Introduction

Today: two more examples of dynamic programming

- *Longest Common Subsequence* (strings)
- *Optimal Binary Search Tree* (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)
Longest Common Subsequence
Definitions

String: Sequence of elements of some *alphabet* \(\{0, 1\}\), or \(\{A-Z\} \cup \{a-z\}\), etc.

Definition: A sequence \(Z = (z_1, \ldots, z_k)\) is a *subsequence* of \(X = (x_1, \ldots, x_m)\) if there exists a strictly increasing sequence \((i_1, i_2, \ldots, i_k)\) such that \(x_{i_j} = z_j\) for all \(j \in \{1, 2, \ldots, k\}\).

Example: \((B, C, D, B)\) is a subsequence of \((A, B, C, B, D, A, B)\)
- Allowed to skip positions, unlike substring!
Definitions

String: Sequence of elements of some *alphabet* $\{0, 1\}$, or $\{A - Z\} \cup \{a - z\}$, etc.

Definition: A sequence $Z = (z_1, \ldots, z_k)$ is a *subsequence* of $X = (x_1, \ldots, x_m)$ if there exists a strictly increasing sequence (i_1, i_2, \ldots, i_k) such that $x_{i_j} = z_j$ for all $j \in \{1, 2, \ldots, k\}$.

Example: (B, C, D, B) is a subsequence of (A, B, C, B, D, A, B)
- Allowed to skip positions, unlike substring!

Definition: In *Longest Common Subsequence* problem (LCS) we are given two strings $X = (x_1, \ldots, x_m)$ and $Y = (y_1, \ldots y_n)$. Need to find the longest Z which is a subsequence of both X and Y.
Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: X and Y might not even be same length!
Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: X and Y might not even be same length!

Prefixes of strings

- $X_i = (x_1, x_2, \ldots, x_i)$ (so $X = X_m$)
- $Y_j = (y_1, y_2, \ldots, y_j)$ (so $Y = Y_n$)
Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: \(X \) and \(Y \) might not even be same length!

Prefixes of strings

- \(X_i = (x_1, x_2, \ldots, x_i) \) (so \(X = X_m \))
- \(Y_j = (y_1, y_2, \ldots, y_j) \) (so \(Y = Y_n \))

Definition: Let \(\text{OPT}(i, j) \) be longest common subsequence of \(X_i \) and \(Y_j \)

So looking for optimal solution \(\text{OPT} = \text{OPT}(m, n) \)

- Last time \(\text{OPT} \) denotes value of solution, here denotes solution. Be flexible in notation
Subproblems

First and most important step of dynamic programming: define subproblems!

- Not obvious: \(X \) and \(Y \) might not even be same length!

Prefixes of strings

- \(X_i = (x_1, x_2, \ldots, x_i) \) (so \(X = X_m \))
- \(Y_j = (y_1, y_2, \ldots, y_j) \) (so \(Y = Y_n \))

Definition: Let \(\text{OPT}(i, j) \) be longest common subsequence of \(X_i \) and \(Y_j \)

So looking for optimal solution \(\text{OPT} = \text{OPT}(m, n) \)

- Last time \(\text{OPT} \) denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

\[
Z = (z_1, \ldots, z_k) \text{ be an LCS of } X_i \text{ and } Y_j \text{ (so } Z = \text{OPT}(i, j)).
\]

1. If \(x_i = y_j \):
 - \(z_k = x_i = y_j \) and \(Z_{k-1} = \text{OPT}(i-1, j-1) \)

2. If \(x_i \neq y_j \) and \(z_k \neq x_i \):
 - \(Z = \text{OPT}(i-1, j) \)

3. If \(x_i \neq y_j \) and \(z_k \neq y_j \):
 - \(Z = \text{OPT}(i, j-1) \)
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i, j)$).

1. If $x_i = y_j$:

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i, j)$).

1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-1)$
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i, j)$).

1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i - 1, j - 1)$
2. If $x_i \neq y_j$ and $z_k \neq x_i$:
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let \(Z = (z_1, \ldots, z_k) \) be an LCS of \(X_i \) and \(Y_j \) (so \(Z = \text{OPT}(i, j) \)).

