequence

Definitions

String: Sequence of elements of some alphabet $(\{\mathbf{0}, \mathbf{1}\}$, or $\{\mathbf{A}-\mathbf{Z}\} \cup\{\mathbf{a}-\mathbf{z}\}$, etc. $)$
Definition: A sequence $\mathbf{Z}=\left(z_{1}, \ldots, z_{k}\right)$ is a subsequence of $\mathbf{X}=\left(x_{1}, \ldots, x_{m}\right)$ if there exists a strictly increasing sequence $\left(i_{1}, i_{2}, \ldots, \mathbf{i}_{k}\right)$ such that $\mathbf{x}_{\mathbf{i}_{j}}=\mathbf{z}_{\mathbf{j}}$ for all $\mathbf{j} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{k}\}$.

Example: (B, C, D, B) is a subsequence of (A, B, C, B, D, A, B)

- Allowed to skippositions, unlike substring!

Definitions

String: Sequence of elements of some alphabet $(\{\mathbf{0}, \mathbf{1}\}$, or $\{\mathbf{A}-\mathbf{Z}\} \cup\{\mathbf{a}-\mathbf{z}\}$, etc. $)$
Definition: A sequence $\mathbf{Z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{k}}\right)$ is a subsequence of $\mathbf{X}=\left(\mathrm{x}_{1}, \ldots, \mathbf{x}_{\mathbf{m}}\right)$ if there exists a strictly increasing sequence $\left(\mathbf{i}_{\mathbf{1}}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{\mathbf{k}}\right)$ such that $\mathbf{x}_{\mathbf{i}_{\mathbf{j}}}=\mathbf{z}_{\mathbf{j}}$ for all $\mathbf{j} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{k}\}$.

Example: (B, C, D, B) is a subsequence of (A, B, C, B, D, A, B)

- Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings $\mathbf{X}=\left(\mathrm{x}_{1}, \ldots, \mathbf{x}_{\mathbf{m}}\right)$ and $\mathbf{Y}=\left(\mathbf{y}_{1}, \ldots \mathbf{y}_{\mathbf{n}}\right)$. Need to find the longest \mathbf{Z} which is a subsequence of both \mathbf{X} and \mathbf{Y}.

Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: \mathbf{X} and \mathbf{Y} might not even be same length!

Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: \mathbf{X} and \mathbf{Y} might not even be same length!

Prefixes of strings

- $X_{i}=\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ (so $\left.X=X_{m}\right)$
- $Y_{j}=\left(y_{1}, y_{2}, \ldots, y_{j}\right)\left(\right.$ so $\left.Y=Y_{n}\right)$

Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: \mathbf{X} and \mathbf{Y} might not even be same length!

Prefixes of strings

- $X_{i}=\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ (so $\left.X=X_{m}\right)$
- $Y_{j}=\left(y_{1}, y_{2}, \ldots, y_{j}\right)\left(\right.$ so $\left.Y=Y_{n}\right)$

Definition: Let $\mathbf{O P T}(\mathbf{i}, \mathbf{j})$ be longest common subsequence of $\mathbf{X}_{\mathbf{i}}$ and $\mathbf{Y}_{\mathbf{j}}$
So looking for optimal solution OPT = OPT(m,n)

- Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: \mathbf{X} and \mathbf{Y} might not even be same length!

Prefixes of strings

- $X_{i}=\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ (so $\left.X=X_{m}\right)$
- $Y_{j}=\left(y_{1}, y_{2}, \ldots, y_{j}\right)\left(\right.$ so $\left.Y=Y_{n}\right)$

Definition: Let $\mathbf{O P T}(\mathbf{i}, \mathbf{j})$ be longest common subsequence of $\mathbf{X}_{\mathbf{i}}$ and $\mathbf{Y}_{\mathbf{j}}$
So looking for optimal solution OPT = OPT(m,n)

- Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

[^0]
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

```
Theorem
Let Z = (\mp@subsup{\mathbf{z}}{1}{},\ldots,\mp@subsup{\mathbf{z}}{\mathbf{k}}{})\mathrm{ be an LCS of }\mp@subsup{\mathbf{X}}{\mathbf{i}}{}\mathrm{ and }\mp@subsup{\mathbf{Y}}{\mathbf{j}}{(so Z = OPT(i,j)).}
    1. If }\mp@subsup{\mathbf{x}}{\mathbf{i}}{=}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ :
```


Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

> Theorem
> Let $\mathbf{Z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{k}}\right)$ be an LCS of $\mathbf{X}_{\mathbf{i}}$ and $\mathbf{Y}_{\mathbf{j}}($ so $\mathbf{Z}=\mathbf{O P T}(\mathbf{i}, \mathbf{j}))$.
> 1. If $\mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}}$: then $\mathbf{z}_{\mathbf{k}}=\mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}}$ and $\mathbf{Z}_{\mathbf{k}-\mathbf{1}}=\mathbf{O P T}(\mathbf{i}-\mathbf{1}, \mathbf{j}-1$

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Let } \mathbf{Z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{k}}\right) \text { be an } \operatorname{LCS} \text { of } \mathbf{X}_{\mathbf{i}} \text { and } \mathbf{Y}_{\mathbf{j}}(\text { so } \mathbf{Z}=\mathbf{O P T}(\mathbf{i}, \mathbf{j})) \text {. } \\
& \text { 1. If } \left.\mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}} \text { : then } \mathbf{z}_{\mathbf{k}}=\mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}} \text { and } \mathbf{Z}_{\mathbf{k}-\mathbf{1}}=\mathbf{O P T}(\mathbf{i}-\mathbf{1}, \mathbf{j}-j)^{(}\right) \\
& \text {2. If } \mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{j}} \text { and } \mathbf{z}_{\mathbf{k}} \neq \mathbf{x}_{\mathbf{i}} \text { : }
\end{aligned}
$$

