Introduction

Dynamic Programming: divide and conquer++

Classical divide and conquer (quicksort, mergesort, . . .)
- Divide problem into subproblems
- Solve each subproblem
- Combine solutions from subproblems into solution for problem
- Usually implemented with recursion

Issues that dynamic programming can help with:
- What if subproblems overlap?
- What if recursion too slow?

Today: motivate dynamic programming through simple example
Thursday: more complicated examples
Notes

Dynamic programming used all over the place
 ▶ Originally in control theory
 ▶ Then many uses in graph algorithms, combinatorial optimization
 ▶ Currently: many uses in strings

At JHU:
 ▶ String algorithms: NLP!
 ▶ Jason Eisner: new programming language *Dyna* to *automatically* do dynamic programming
 ▶ String algorithms: computational biology!
An interesting question is, Where did the name, dynamic programming, come from? The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word research. I’m not using the term lightly; I’m using it precisely. His face would suffuse, he would turn red, and he would get violent if people used the term research in his presence. You can imagine how he felt, then, about the term mathematical. The RAND Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word “programming”. I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. I thought, let’s kill two birds with one stone. Let’s take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that it’s impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It’s impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.
Example: Weighted Interval Scheduling
Weighted Interval Scheduling: Definition

Input:
- n requests (intervals) $\{1, 2, \ldots, n\}$
- For each request i:
 - Start time s_i
 - Finish time f_i
 - Value v_i
- Assume sorted by finish time: $f_1 \leq f_2 \leq \cdots \leq f_n$

Feasible:
- $S \subseteq [n]$ feasible if no two intervals of S overlap
- $(s_i, f_i) \cap (s_j, f_j) = \emptyset$ for all $i, j \in S$ with $i \neq j$

Goal:
- Find feasible S maximizing $v(S) = \sum_{i \in S} v_i$
Definition II

Definition

Let \(p(i) \) largest \(j < i \) such that \(f_j \leq s_i \). If no such \(j \) exists, \(p(i) = 0 \).
Obvious Approach

No variation of greedy works.

Example: greedy by earliest finishing times

Earliest-finish-time first algorithm

Consider jobs in ascending order of finish time

And job to subset if it is compatible with previously chosen jobs

... recall greedy algorithm is correct if all weights are equal

Observation greedy algorithm fails spectacularly for weighted version

Need fundamentally different approach
Obvious Approach

No variation of greedy works.
Example: greedy by earliest finishing times

Need fundamentally different approach
Simple Observation

Let $S^* \subseteq [n]$ be optimal solution (unknown).
What simple observation can we make about S^*?

![Diagram showing weighted interval scheduling]

- $p(1) = 0$
- $p(2) = 0$
- $p(3) = 0$
- $p(4) = 1$
- $p(5) = 0$
- $p(6) = 2$
- $p(7) = 3$
- $p(8) = 5$
Simple Observation

Let \(S^* \subseteq [n] \) be optimal solution (unknown).
What simple observation can we make about \(S^* \)?

Fact: Either \(n \in S^* \) or \(n \notin S^* \)
Simple Observation

Let $S^* \subseteq [n]$ be optimal solution (unknown).
What simple observation can we make about S^*?

Fact: Either $n \in S^*$ or $n \notin S^*$

If $n \notin S^*$:

![Diagram showing intervals and p-values]
Simple Observation

Let $S^* \subseteq [n]$ be optimal solution (unknown).
What simple observation can we make about S^*?

Fact: Either $n \in S^*$ or $n \notin S^*$

If $n \notin S^*$: S^* optimal solution for
$\{1, 2, \ldots, n - 1\}$
Simple Observation

Let \(S^* \subseteq [n] \) be optimal solution (unknown).
What simple observation can we make about \(S^* \)?

Fact: Either \(n \in S^* \) or \(n \notin S^* \)

If \(n \notin S^* \): \(S^* \) optimal solution for \(\{1, 2, \ldots, n-1\} \)

If \(n \in S^* \):
Simple Observation

Let $S^* \subseteq [n]$ be optimal solution (unknown).
What simple observation can we make about S^*?

Fact: Either $n \in S^*$ or $n \notin S^*$

If $n \notin S^*$: S^* optimal solution for $
\{1, 2, \ldots, n-1\}$

If $n \in S^*$:

- Nothing in $(p(n), n-1]$ in S^*: overlap with n
Simple Observation

Let $S^* \subseteq [n]$ be optimal solution (unknown).
What simple observation can we make about S^*?