1. If \(x_i = y_j \): then \(z_k = x_i = y_j \) and \(Z_{k-1} = \text{OPT}(i - 1, j - 1) \)
2. If \(x_i \neq y_j \) and \(z_k \neq x_i \): then \(Z = \text{OPT}(i - 1, j) \)
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so $Z = \text{OPT}(i, j)$).

1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-1)$
2. If $x_i \neq y_j$ and $z_k \neq x_i$: then $Z = \text{OPT}(i-1, j)$
3. If $x_i \neq y_j$ and $z_k \neq y_j$:
Optimal Substructure

Second step of dynamic programming: prove optimal substructure

- Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let \(Z = (z_1, \ldots, z_k) \) be an LCS of \(X_i \) and \(Y_j \) (so \(Z = \text{OPT}(i, j) \)).

1. If \(x_i = y_j \): then \(z_k = x_i = y_j \) and \(Z_{k-1} = \text{OPT}(i - 1, j - 1) \)
2. If \(x_i \neq y_j \) and \(z_k \neq x_i \): then \(Z = \text{OPT}(i - 1, j) \)
3. If \(x_i \neq y_j \) and \(z_k \neq y_j \): then \(Z = \text{OPT}(i, j - 1) \)
Optimal Substructure: Proof (I)

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1, j-1)$

Proof Sketch.

Contradiction.
Optimal Substructure: Proof (I)

Case 1: If \(x_i = y_j \), then \(z_k = x_i = y_j \) and \(Z_{k-1} = \text{OPT}(i-1, j-i) \)

Proof Sketch.

Contradiction.

Part 1: Suppose \(x_i = y_j = a \), but \(z_k \neq a \).
Optimal Substructure: Proof (I)

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and $Z_{k-1} = \text{OPT}(i-1,j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have common subsequence, longer than LCS. Contradiction
Case 1: If \(x_i = y_j \), then \(z_k = x_i = y_j \) and \(Z_{k-1} = \text{OPT}(i-1, j-1) \)

Proof Sketch.

Contradiction.

Part 1: Suppose \(x_i = y_j = a \), but \(z_k \neq a \). Add \(a \) to end of \(Z \), still have common subsequence, longer than LCS. Contradiction

Part 2: Suppose \(Z_{k-1} \neq \text{OPT}(i-1, j-1) \).
Optimal Substructure: Proof (I)

Case 1: If \(x_i = y_j \), then \(z_k = x_i = y_j \) and \(Z_{k-1} = \text{OPT}(i-1, j-1) \)

Proof Sketch.

Contradiction.

Part 1: Suppose \(x_i = y_j = a \), but \(z_k \neq a \). Add \(a \) to end of \(Z \), still have common subsequence, longer than LCS. Contradiction

Part 2: Suppose \(Z_{k-1} \neq \text{OPT}(i-1, j-1) \).

\[\exists W \text{ LCS of } X_{i-1}, Y_{j-1} \text{ of length } > k - 1 \implies \geq k \]

\[(W, a) \text{ common subsequence of } X_i, Y_j \text{ of length } > k \]

Contradiction to \(Z \) being LCS of \(X_i \) and \(Y_j \)
Case 2: If $x_i \neq y_j$ and $z_k \neq x_i$ then $Z = \text{OPT}(i-1, j)$
Case 2: If \(x_i \neq y_j \) and \(z_k \neq x_i \) then \(Z = \text{OPT}(i-1,j) \)

Proof.

Since \(z_k \neq x_i \), \(Z \) a common subsequence of \(X_{i-1}, Y_j \)
Case 2: If $x_i \neq y_j$ and $z_k \neq x_i$ then $Z = \text{OPT}(i-1, j)$

Proof.

Since $z_k \neq x_i$, Z a common subsequence of X_{i-1}, Y_j

$\text{OPT}(i-1, j)$ a common subsequence of X_i, Y_j

$\implies |\text{OPT}(i-1, j)| \leq |\text{OPT}(i,j)| = |Z|$ (def of $\text{OPT}(i,j)$ and Z)
Case 2: If $x_i \neq y_j$ and $z_k \neq x_i$ then $Z = OPT(i-1, j)$

Proof.