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

```
Theorem
Let Z = (\mp@subsup{\mathbf{z}}{1}{},\ldots,\mp@subsup{\mathbf{z}}{\mathbf{k}}{})\mathrm{ be an LCS of }\mp@subsup{\mathbf{X}}{\mathbf{i}}{}\mathrm{ and }\mp@subsup{\mathbf{Y}}{\mathbf{j}}{(so Z = OPT(i,j)).}
    1. If }\mp@subsup{\mathbf{x}}{\mathbf{i}}{=}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ : then }\mp@subsup{\mathbf{z}}{\mathbf{k}}{}=\mp@subsup{\mathbf{x}}{\mathbf{i}}{}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ and }\mp@subsup{\mathbf{Z}}{\mathbf{k}-\mathbf{1}}{}=\mathbf{OPT}(\mathbf{i}-\mathbf{1,j}-\mathbf{i}
    2. If }\mp@subsup{\mathbf{x}}{\mathbf{i}}{\mathbf{#}}\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ and }\mp@subsup{\mathbf{z}}{\mathbf{k}}{}\not=\mp@subsup{\mathbf{x}}{\mathbf{i}}{}:\mathrm{ : then }\mathbf{Z}=\mathbf{OPT}(\mathbf{i}-\mathbf{1,j}
```


Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

```
Theorem
Let Z = (\mp@subsup{\mathbf{z}}{1}{},\ldots,\mp@subsup{\mathbf{z}}{\mathbf{k}}{})\mathrm{ be an LCS of }\mp@subsup{\mathbf{X}}{\mathbf{i}}{}\mathrm{ and }\mp@subsup{\mathbf{Y}}{\mathbf{j}}{(so Z = OPT(i,j)).}
    1. If }\mp@subsup{\mathbf{x}}{\mathbf{i}}{=}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ : then }\mp@subsup{\mathbf{z}}{\mathbf{k}}{}=\mp@subsup{\mathbf{x}}{\mathbf{i}}{}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ and }\mp@subsup{\mathbf{Z}}{\mathbf{k}-\mathbf{1}}{}=\mathbf{OPT}(\mathbf{i}-\mathbf{1},\mathbf{j}-\mathbf{i}
    2. If }\mp@subsup{\mathbf{x}}{\mathbf{i}}{\prime}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ and }\mp@subsup{\mathbf{z}}{\mathbf{k}}{}\not=\mp@subsup{\mathbf{x}}{\mathbf{i}}{}:\mathrm{ : then }\mathbf{Z}=\mathbf{OPT}(\mathbf{i}-\mathbf{1,j}
    3. If }\mp@subsup{\mathbf{x}}{\mathbf{i}}{}\not=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ and }\mp@subsup{\mathbf{z}}{\mathbf{k}}{}\not=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ :
```


Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

```
Theorem
Let Z = (\mp@subsup{\mathbf{z}}{1}{},\ldots,\mp@subsup{\mathbf{z}}{\mathbf{k}}{})\mathrm{ be an LCS of }\mp@subsup{\mathbf{X}}{\mathbf{i}}{}\mathrm{ and }\mp@subsup{\mathbf{Y}}{\mathbf{j}}{(so Z = OPT(i,j)).}
    1. If }\mp@subsup{\mathbf{x}}{\mathbf{i}}{=}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ : then }\mp@subsup{\mathbf{z}}{\mathbf{k}}{}=\mp@subsup{\mathbf{x}}{\mathbf{i}}{}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ and }\mp@subsup{\mathbf{Z}}{\mathbf{k}-\mathbf{1}}{}=\mathbf{OPT}(\mathbf{i}-\mathbf{1,j}-\mathbf{i}
    2. If }\mp@subsup{\mathbf{x}}{\mathbf{i}}{\prime}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ and }\mp@subsup{\mathbf{z}}{\mathbf{k}}{}\not=\mp@subsup{\mathbf{x}}{\mathbf{i}}{}\mathrm{ : then }\mathbf{Z}=\mathbf{OPT}(\mathbf{i}-\mathbf{1,j}
    3. If }\mp@subsup{\mathbf{x}}{\mathbf{i}}{\prime}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ and }\mp@subsup{\mathbf{z}}{\mathbf{k}}{}\not=\mp@subsup{\mathbf{y}}{\mathbf{j}}{}\mathrm{ : then }\mathbf{Z}=\mathbf{OPT}(\mathbf{i},\mathbf{j}-\mathbf{1}
```


Optimal Substructure: Proof (I)

Case 1: If $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$, then $\mathrm{z}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$ and $\mathrm{Z}_{\mathrm{k}-1}=\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{i})$
Proof Sketch.
Contradiction.

Optimal Substructure: Proof (I)

Case 1: If $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$, then $\mathrm{z}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$ and $\mathrm{Z}_{\mathrm{k}-1}=\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{i})$
Proof Sketch.
Contradiction.
Part 1: Suppose $x_{i}=y_{j}=a$, but $z_{k} \neq \mathbf{a}$.

Optimal Substructure: Proof (I)

Case 1: If $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$, then $\mathrm{z}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$ and $\mathrm{Z}_{\mathrm{k}-1}=\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{i})$

Proof Sketch.

Contradiction.
Part 1: Suppose $\mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}}=\mathbf{a}$, but $\mathbf{z}_{\mathbf{k}} \neq \mathbf{a}$. Add \mathbf{a} to end of \mathbf{Z}, still have CS , longer than longest LCS. Contradiction

Optimal Substructure: Proof (I)

Case 1: If $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$, then $\mathrm{z}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$ and $\mathrm{Z}_{\mathrm{k}-1}=\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{i})$

Proof Sketch.