Fact: Either $n \in S^*$ or $n \notin S^*$

If $n \notin S^*$: S^* optimal solution for $
\{1, 2, \ldots, n - 1\}$

If $n \in S^*$:
- Nothing in $(p(n), n - 1]$ in S^*: overlap with n
- $S^* = \{n\} \cup$ opt solution for $
\{1, 2, \ldots, p(n)\}$
Formalize

Definition

Let $\text{OPT}(i)$ denote *value* of optimal solution S_i^* for $\{1, 2, \ldots, i\}$

Note:
- S_i^* not necessarily equal to $S^* \cap \{1, 2, \ldots, i\}$ (but $S_n^* = S^*$)
- $\text{OPT}(0) = 0$ by convention
Formalize

Definition

Let $\text{OPT}(i)$ denote value of optimal solution S_i^* for $\{1, 2, \ldots, i\}$

Note:

- S_i^* not necessarily equal to $S^* \cap \{1, 2, \ldots, i\}$ (but $S_n^* = S^*$)
- $\text{OPT}(0) = 0$ by convention

If $n \notin S^*$: $\text{OPT}(n) =$
Formalize

Definition

Let $\text{OPT}(i)$ denote value of optimal solution S_i^* for \{1, 2, \ldots, i\}

Note:

- S_i^* not necessarily equal to $S^* \cap \{1, 2, \ldots, i\}$ (but $S_n^* = S^*$)
- $\text{OPT}(0) = 0$ by convention

If $n \notin S^*$: $\text{OPT}(n) = \text{OPT}(n - 1)$
Formalize

Definition

Let $\textbf{OPT}(i)$ denote value of optimal solution S_i^* for $\{1, 2, \ldots, i\}$

Note:

- S_i^* not necessarily equal to $S^* \cap \{1, 2, \ldots, i\}$ (but $S_n^* = S^*$)
- $\textbf{OPT}(0) = 0$ by convention

If $n \notin S^*$: $\textbf{OPT}(n) = \textbf{OPT}(n - 1)$

If $n \in S^*$: $\textbf{OPT}(n) =$
Formalize

Definition

Let $\text{OPT}(i)$ denote value of optimal solution S^*_i for $\{1, 2, \ldots, i\}$

Note:

- S^*_i not necessarily equal to $S^* \cap \{1, 2, \ldots, i\}$ (but $S^*_n = S^*$)
- $\text{OPT}(0) = 0$ by convention

If $n \notin S^*$: $\text{OPT}(n) = \text{OPT}(n - 1)$
If $n \in S^*$: $\text{OPT}(n) = v_n + \text{OPT}(p(n))$
Formalize

Definition

Let $\text{OPT}(i)$ denote *value* of optimal solution S_i^* for $\{1, 2, \ldots, i\}$

Note:
- S_i^* not necessarily equal to $S^* \cap \{1, 2, \ldots, i\}$ (but $S_n^* = S^*$)
- $\text{OPT}(0) = 0$ by convention

If $n \not\in S^*$: $\text{OPT}(n) = \text{OPT}(n - 1)$

If $n \in S^*$: $\text{OPT}(n) = v_n + \text{OPT}(p(n))$

Don’t know if $n \in S^*$, but can still say:

$$ \text{OPT}(n) = \text{max} (\text{OPT}(n - 1), v_n + \text{OPT}(p(n))) $$

Now need to prove this more formally...
Formalize

Definition

Let $\text{OPT}(i)$ denote *value* of optimal solution S_i^* for $\{1, 2, \ldots, i\}$

Note:

- S_i^* not necessarily equal to $S^* \cap \{1, 2, \ldots, i\}$ (but $S_n^* = S^*$)
- $\text{OPT}(0) = 0$ by convention

If $n \notin S^*$: $\text{OPT}(n) = \text{OPT}(n - 1)$
If $n \in S^*$: $\text{OPT}(n) = v_n + \text{OPT}(p(n))$

Don’t know if $n \in S^*$, but can still say:

$$\text{OPT}(n) = \max(\text{OPT}(n - 1), v_n + \text{OPT}(p(n)))$$
Formalize

Definition

Let $\text{OPT}(i)$ denote value of optimal solution S_i^* for $\{1, 2, \ldots, i\}$

Note:

- S_i^* not necessarily equal to $S^* \cap \{1, 2, \ldots, i\}$ (but $S_n^* = S^*$)
- $\text{OPT}(0) = 0$ by convention

If $n \notin S^*$: $\text{OPT}(n) = \text{OPT}(n - 1)$
If $n \in S^*$: $\text{OPT}(n) = v_n + \text{OPT}(p(n))$

Don’t know if $n \in S^*$, but can still say:

$$\text{OPT}(n) = \max(\text{OPT}(n - 1), v_n + \text{OPT}(p(n)))$$

Now need to prove this more formally...
Structure Theorem

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{OPT}(j) = \max(\text{OPT}(j - 1), v_j + \text{OPT}(p(j)))) for all (1 \leq j \leq n)</td>
</tr>
</tbody>
</table>