Since $z_k \neq x_i$, Z a common subsequence of X_{i-1}, Y_j

$OPT(i-1, j)$ a common subsequence of X_i, Y_j

$\implies |OPT(i-1, j)| \leq |OPT(i, j)| = |Z|$ \ (def of $OPT(i, j)$ and Z)

$\implies Z = OPT(i-1, j)$
Case 3: If \(x_i \neq y_j \) and \(z_k \neq y_j \) then \(Z = \text{OPT}(i, j - 1) \)

Proof.
Symmetric to Case 2.
Structure Corollary

Corollary

$$\text{OPT}(i, j) = \begin{cases}
\emptyset & \text{if } i = 0 \text{ or } j = 0, \\
\text{OPT}(i - 1, j - 1) \odot x_i & \text{if } i, j > 0 \text{ and } x_i = y_j \\
\max(\text{OPT}(i, j - 1), \text{OPT}(i - 1, j)) & \text{if } i, j > 0 \text{ and } x_i \neq y_j
\end{cases}$$

Gives obvious recursive algorithm

Can take exponential time (good exercise at home!)

Dynamic Programming!

Top-Down: are problems getting “smaller”? What does “smaller” mean?

Bottom-Up: two-dimensional table! What order to fill it in?

Michael Dinitz
Lecture 12: Dynamic Programming II
October 7, 2021 10 / 23
Gives obvious recursive algorithm
 ▪ Can take exponential time (good exercise at home!)

Dynamic Programming!
 ▪ Top-Down: are problems getting “smaller”? What does “smaller” mean?
 ▪ Bottom-Up: two-dimensional table! What order to fill it in?
Dynamic Programming Algorithm

\[
\text{LCS}(X, Y) \{
\text{for}(i = 0 \text{ to } m) \ M[i, 0] = 0; \\
\text{for}(j = 0 \text{ to } n) \ M[0, j] = 0; \\
\text{for}(i = 1 \text{ to } m) \{ \\
\qquad \text{for}(j = 1 \text{ to } n) \{ \\
\qquad\qquad \text{if}(x_i = y_j) \\
\qquad\qquad \quad M[i, j] = 1 + M[i - 1, j - 1]; \\
\qquad\quad \text{else} \\
\qquad\qquad \quad M[i, j] = \max(M[i, j - 1], M[i - 1, j]); \\
\qquad \} \\
\text{return } M[m, n]; \\
\}\}
\]

Running Time: \(O(mn)\)
Dynamic Programming Algorithm

LCS(X, Y) {
 for(i = 0 to m) M[i, 0] = 0;
 for(j = 0 to n) M[0, j] = 0;
 for(i = 1 to m) {
 for(j = 1 to n) {
 if(x_i = y_j)
 M[i, j] = 1 + M[i - 1, j - 1];
 else
 M[i, j] = max(M[i, j - 1], M[i - 1, j]);
 }
 }
 return M[m, n];
}

Running Time: $O(mn)$
Correctness

Theorem

\[M[i,j] = |OPT(i,j)| \]
Correctness

Theorem

\[M[i,j] = |\text{OPT}(i,j) | \]

Proof.

Induction on \(i + j\) (or could do on iterations in the algorithm)
Correctness

Theorem

\[M[i,j] = |OPT(i,j)| \]

Proof.

Induction on \(i + j \) (or could do on iterations in the algorithm)

Base Case: \(i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |OPT(i,j)| \)
Correctness

Theorem

\[M[i,j] = |OPT(i,j)| \]

Proof.

Induction on \(i + j \) (or could do on iterations in the algorithm)

Base Case: \(i + j = 0 \) \(\implies i = j = 0 \) \(\implies M[i,j] = 0 = |OPT(i,j)| \)

Inductive Step: Divide into three cases

1. If \(i = 0 \) or \(j = 0 \), then \(M[i,j] = 0 = |OPT(i,j)| \)
Correctness

Theorem

\[M[i,j] = |\text{OPT}(i,j)| \]

Proof.

Induction on \(i + j \) (or could do on iterations in the algorithm)

Base Case: \(i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |\text{OPT}(i,j)| \)

Inductive Step: Divide into three cases

1. If \(i = 0 \) or \(j = 0 \), then \(M[i,j] = 0 = |\text{OPT}(i,j)| \)
2. If \(x_i = y_j \), then \(M[i,j] = 1 + M[i - 1, j - 1] = 1 + |\text{OPT}(i - 1, j - 1)| = |\text{OPT}(i,j)| \)
3. If \(x_i \neq y_j \), then

\[M[i,j] = \max(M[i,j-1], M[i-1,j]) \] (def of algorithm)

\[= \max(\text{OPT}(i,j-1), \text{OPT}(i-1,j)) \] (induction)

\[= \text{OPT}(i,j) \] (structure thm/corollary)
Correctness

Theorem

\[M[i,j] = |\text{OPT}(i,j)| \]

Proof.