Contradiction.
Part 1: Suppose $\mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}}=\mathbf{a}$, but $\mathbf{z}_{\mathbf{k}} \neq \mathbf{a}$. Add \mathbf{a} to end of \mathbf{Z}, still have LCS, longer than longest LCS. Contradiction

Part 2: Suppose $\mathbf{Z}_{\mathbf{k}-\mathbf{1}} \neq \mathbf{O P T}(\mathbf{i} \mathbf{- 1 , j} \mathbf{- 1})$.

Optimal Substructure: Proof (I)

Case 1: If $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$, then $\mathrm{z}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}$ and $\mathrm{Z}_{\mathrm{k}-\mathbf{1}}=\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{i})$

Proof Sketch.

Contradiction.

Part 1: Suppose $\mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}}=\mathbf{a}$, but $\mathbf{z}_{\mathbf{k}} \neq \mathbf{a}$. Add \mathbf{a} to end of \mathbf{Z}, still have LCS, longer than longest LCS. Contradiction

Part 2: Suppose $\mathbf{Z}_{\mathbf{k}-\mathbf{1}} \neq \mathbf{O P T}(\mathbf{i} \mathbf{- 1 , j} \mathbf{- 1})$.
$\Longrightarrow \exists \mathbf{W}$ LCS of $\mathbf{X}_{\mathbf{i}-\mathbf{1}}, \mathbf{Y}_{\mathbf{j} \mathbf{- 1}}$ of length $>\mathbf{k}-\mathbf{1} \Longrightarrow \geq \mathbf{k}$
$\Longrightarrow(\mathbf{W}, \mathbf{a})$ common subsequence of $\mathbf{X}_{\mathbf{i}}, \mathbf{Y}_{\mathbf{j}}$ of length $>\mathbf{k}$

- Contradiction to \mathbf{Z} being LCS of $\mathbf{X}_{\mathbf{i}}$ and $\mathbf{Y}_{\mathbf{j}}$

Optimal Substructure: Proof (II)

Case 2: If $\mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{j}}$ and $\mathbf{z}_{\mathbf{k}} \neq \mathbf{x}_{\mathbf{i}}$ then $\mathbf{Z}=\mathbf{O P T}(\mathbf{i}-\mathbf{1}, \mathbf{j})$

Optimal Substructure: Proof (II)

Case 2: If $\mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{j}}$ and $\mathbf{z}_{\mathbf{k}} \neq \mathbf{x}_{\mathbf{i}}$ then $\mathbf{Z}=\mathbf{O P T}(\mathbf{i}-\mathbf{1}, \mathbf{j})$

Proof.

Since $\mathbf{Z}_{\mathbf{k}} \neq \mathbf{x}_{\mathbf{i}}, \mathbf{Z}$ a common subsequence of $\mathbf{X}_{\mathbf{i}-\mathbf{1}}, \mathbf{Y}_{\mathbf{j}}$

Optimal Substructure: Proof (II)

Case 2: If $\mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{j}}$ and $\mathbf{z}_{\mathbf{k}} \neq \mathbf{x}_{\mathbf{i}}$ then $\mathbf{Z}=\mathbf{O P T}(\mathbf{i}-\mathbf{1}, \mathbf{j})$

Proof.

Since $\mathbf{z}_{\mathbf{k}} \neq \mathbf{x}_{\mathbf{i}}, \mathbf{Z}$ a common subsequence of $\mathbf{X}_{\mathbf{i}-\mathbf{1}}, \mathbf{Y}_{\mathbf{j}}$
$\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j})$ a common subsequence of $\mathbf{X}_{\mathbf{i}}, \mathbf{Y}_{\mathbf{j}}$
$\Longrightarrow|\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j})| \leq|\operatorname{OPT}(\mathbf{i}, \mathbf{j})|=|\mathbf{Z}| \quad($ def of $\operatorname{OPT}(\mathbf{i}, \mathbf{j})$ and $\mathbf{Z})$

Optimal Substructure: Proof (II)

Case 2: If $\mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{j}}$ and $\mathbf{z}_{\mathbf{k}} \neq \mathbf{x}_{\mathbf{i}}$ then $\mathbf{Z}=\mathbf{O P T}(\mathbf{i}-\mathbf{1}, \mathbf{j})$

Proof.

Since $\mathbf{z}_{\mathbf{k}} \neq \mathbf{x}_{\mathbf{i}}, \mathbf{Z}$ a common subsequence of $\mathbf{X}_{\mathbf{i}-\mathbf{1}}, \mathbf{Y}_{\mathbf{j}}$
$\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j})$ a common subsequence of $\mathbf{X}_{\mathbf{i}}, \mathbf{Y}_{\mathbf{j}}$
$\Longrightarrow|\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j})| \leq|\operatorname{OPT}(\mathbf{i}, \mathbf{j})|=|\mathbf{Z}| \quad($ def of $\operatorname{OPT}(\mathbf{i}, \mathbf{j})$ and $\mathbf{Z})$
$\Longrightarrow Z=O P T(i-1, j)$

Optimal Substructure: Proof (III)

Case 3: If $\mathrm{x}_{\mathbf{i}} \neq \mathrm{y}_{\mathrm{j}}$ and $\mathrm{z}_{\mathrm{k}} \neq \mathrm{y}_{\mathbf{j}}$ then $\mathbf{Z}=\mathbf{O P T}(\mathbf{i}, \mathbf{j} \mathbf{- 1})$

Proof.

Symmetric to Case 2.