Know there are feasible solutions to \(\{1, 2, \ldots, j\} \) of value:

\[
\text{OPT}(j - 1) (S^*_{j - 1} \text{ feasible for } \{1, 2, \ldots, j\}) \leq \text{OPT}(j) \\
\leq \text{OPT}(p(j)) + v_j.
\]

Two cases:

1. If \(j \not\in S^*_{j} \), then \(S^*_{j} = \{1, 2, \ldots, j - 1\} \) is feasible for \(j - 1 \) with

\[
\text{OPT}(j) \leq \text{OPT}(j - 1).
\]

2. If \(j \in S^*_{j} \), then by definition

\[
\text{OPT}(j) = v_j = \text{OPT}(S^*_{j}) \leq \text{OPT}(p(j)).
\]
Structure Theorem

Theorem

\[
\text{OPT}(j) = \max(\text{OPT}(j - 1), v_j + \text{OPT}(p(j))) \quad \text{for all } 1 \leq j \leq n
\]

\(\geq\): Know there are feasible solutions to \(\{1, 2, \ldots, j\}\) of value:
- \(\text{OPT}(j - 1)\) (\(S_{j-1}^*\) feasible for \(\{1, 2, \ldots, j\}\))
- \(v_j + \text{OPT}(p(j))\) (add \(j\) to \(S_{p(j)}^*\))

\(\implies\) \(\text{OPT}(j) \geq \max(\text{OPT}(j - 1), v_j + \text{OPT}(p(j)))\)
Structure Theorem

Theorem

\[\text{OPT}(j) = \max(\text{OPT}(j - 1), v_j + \text{OPT}(p(j))) \quad \text{for all } 1 \leq j \leq n \]

\[\geq: \text{Know there are feasible solutions to } \{1, 2, \ldots, j\} \text{ of value:} \]

- \(\text{OPT}(j - 1) \) (\(\mathcal{S}_{j-1}^{*} \) feasible for \(\{1, 2, \ldots, j\} \))
- \(v_j + \text{OPT}(p(j)) \) (add \(j \) to \(\mathcal{S}_{p(j)}^{*} \))

\[\implies \text{OPT}(j) \geq \max(\text{OPT}(j - 1), v_j + \text{OPT}(p(j))) \]

\[\leq: \text{Two cases} \]
Structure Theorem

Theorem

\[\text{OPT}(j) = \max(\text{OPT}(j - 1), v_j + \text{OPT}(p(j))) \quad \text{for all} \quad 1 \leq j \leq n \]

\(\geq\): Know there are feasible solutions to \(\{1, 2, \ldots, j\}\) of value:

- \(\text{OPT}(j - 1)\) (\(S^*_{j-1}\) feasible for \(\{1, 2, \ldots, j\}\))
- \(v_j + \text{OPT}(p(j))\) (add \(j\) to \(S^*_{p(j)}\))

\(\implies\ \text{OPT}(j) \geq \max(\text{OPT}(j - 1), v_j + \text{OPT}(p(j)))\)

\(\leq\): Two cases

- If \(j \notin S^*_j\), then \(S^*_j \subseteq \{1, 2, \ldots, j - 1\}\)
 \(\implies\ \text{OPT}(j) \leq \text{OPT}(j - 1)\) (definition of \(\text{OPT}(j - 1)\))
Structure Theorem

Theorem

$$\text{OPT}(j) = \max(\text{OPT}(j-1), v_j + \text{OPT}(p(j)))$$ for all $1 \leq j \leq n$

\geq: Know there are feasible solutions to $\{1, 2, \ldots, j\}$ of value:

- $\text{OPT}(j - 1)$ (S_{j-1}^* feasible for $\{1, 2, \ldots, j\}$)
- $v_j + \text{OPT}(p(j))$ (add j to $S_{p(j)}^*$)

$$\implies \text{OPT}(j) \geq \max(\text{OPT}(j-1), v_j + \text{OPT}(p(j)))$$

\leq: Two cases

- If $j \notin S_j^*$, then $S_j^* \subseteq \{1, 2, \ldots, j - 1\}$

$$\implies S_j^* \text{ feasible for } [j - 1] \implies \text{OPT}(j) \leq \text{OPT}(j - 1) \text{ (definition of } \text{OPT}(j - 1))$$

- If $j \in S_j^*$, then by definition $S_j^* \setminus \{j\}$ feasible for $\{1, 2, \ldots, p(j)\}$

$$\implies \text{OPT}(j) - v_j = v(S_j^* \setminus \{j\}) \leq \text{OPT}(p(j)) \text{ (def of } \text{OPT}(p(j)))$$

$$\implies \text{OPT}(j) \leq \text{OPT}(p(j)) + v_j.$$
Previous theorem a recurrence relation!

- Suggests obvious recursive algorithm for computing $\text{OPT}(j)$
Previous theorem a recurrence relation!