Induction on \(i + j \) (or could do on iterations in the algorithm)

Base Case: \(i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |\text{OPT}(i,j)| \)

Inductive Step: Divide into three cases

1. If \(i = 0 \) or \(j = 0 \), then \(M[i,j] = 0 = |\text{OPT}(i,j)| \)
2. If \(x_i = y_j \), then \(M[i,j] = 1 + M[i-1,j-1] = 1 + |\text{OPT}(i-1,j-1)| = |\text{OPT}(i,j)| \)
3. If \(x_i \neq y_j \), then

\[
M[i,j] = \max(M[i,j-1], M[i-1,j])
= \max(|\text{OPT}(i,j-1)|, |\text{OPT}(i-1,j)|)
= |\text{OPT}(i,j)|
\]

(definition of algorithm)

(induction)

(structure thm/corollary)
Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 15.4
Optimal Binary Search Trees
Problem Definition

Input: probability distribution / search frequency of keys
- \(n \) distinct keys \(k_1 < k_2 < \cdots < k_n \)
- For each \(i \in [n] \), probability \(p_i \) that we search for \(k_i \) (so \(\sum_{i=1}^{n} p_i = 1 \))

What’s the best binary search tree for these keys and frequencies?
Problem Definition

Input: probability distribution / search frequency of keys

- n distinct keys $k_1 < k_2 < \cdots < k_n$
- For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^{n} p_i = 1$)

What’s the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree T is $\text{depth}_T(k_i) + 1$ (say depth of root $= 0$)

$$\implies \mathbb{E}[\text{cost of search in } T] = \sum_{i=1}^{n} p_i (\text{depth}_T(k_i) + 1)$$
Problem Definition

Input: probability distribution / search frequency of keys

- n distinct keys $k_1 < k_2 < \cdots < k_n$
- For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^{n} p_i = 1$)

What’s the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree T is $\text{depth}_T(k_i) + 1$ (say depth of root = 0)

$\implies E[\text{cost of search in } T] = \sum_{i=1}^{n} p_i (\text{depth}_T(k_i) + 1)$

Definition: $c(T) = \sum_{i=1}^{n} p_i (\text{depth}_T(k_i) + 1)$

Problem: Find search tree T minimizing cost.
Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?
Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \ldots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)
Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set \(p_1 > p_2 > \ldots p_n \), but with \(p_i - p_{i+1} \) extremely small (say \(1/2^n \))

\[
\begin{align*}
&k_1 \\
&k_2 \\
&k_3 \\
&\ldots \\
&k_n
\end{align*}
\]

\[E[\text{cost of search in } T] \geq \Omega(n) \]
Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \ldots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

\[
\begin{align*}
E[\text{cost of search in } T] &\geq \Omega(n) \\
\text{Balanced search tree: } E[\text{cost}] &\leq O(\log n)
\end{align*}
\]
Intuition

Suppose root is k_r. What does optimal tree look like?
Intuition

Suppose root is k_r. What does optimal tree look like?
Subproblems

Definition
Let $\text{OPT}(i, j)$ with $i \leq j$ be optimal tree for keys $\{k_i, k_{i+1}, \ldots, k_j\}$: tree T minimizing $c(T) = \sum_{a=i}^{j} p_a (\text{depth}_T(k_a) + 1)$

By convention, if $i > j$ then $\text{OPT}(i, j)$ empty
So overall goal is to find $\text{OPT}(1, n)$.

Theorem (Optimal Substructure)
Let k_r be the root of $\text{OPT}(i, j)$. Then the left subtree of $\text{OPT}(i, j)$ is $\text{OPT}(i, r-1)$, and the right subtree of $\text{OPT}(i, j)$ is $\text{OPT}(r+1, j)$.