Structure Corollary

Corollary

$$
\operatorname{OPT}(\mathbf{i}, \mathbf{j})= \begin{cases}\varnothing & \text { if } \mathbf{i}=\mathbf{0} \text { or } \mathbf{j}=\mathbf{0}, \\ \operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{1}) \circ \mathrm{x}_{\mathbf{i}} & \text { if } \mathbf{i}, \mathbf{j}>\mathbf{0} \text { and } \mathrm{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}} \\ \max (\operatorname{OPT}(\mathbf{i}, \mathbf{j}-\mathbf{1}), \operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j})) & \text { if } \mathbf{i}, \mathbf{j}>\mathbf{0} \text { and } \mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}}\end{cases}
$$

Structure Corollary

Corollary

$$
\operatorname{OPT}(\mathbf{i}, \mathbf{j})= \begin{cases}\varnothing & i f \mathbf{i}=\mathbf{0} \text { or } \mathbf{j}=\mathbf{0}, \\ \operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{1}) \circ \mathrm{x}_{\mathbf{i}} & i f \mathbf{i}, \mathbf{j}>\mathbf{0} \text { and } \mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{j}} \\ \max (\operatorname{OPT}(\mathbf{i}, \mathbf{j}-\mathbf{1}), \operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j})) & \text { if } \mathbf{i}, \mathbf{j}>\mathbf{0} \text { and } \mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{j}}\end{cases}
$$

Gives obvious recursive algorithm

- Can take exponential time (good exercise at home!)

Dynamic Programming!

- Top-Down: are problems getting "smaller"? What does "smaller" mean?
- Bottom-Up: two-dimensional table! What order to fill it in?

Dynamic Programming Algorithm

```
LCS(X,Y) {
    for(i=0 to m)M[i,0] = 0;
    for(j = 0 to n) M[0,j] = 0;
    for(i=1 to m)
        for(j=1 to n) {
        if( }\mp@subsup{\mathbf{x}}{\mathbf{i}}{=}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{\mathbf{j}
        M[i,j]=1 +M[i-1,j-1];
        else
            M[i,j] = max(M[i,j-1],M[i-1,j]);
        }
        }
    return M[m,n];
}
```


Dynamic Programming Algorithm

```
LCS(X,Y) {
    for(i=0 to m)M[i,0]=0;\quadO(m)
    for(j=0 to n)M[0,j]=0; O(n)
    for(i=1 to m) {
        for(j=1 to n) {
        if( }\mp@subsup{\mathbf{x}}{\mathbf{i}}{=}=\mp@subsup{\mathbf{y}}{\mathbf{j}}{\mathbf{j}
        M[i,j]=1 +M[i-1,j-1];
        else
            M[i,j]=max(M[i,j-1],M[i-1,j]);
        }
        }
    return M[m,n];
}
```


Correctness

Theorem
$\mathrm{M}[\mathrm{i}, \mathrm{j}]=|\mathrm{OPT}(\mathrm{i}, \mathrm{j})|$

Correctness

Theorem

$\mathbf{M}[\mathrm{i}, \mathrm{j}]=|\mathrm{OPT}(\mathrm{i}, \mathrm{j})|$

Proof.

Induction on $\mathbf{i}+\mathbf{j}$ (or could do on iterations in the algorithm)

Correctness

Theorem

$\mathrm{M}[\mathrm{i}, \mathrm{j}]=|\mathrm{OPT}(\mathrm{i}, \mathrm{j})|$

Proof.

Induction on $\mathbf{i}+\mathbf{j}$ (or could do on iterations in the algorithm) Base Case: $\mathbf{i}+\mathbf{j}=\mathbf{0} \Longrightarrow \mathbf{i}=\mathbf{j}=\mathbf{0} \Longrightarrow \mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{0}=|\mathrm{OPT}(\mathbf{i}, \mathbf{j})|$

Correctness

Theorem

$\mathrm{M}[\mathrm{i}, \mathrm{j}]=|\mathrm{OPT}(\mathrm{i}, \mathrm{j})|$

Proof.

Induction on $\mathbf{i}+\mathbf{j}$ (or could do on iterations in the algorithm)
Base Case: $\mathbf{i}+\mathbf{j}=\mathbf{0} \Longrightarrow \mathbf{i}=\mathbf{j}=\mathbf{0} \Longrightarrow \mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{0}=|\mathrm{OPT}(\mathbf{i}, \mathbf{j})|$
Inductive Step: Divide into three cases

1. If $\mathbf{i}=\mathbf{0}$ or $\mathbf{j}=\mathbf{0}$, then $\mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{0}=|\mathbf{O P T}(\mathbf{i}, \mathbf{j})|$

Correctness

Theorem

M $[\mathrm{i}, \mathrm{j}]=|\mathrm{OPT}(\mathrm{i}, \mathrm{j})|$

Proof.

Induction on $\mathbf{i}+\mathbf{j}$ (or could do on iterations in the algorithm)
Base Case: $\mathbf{i}+\mathbf{j}=\mathbf{0} \Longrightarrow \mathbf{i}=\mathbf{j}=\mathbf{0} \Longrightarrow \mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{0}=|\mathbf{O P T}(\mathbf{i}, \mathbf{j})|$
Inductive Step: Divide into three cases

1. If $\mathbf{i}=\mathbf{0}$ or $\mathbf{j}=\mathbf{0}$, then $\mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{0}=|\mathbf{O P T}(\mathbf{i}, \mathbf{j})|$
2. If $x_{i}=y_{j}$, then $M[i, j]=1+M[i-1, j-1]=1+|O P T(i-1, j-1)|=|O P T(i, j)|$

Correctness

Theorem

$\mathbf{M}[\mathrm{i}, \mathrm{j}]=|\mathrm{OPT}(\mathrm{i}, \mathrm{j})|$

Proof.

Induction on $\mathbf{i}+\mathbf{j}$ (or could do on iterations in the algorithm)
Base Case: $\mathbf{i}+\mathbf{j}=\mathbf{0} \Longrightarrow \mathbf{i}=\mathbf{j}=\mathbf{0} \Longrightarrow \mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{0}=|\mathrm{OPT}(\mathbf{i}, \mathbf{j})|$
Inductive Step: Divide into three cases

1. If $\mathbf{i}=\mathbf{0}$ or $\mathbf{j}=\mathbf{0}$, then $\mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{0}=|\mathbf{O P T}(\mathbf{i}, \mathbf{j})|$
2. If $\mathbf{x}_{\mathbf{i}}=\mathrm{y}_{\mathrm{j}}$, then $\mathrm{M}[\mathrm{i}, \mathrm{j}]=\mathbf{1}+\mathrm{M}[\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{1}]=\mathbf{1}+|\operatorname{OPT}(\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{1})|=|\operatorname{OPT}(\mathrm{i}, \mathrm{j})|$
3. If $\mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{j}}$, then

$$
\begin{aligned}
M[i, j] & =\max (M[i, j-1], M[i-1, j]) \\
& =\max (|O P T(i, j-1)|,|O P T(i-1, j)|) \\
& =|O P T(i, j)|
\end{aligned}
$$

(def of algorithm)
(induction)
(structure thm/corollary)

Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.
Details in CLRS 15.4

Optimal Binary Search Trees

Problem Definition

Input: probability distribution / search frequency of keys

- \mathbf{n} distinct keys $\mathbf{k}_{\mathbf{1}}<\mathbf{k}_{\mathbf{2}}<\cdots<\mathbf{k}_{\mathbf{n}}$
- For each $\mathbf{i} \in[\mathbf{n}]$, probability $\mathbf{p}_{\mathbf{i}}$ that we search for $\mathbf{k}_{\mathbf{i}}\left(\right.$ so $\left.\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}}=\mathbf{1}\right)$

What's the best binary search tree for these keys and frequencies?

Problem Definition

Input: probability distribution / search frequency of keys

- \mathbf{n} distinct keys $\mathbf{k}_{\mathbf{1}}<\mathbf{k}_{\mathbf{2}}<\cdots<\mathbf{k}_{\mathbf{n}}$
- For each $\mathbf{i} \in[\mathbf{n}]$, probability $\mathbf{p}_{\mathbf{i}}$ that we search for $\mathbf{k}_{\mathbf{i}}\left(\right.$ so $\left.\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}}=\mathbf{1}\right)$

What's the best binary search tree for these keys and frequencies?
Cost of searching for $\mathbf{k}_{\mathbf{i}}$ in tree \mathbf{T} is $\mathbf{d e p t h}_{\mathbf{T}}\left(\mathbf{k}_{\mathbf{i}}\right)+\mathbf{1}$ (say depth of root $=\mathbf{0}$)
$\Longrightarrow E[$ cost of search in $T]=\sum_{i=1}^{n} \mathbf{p}_{\mathbf{i}}\left(\boldsymbol{d e p t h}_{\mathbf{T}}\left(\mathbf{k}_{\mathbf{i}}\right)+\mathbf{1}\right)$

Problem Definition

Input: probability distribution / search frequency of keys

- \mathbf{n} distinct keys $\mathbf{k}_{\mathbf{1}}<\mathbf{k}_{\mathbf{2}}<\cdots<\mathbf{k}_{\mathbf{n}}$
- For each $\mathbf{i} \in[\mathbf{n}]$, probability $\mathbf{p}_{\mathbf{i}}$ that we search for $\mathbf{k}_{\mathbf{i}}\left(\right.$ so $\left.\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}}=\mathbf{1}\right)$

What's the best binary search tree for these keys and frequencies?
Cost of searching for $\mathbf{k}_{\mathbf{i}}$ in tree \mathbf{T} is $\boldsymbol{d e p t h}_{\mathbf{T}}\left(\mathbf{k}_{\mathbf{i}}\right)+\mathbf{1}$ (say depth of root $=\mathbf{0}$)
$\Longrightarrow E[$ cost of search in $T]=\sum_{i=1}^{n} \mathbf{p}_{\mathbf{i}}\left(\boldsymbol{d e p t h}_{\mathbf{T}}\left(\mathbf{k}_{\mathbf{i}}\right)+\mathbf{1}\right)$
Definition: $\mathbf{c}(T)=\sum_{i=1}^{n} p_{i}\left(\operatorname{depth}_{T}\left(k_{i}\right)+1\right)$
Problem: Find search tree \mathbf{T} minimizing cost.

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?
Set $\mathbf{p}_{1}>\mathbf{p}_{\mathbf{2}}>\ldots \mathbf{p}_{\mathbf{n}}$, but with $\mathbf{p}_{\mathbf{i}}-\mathbf{p}_{\mathbf{i}+1}$ extremely small (say $\mathbf{1 / 2} \mathbf{2}^{\mathbf{n}}$)

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?
Set $\mathbf{p}_{\mathbf{1}}>\mathbf{p}_{\mathbf{2}}>\ldots \mathbf{p}_{\mathbf{n}}$, but with $\mathbf{p}_{\mathbf{i}}-\mathbf{p}_{\mathbf{i}+1}$ extremely small (say $\mathbf{1 / \mathbf { 2 } ^ { \mathbf { n } }}$)

$$
\mathrm{E}[\text { cost of search in } \mathbf{T}] \approx
$$

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?
Set $\mathbf{p}_{\mathbf{1}}>\mathbf{p}_{\mathbf{2}}>\ldots \mathbf{p}_{\mathbf{n}}$, but with $\mathbf{p}_{\mathbf{i}}-\mathbf{p}_{\mathbf{i}+1}$ extremely small (say $\mathbf{1 / \mathbf { 2 } ^ { \mathbf { n } }}$)

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?
Set $\mathbf{p}_{\mathbf{1}}>\mathbf{p}_{\mathbf{2}}>\ldots \mathbf{p}_{\mathrm{n}}$, but with $\mathbf{p}_{\mathbf{i}}-\mathbf{p}_{\mathbf{i}+1}$ extremely small (say $\mathbf{1 / \mathbf { 2 } ^ { \mathbf { n } }}$)

$$
2 \Omega(n)
$$

$\mathrm{E}[$ cost of search in $\mathbf{T}]$ ~ \mathbf{q}_{2}
Balanced search tree: $\mathrm{E}[\operatorname{cost}] \leq \mathbf{O}(\log \mathbf{n})$

Intuition $c^{(6 t-1 / t}$ s. - -tich $)$

Suppose root is $\mathbf{k}_{\mathbf{r}}$. What does optimal tree look like?