Michael Dinitz
Lecture 12: Dynamic Programming II
October 7, 2021 18 / 23
Subproblems

Definition
Let $\text{OPT}(i, j)$ with $i \leq j$ be optimal tree for keys $\{k_i, k_{i+1}, \ldots, k_j\}$: tree T minimizing $c(T) = \sum_{a=i}^{j} p_a(\text{depth}_T(k_a) + 1)$

By convention, if $i > j$ then $\text{OPT}(i, j)$ empty
So overall goal is to find $\text{OPT}(1, n)$.

Theorem (Optimal Substructure)
Let k_r be the root of $\text{OPT}(i, j)$. Then the left subtree of $\text{OPT}(i, j)$ is $\text{OPT}(i, r - 1)$, and the right subtree of $\text{OPT}(i, j)$ is $\text{OPT}(r + 1, j)$.
Proof Sketch of Optimal Substructure

Definitions:

- Let $T = \text{OPT}(i, j)$, T_L its left subtree, T_R its right subtree.
- Suppose for contradiction $T_L \neq \text{OPT}(i, r-1)$, let $T' = \text{OPT}(i, r - 1)$
 \[\implies c(T') < c(T_L) \quad \text{(def of } \text{OPT}(i, r - 1)) \]
- Let \hat{T} be tree get by replacing T_L with T'

Michael Dinitz
Lecture 12: Dynamic Programming II
October 7, 2021 19 / 23
Proof Sketch of Optimal Substructure

Definitions:

- Let $T = \text{OPT}(i, j)$, T_L its left subtree, T_R its right subtree.
- Suppose for contradiction $T_L \neq \text{OPT}(i, r - 1)$, let $T' = \text{OPT}(i, r - 1)$
 \[c(T') < c(T_L) \] (def of $\text{OPT}(i, r - 1)$)
- Let \hat{T} be tree get by replacing T_L with T'

Whole bunch of math (see lecture notes): get that $c(\hat{T}) < c(T)$

Contradicts $T = \text{OPT}(i, j)$
Proof Sketch of Optimal Substructure

Definitions:
- Let \(T = \text{OPT}(i, j) \), \(T_L \) its left subtree, \(T_R \) its right subtree.
- Suppose for contradiction \(T_L \neq \text{OPT}(i, r - 1) \), let \(T' = \text{OPT}(i, r - 1) \) \(\implies c(T') < c(T_L) \) (def of \(\text{OPT}(i, r - 1) \))
- Let \(\hat{T} \) be tree get by replacing \(T_L \) with \(T' \)

Whole bunch of math (see lecture notes): get that \(c(\hat{T}) < c(T) \)
Contradicts \(T = \text{OPT}(i, j) \)

Symmetric argument works for \(T_R = \text{OPT}(r + 1, j) \)
Cost Corollary

Corollary

\[c(\text{OPT}(i, j)) = \sum_{a=i}^{j} p_a + \min_{i \leq r \leq j}(c(\text{OPT}(i, r - 1)) + c(\text{OPT}(r + 1, j))) \]

Let \(k_r \) be root of \(\text{OPT}(i, j) \)

\[c(\text{OPT}(i, j)) = \sum_{a=i}^{j} p_a (\text{depth}_{\text{OPT}(i,j)}(k_a) + 1) \]

\[= \sum_{a=i}^{r-1} (p_a (\text{depth}_{\text{OPT}(i,r-1)}(k_a) + 2)) + p_r + \sum_{a=r+1}^{j} p_a (\text{depth}_{\text{OPT}(r+1,j)}(k_a) + 2) \]

\[= \sum_{a=i}^{j} p_a + \sum_{a=i}^{r-1} (p_a (\text{depth}_{\text{OPT}(i,r-1)}(k_a) + 1)) + \sum_{a=r+1}^{j} p_a (\text{depth}_{\text{OPT}(r+1,j)}(k_a) + 1) \]

\[= \sum_{a=i}^{j} p_a + c(\text{OPT}(i, r - 1)) + c(\text{OPT}(r + 1, j)). \]
Cost Corollary

Corollary

\[c(\text{OPT}(i, j)) = \sum_{a=i}^{j} p_a + \min_{i \leq r \leq j} (c(\text{OPT}(i, r-1)) + c(\text{OPT}(r+1, j))) \]