Intuition
Suppose root is $\mathbf{k}_{\mathbf{r}}$. What does optimal tree look like?

Subproblems

Definition k_{i+1},
 $\mathbf{c}(\mathrm{T})=\sum_{\mathrm{a}=\mathrm{i}}^{\mathrm{j}} \mathrm{p}_{\mathrm{a}}\left(\operatorname{depth}_{\mathrm{T}}\left(\mathrm{k}_{\mathrm{a}}\right)+\mathbf{1}\right)$

By convention, if $\mathbf{i}>\mathbf{j}$ then $\mathbf{O P T}(\mathbf{i}, \mathbf{j})$ empty So overall goal is to find $\operatorname{OPT}(\mathbf{1}, \mathbf{n})$.

Subproblems

Definition

Let $\mathbf{O P T}(\mathbf{i}, \mathbf{j})$ with $\mathbf{i} \leq \mathbf{j}$ be optimal tree for keys $\left\{\mathbf{k}_{\mathbf{i}}, \mathbf{k}_{\mathbf{2}}, \ldots, \mathbf{k}_{\mathbf{j}}\right\}$: tree \mathbf{T} minimizing $c(T)=\sum_{a=i}^{j} \mathbf{p}_{\mathrm{a}}\left(\operatorname{depth}_{\mathrm{T}}\left(\mathrm{k}_{\mathrm{a}}\right)+\mathbf{1}\right)$

By convention, if $\mathbf{i}>\mathbf{j}$ then $\mathbf{O P T}(\mathbf{i}, \mathbf{j})$ empty
So overall goal is to find $\operatorname{OPT}(\mathbf{1}, \mathbf{n})$.

Theorem (Optimal Substructure)

Let $\mathbf{k}_{\mathbf{r}}$ be the root of $\mathbf{O P T}(\mathbf{i}, \mathbf{j})$. Then the left subtree of $\mathbf{O P T}(\mathbf{i}, \mathbf{j})$ is $\mathbf{O P T}(\mathbf{i}, \mathbf{r}-\mathbf{1})$, and the right subtree of $\operatorname{OPT}(\mathbf{i}, \mathbf{j})$ is $\operatorname{OPT}(\mathbf{r}+\mathbf{1}, \mathbf{j})$.

Proof Sketch of Optimal Substructure

Definitions:

- Let $\mathbf{T}=\mathbf{O P T}(\mathbf{i}, \mathbf{j}), \mathbf{T}_{\mathbf{L}}$ its left subtree, $\mathbf{T}_{\mathbf{R}}$ its right subtree.
- Suppose for contradiction $\mathbf{T}_{\mathrm{L}} \neq \mathbf{O P T}(\mathbf{i}, \mathrm{r}-\mathbf{1})$, let $\mathbf{T}^{\prime}=\mathbf{O P T}(\mathbf{i}, \mathrm{r}-\mathbf{1})$ $\Longrightarrow \mathbf{c}\left(\mathbf{T}^{\prime}\right)<\mathbf{c}\left(\mathbf{T}_{\mathrm{L}}\right)$ (def of $\operatorname{OPT}(\mathbf{i}, \mathbf{r}-\mathbf{1})$)
- Let $\hat{\mathbf{T}}$ be tree get by replacing $\mathbf{T}_{\mathbf{L}}$ with \mathbf{T}^{\prime}

Proof Sketch of Optimal Substructure

Definitions:

- Let $\mathbf{T}=\mathbf{O P T}(\mathbf{i}, \mathbf{j}), \mathbf{T}_{\mathbf{L}}$ its left subtree, $\mathbf{T}_{\mathbf{R}}$ its right subtree.
- Suppose for contradiction $\mathbf{T}_{\mathrm{L}} \neq \mathbf{O P T}(\mathbf{i}, \mathrm{r}-\mathbf{1})$, let $\mathbf{T}^{\prime}=\mathbf{O P T}(\mathbf{i}, \mathrm{r}-\mathbf{1})$ $\Longrightarrow c\left(\mathbf{T}^{\prime}\right)<\mathbf{c}\left(\mathbf{T}_{\mathrm{L}}\right)$ (def of $\mathbf{O P T}(\mathbf{i}, \mathbf{r}-\mathbf{1})$)
- Let $\hat{\mathbf{T}}$ be tree get by replacing $\mathbf{T}_{\mathbf{L}}$ with \mathbf{T}^{\prime}

Whole bunch of math (see lecture notes): get that $\mathbf{c}(\hat{\mathbf{T}})<\mathbf{c}(\mathbf{T})$ Contradicts $\mathbf{T}=\mathbf{O P T}(\mathbf{i}, \mathbf{j})$

Proof Sketch of Optimal Substructure

Definitions:

- Let $\mathbf{T}=\mathbf{O P T}(\mathbf{i}, \mathbf{j}), \mathbf{T}_{\mathbf{L}}$ its left subtree, $\mathbf{T}_{\mathbf{R}}$ its right subtree.
- Suppose for contradiction $\mathbf{T}_{\mathrm{L}} \neq \mathbf{O P T}(\mathbf{i}, \mathrm{r}-\mathbf{1})$, let $\mathbf{T}^{\prime}=\mathbf{O P T}(\mathbf{i}, \mathrm{r}-\mathbf{1})$ $\Longrightarrow c\left(\mathbf{T}^{\prime}\right)<\mathbf{c}\left(\mathbf{T}_{\mathrm{L}}\right)$ (def of $\mathbf{O P T}(\mathbf{i}, \mathbf{r}-\mathbf{1})$)
- Let $\hat{\mathbf{T}}$ be tree get by replacing $\mathbf{T}_{\mathbf{L}}$ with \mathbf{T}^{\prime}

Whole bunch of math (see lecture notes): get that $\mathbf{c}(\hat{\mathbf{T}})<\mathbf{c}(\mathbf{T})$ Contradicts $\mathbf{T}=\mathbf{O P T}(\mathbf{i}, \mathbf{j})$

Symmetric argument works for $\mathbf{T}_{\mathrm{R}}=\mathbf{O P T}(\mathbf{r}+\mathbf{1}, \mathbf{j})$

Cost Corollary

Corollary

$$
\mathrm{c}(\mathrm{OPT}(\mathrm{i}, \mathrm{j}))=\sum_{\mathrm{a}=\mathrm{i}}^{\mathrm{j}} \mathbf{p}_{\mathrm{a}}+\min _{\mathrm{i} \leq r \leq j}(\mathrm{c}(\mathrm{OPT}(\mathrm{i}, \mathrm{r}-\mathbf{1}))+\mathrm{c}(\mathrm{OPT}(\mathrm{r}+\mathbf{1}, \mathrm{j})))
$$

Let $\mathbf{k}_{\mathbf{r}}$ be root of $\operatorname{OPT}(\mathbf{i}, \mathbf{j})$

$$
\begin{aligned}
& \mathrm{c}(\operatorname{OPT}(\mathrm{i}, \mathrm{j}))=\sum_{\boldsymbol{a}=\mathrm{i}}^{\mathrm{j}} \mathrm{p}_{\mathrm{a}}\left(\operatorname{depth}_{\operatorname{OPT}(\mathrm{i}, \mathrm{j})}\left(\mathrm{k}_{\mathrm{a}}\right)+\mathbf{1}\right) \\
& \text { dor of crust }=\sum_{a=i}^{r-1}\left(p_{a}\left(\operatorname{depth}_{\text {OPT }(i, r-1)}\left(k_{a}\right)+2\right)\right)+p_{r}+\sum_{a=r+1}^{j} p_{a}\left(\operatorname{depth}_{\operatorname{OPT}(r+1, j)}\left(k_{a}\right)+2\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iss) }
\end{aligned}
$$

Cost Corollary

Corollary

$$
\mathrm{c}(\mathrm{OPT}(\mathrm{i}, \mathrm{j}))=\sum_{\mathrm{a}=\mathrm{i}}^{\mathrm{j}} \mathbf{p}_{\mathrm{a}}+\min _{\mathrm{i} \leq r \leq j}(\mathrm{c}(\mathrm{OPT}(\mathrm{i}, \mathrm{r}-\mathbf{1}))+\mathrm{c}(\mathrm{OPT}(\mathrm{r}+\mathbf{1}, \mathrm{j})))
$$

Let $\mathbf{k}_{\mathbf{r}}$ be root of $\operatorname{OPT}(\mathbf{i}, \mathbf{j})$

$$
\begin{aligned}
c(\operatorname{OPT}(i, j)) & =\sum_{a=i}^{j} \mathbf{p}_{a}\left(\operatorname{depth}_{\operatorname{OPT}(i, j)}\left(k_{a}\right)+1\right) \\
& =\sum_{a=i}^{r-1}\left(\mathbf{p}_{a}\left(\operatorname{depth}_{\operatorname{OPT}(i, r-1)}\left(k_{a}\right)+2\right)\right)+\mathbf{p}_{r}+\sum_{a=r+1}^{j} p_{a}\left(\operatorname{depth}_{\operatorname{OPT}(r+1, j)}\left(k_{a}\right)+2\right) \\
& =\sum_{a=i}^{j} p_{a}+\sum_{a=i}^{r-1}\left(\mathbf{p}_{a}\left(\operatorname{depth}_{\operatorname{OPT}(i, r-1)}\left(k_{a}\right)+1\right)\right)+\sum_{a=r+1}^{j} p_{a}\left(\operatorname{depth}_{\operatorname{OPT}(r+1, j)}\left(k_{a}\right)+1\right) \\
& =\sum_{a=i}^{j} p_{a}+\mathbf{c}(\operatorname{OPT}(i, r-1))+c(\operatorname{OPT}(r+1, j)) .
\end{aligned}
$$

Same logic holds for any possible root \Longrightarrow take min

Algorithm

Fill in table \mathbf{M} :

$$
M[i, j]= \begin{cases}0 & \text { if } i>j \\ \min _{i \leq r \leq j}\left(\sum_{a=i}^{j} p_{a}+M[i, r-1]+M[r+1, j]\right) & \text { if } i \leq j\end{cases}
$$

Algorithm

Fill in table \mathbf{M} :

$$
M[i, j]= \begin{cases}0 & \text { if } i>j \\ \min _{i \leq r \leq j}\left(\sum_{a=i}^{j} p_{a}+M[i, r-1]+M[r+1, j]\right) & \text { if } i \leq j\end{cases}
$$

Top-Down (memoization): are problems getting smaller?

Algorithm

Fill in table \mathbf{M} :

$$
M[i, j]= \begin{cases}0 & \text { if } i>j \\ \min _{i \leq r \leq j}\left(\sum_{a=i}^{j} p_{a}+M[i, r-1]+M[r+1, j]\right) & \text { if } i \leq j\end{cases}
$$

Top-Down (memoization): are problems getting smaller? Yes! \mathbf{j} - i decreases in every recursive call.