Let \(k_r \) be root of \(\text{OPT}(i, j) \)

\[
c(\text{OPT}(i, j)) = \sum_{a=i}^{j} p_a (\text{depth}_{\text{OPT}(i,j)}(k_a) + 1) \\
= \sum_{a=i}^{r-1} (p_a (\text{depth}_{\text{OPT}(i,r-1)}(k_a) + 2)) + p_r + \sum_{a=r+1}^{j} p_a (\text{depth}_{\text{OPT}(r+1,j)}(k_a) + 2) \\
= \sum_{a=i}^{j} p_a + \sum_{a=i}^{r-1} (p_a (\text{depth}_{\text{OPT}(i,r-1)}(k_a) + 1)) + \sum_{a=r+1}^{j} p_a (\text{depth}_{\text{OPT}(r+1,j)}(k_a) + 1) \\
= \sum_{a=i}^{j} p_a + c(\text{OPT}(i, r-1)) + c(\text{OPT}(r+1, j)).
\]

Same logic holds for any possible root \(\implies \) take min
Algorithm

Fill in table M:

$$M[i, j] = \begin{cases}
0 & \text{if } i > j \\
\min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j
\end{cases}$$
Algorithm

Fill in table M:

$$M[i, j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller?
Algorithm

Fill in table M:

$$M[i,j] = \begin{cases}
0 & \text{if } i > j \\
\min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j
\end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $j - i$ decreases in every recursive call.
Algorithm

Fill in table M:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r-1] + M[r+1, j] \right) & \text{if } i \leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $j - i$ decreases in every recursive call.

Correctness. Claim $M[i,j] = c(OPT(i,j))$. Induction on $j - i$.
Algorithm

Fill in table M:

$$M[i, j] = \begin{cases}
0 & \text{if } i > j \\
\min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j
\end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $j - i$ decreases in every recursive call.

Correctness. Claim $M[i, j] = c(\text{OPT}(i, j))$. Induction on $j - i$.

- Base case: if $j - i < 0$ then $M[i, j] = \text{OPT}(i, j) = 0$
Algorithm

Fill in table M:

$$M[i, j] = \begin{cases}
0 & \text{if } i > j \\
\min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) & \text{if } i \leq j
\end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $j - i$ decreases in every recursive call.

Correctness. Claim $M[i, j] = c(OPT(i, j))$. Induction on $j - i$.

- Base case: if $j - i < 0$ then $M[i, j] = OPT(i, j) = 0$
- Inductive step:

$$M[i, j] = \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right) \quad \text{(alg def)}$$

$$= \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + c(OPT(i, r - 1)) + c(OPT(r + 1, j)) \right) \quad \text{(induction)}$$

$$= c(OPT(i, j)) \quad \text{(cost corollary)}$$
Algorithm: Bottom-up

What order to fill the table in?

- Obvious approach: for(i = 1 to n - 1) for(j = i + 1 to n) Doesn’t work!
Algorithm: Bottom-up

What order to fill the table in?

- Obvious approach: for\(i = 1\) to \(n - 1\) for\(j = i + 1\) to \(n\) Doesn’t work!
- Take hint from induction: \(j - i\)

```
OBST {
    Set \(M[i,j] = 0\) for all \(j > i\);
    Set \(M[i,i] = p_i\) for all \(i\)
    for(\(\ell = 1\) to \(n - 1\)) {
        for(\(i = 1\) to \(n - \ell\)) {
            \(j = i + \ell\)
            \(M[i,j] = \min_{i \leq r \leq j} \left( \sum_{a=i}^{j} p_a + M[i, r - 1] + M[r + 1, j] \right)\);
        }
    }
    return \(M[1,n]\);
}
```
Analysis

Correctness: same as top-down

Running Time:
Correctness: same as top-down

Running Time:
- # table entries:
Analysis

Correctness: same as top-down

Running Time:
- # table entries: $O(n^2)$
Analysis

Correctness: same as top-down

Running Time:
- # table entries: $O(n^2)$
- Time to compute table entry $M[i,j]$: $O(j - i) = O(n)$

 Total running time: $O(n^3)$
Analysis

Correctness: same as top-down

Running Time:
- \# table entries: \(O(n^2) \)
- Time to compute table entry \(M[i,j] \): \(O(j - i) = O(n) \)
Analysis

Correctness: same as top-down

Running Time:
- # table entries: $O(n^2)$
- Time to compute table entry $M[i,j]$: $O(j - i) = O(n)$

Total running time: $O(n^3)$