Algorithm

Fill in table \mathbf{M} :

$$
M[i, j]= \begin{cases}0 & \text { if } i>j \\ \min _{i \leq r \leq j}\left(\sum_{a=i}^{j} p_{a}+M[i, r-1]+M[r+1, j]\right) & \text { if } i \leq j\end{cases}
$$

Top-Down (memoization): are problems getting smaller? Yes! \mathbf{j} - i decreases in every recursive call.

Correctness. Claim $\mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{c}(\mathbf{O P T}(\mathbf{i}, \mathbf{j}))$. Induction on $\mathbf{j} \mathbf{- i}$.

Algorithm

Fill in table \mathbf{M} :

$$
M[i, j]= \begin{cases}0 & \text { if } i>j \\ \min _{i \leq r \leq j}\left(\sum_{a=i}^{j} p_{a}+M[i, r-1]+M[r+1, j]\right) & \text { if } i \leq j\end{cases}
$$

Top-Down (memoization): are problems getting smaller? Yes! \mathbf{j} - i decreases in every recursive call.

Correctness. Claim $\mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{c}(\mathbf{O P T}(\mathbf{i}, \mathbf{j}))$. Induction on $\mathbf{j}-\mathbf{i}$.

- Base case: if $\mathbf{j}-\mathbf{i}<\mathbf{0}$ then $\mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{O P T}(\mathbf{i}, \mathbf{j})=\mathbf{0}$

Algorithm

Fill in table \mathbf{M} :

$$
M[i, j]= \begin{cases}0 & \text { if } i>j \\ \min _{i \leq r \leq j}\left(\sum_{a=i}^{j} p_{a}+M[i, r-1]+M[r+1, j]\right) & \text { if } i \leq j\end{cases}
$$

Top-Down (memoization): are problems getting smaller? Yes! \mathbf{j} - i decreases in every recursive call.

Correctness. Claim $\mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{c}(\mathbf{O P T}(\mathbf{i}, \mathbf{j}))$. Induction on $\mathbf{j}-\mathbf{i}$.

- Base case: if $\mathbf{j}-\mathbf{i}<\mathbf{0}$ then $\mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{O P T}(\mathbf{i}, \mathbf{j})=\mathbf{0}$
- Inductive step:

$$
\begin{aligned}
M[i, j] & =\min _{i \leq r \leq j}\left(\sum_{a=i}^{j} p_{a}+M[\mathbf{i}, \mathbf{r}-\mathbf{1}]+M[r+1, j]\right) \quad \text { (alg def) } \\
& =\min _{i \leq r \leq j}\left(\sum_{\mathbf{a}=\mathbf{i}}^{\mathbf{j}} \mathbf{p}_{\mathbf{a}}+\mathbf{c}(\operatorname{OPT}(\mathbf{i}, \mathbf{r}-\mathbf{1}))+\mathbf{c}(\operatorname{OPT}(\mathbf{r}+\mathbf{1}, \mathbf{j}))\right) \quad \text { (induction) } \\
& =\mathbf{c}(\operatorname{OPT}(\mathbf{i}, \mathbf{j}))_{\text {Lecture 12: Dynamic Programming II }}^{\text {Michael Dinitz }}
\end{aligned}
$$

Algorithm: Bottom-up

What order to fill the table in?

- Obvious approach: for $(\mathbf{i}=\mathbf{1}$ to $\mathbf{n}-\mathbf{1})$ for $(\mathbf{j}=\mathbf{i}+\mathbf{1}$ to $\mathbf{n})$ Doesn't work!

Algorithm: Bottom-up

What order to fill the table in?

- Obvious approach: for $(\mathbf{i}=\mathbf{1}$ to $\mathbf{n}-\mathbf{1})$ for $(\mathbf{j}=\mathbf{i}+\mathbf{1}$ to $\mathbf{n})$ Doesn't work!
- Take hint from induction: \mathbf{j} - \mathbf{i}

OBST \{

Set $\mathbf{M}[\mathbf{i}, \mathbf{j}]=\mathbf{0}$ for all $\mathbf{j}>\mathbf{i}$;
Set $\mathbf{M}[\mathbf{i}, \mathbf{i}]=\mathbf{p}_{\mathbf{i}}$ for all \mathbf{i}

$$
\operatorname{for}(\ell=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1})\{
$$

$$
\text { for }(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\ell)\{
$$

$$
\mathbf{j}=\mathbf{i}+\ell
$$

$$
\}
$$

$$
M[i, j]=\min _{i \leq r \leq j}\left(\sum_{a=i}^{j} p_{a}+M[i, r-1]+M[r+1, j]\right) ;
$$

\}
return $\mathbf{M}[\mathbf{1}, \mathbf{n}] ;$
\}

Analysis

Correctness: same as top-down

Running Time:

Analysis

Correctness: same as top-down

Running Time:

- \# table entries:

Analysis

Correctness: same as top-down

Running Time:

- \# table entries: $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Analysis

Correctness: same as top-down

Running Time:

- \# table entries: $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- Time to compute table entry $\mathbf{M}[\mathbf{i}, \mathbf{j}]$:

Analysis

Correctness: same as top-down

Running Time:

- \# table entries: $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- Time to compute table entry $\mathbf{M}[\mathbf{i}, \mathbf{j}]: \mathbf{O}(\mathbf{j}-\mathbf{i})=\mathbf{O}(\mathbf{n})$

Analysis

Correctness: same as top-down

Running Time:

- \# table entries: $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- Time to compute table entry $\mathbf{M}[\mathbf{i}, \mathbf{j}]: \mathbf{O}(\mathbf{j}-\mathbf{i})=\mathbf{O}(\mathbf{n})$

Total running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{3}}\right)$

[^0]: Two-dimensional table!