- Suggests obvious recursive algorithm for computing $\text{OPT}(j)$

```plaintext
Schedule(j) {
  If j = 0 return 0;
  else return max(Schedule(j - 1), v_j + Schedule(p(j));
}
```
Correctness

Theorem

Schedule\(j\) returns \(\text{OPT}(j)\).
Correctness

Theorem

\(\text{Schedule}(j)\) returns \(\text{OPT}(j)\).

Proof.

Induction on \(j\)
Correctness

Theorem

Schedule(j) returns OPT(j).

Proof.

Induction on j

- Base case: j = 0. Then Schedule(j) returns 0 = OPT(j)
Correctness

Theorem

\(Schedule(j) \) returns \(OPT(j) \).

Proof.

Induction on \(j \)

- Base case: \(j = 0 \). Then \(Schedule(j) \) returns \(0 = OPT(j) \)

- Inductive step: \(Schedule(j) \) returns

\[
\max(Schedule(j - 1), v_j + Schedule(p(j)))
\]

\[
= \max(OPT(j - 1), v_j + OPT(p(j)))
\]

\[
= OPT(j)
\]
Running Time

Suppose $p(j) = j - 2$ for all j:

![Diagram showing intervals and recursion tree](image)

- $p(1) = 0$, $p(j) = j - 2$
Running Time

Suppose \(p(j) = j - 2 \) for all \(j \):

Schedule(\(j \)) calls Schedule(\(j - 1 \)) and Schedule(\(j - 2 \))
Running Time

Suppose $p(j) = j - 2$ for all j:

Schedule(j) calls Schedule($j - 1$) and Schedule($j - 2$)
Running Time

Suppose \(p(j) = j - 2 \) for all \(j \):

\[
p(1) = 0, \ p(j) = j - 2
\]

Schedule(\(j \)) calls Schedule(\(j - 1 \)) and Schedule(\(j - 2 \))

Let \(T(n) \) be running time of Schedule(\(n \)) on this instance

\[
T(n) = T(n - 1) + T(n - 2) + c
\]
Running Time

Suppose \(p(j) = j - 2 \) for all \(j \):

Let \(T(n) \) be running time of \(\text{Schedule}(n) \) on this instance:

\[
T(n) = T(n - 1) + T(n - 2) + c
\]

Fibonacci numbers: exponential in \(n \)
Fix: Memoization

Idea: avoid recomputation!

Table M of size n, initially all empty

Schedule(j) {
 If $j = 0$ return 0;
 else if $M[j]$ nonempty return $M[j]$;
 else {
 $M[j] = \max(Schedule(j-1), v_j + Schedule(p(j)))$;
 return $M[j]$;
 }
}

Correctness: (basically) same as before.

Change inductive hypothesis to:

"Schedule(j) returns OPT(j) and after it returns, $M[j] = OPT(j)$"
Fix: Memoization

Idea: avoid recomputation!

Table M of size n, initially all empty
Fix: Memoization

Idea: avoid recomputation!

Table M of size n, initially all empty

```
Schedule(j) {
    If $j = 0$ return 0;
    else if $M[j]$ nonempty return $M[j]$;
    else {
        $M[j] = \max(Schedule(j - 1), v_j + Schedule(p(j)))$;
        return $M[j]$;
    }
}
```
Fix: Memoization

Idea: avoid recomputation!

Table M of size n, initially all empty

```c
Schedule(j) {
    If j = 0 return 0;
    else if M[j] nonempty return M[j];
    else {
        M[j] = max(Schedule(j - 1), v_j + Schedule(p(j)));
        return M[j];
    }
}
```

Correctness: (basically) same as before.

- Change inductive hypothesis to:
 "Schedule(j) returns $\text{OPT}(j)$ and after it returns, $M[j] = \text{OPT}(j)$"
Theorem

The worst-case running time of Schedule(n) is at most $O(n)$.

Proof.

On call to Schedule(j):

- Either return entry from table ($O(1)$ time), or
- Two recursive calls, then fill in table entry that was empty

\Rightarrow running time $= O(1) \times \# \text{recursive calls}$

Fill in one (previously empty) table entry after 2 recursive calls

\Rightarrow At most $2n$ recursive calls

So running time at most $O(n)$
Running Time

Theorem

The worst-case running time of Schedule(n) is at most \(O(n) \).

Proof.

On call to Schedule(j):

- Either return entry from table (\(O(1) \) time), or
- Two recursive calls, then fill in table entry that was empty

Dynamic Programming!

Michael Dinitz
Lecture 11: Dynamic Programming I
October 5, 2021 16 / 20
Running Time

Theorem

The worst-case running time of Schedule(n) is at most $O(n)$.

Proof.

On call to Schedule(j):

- Either return entry from table ($O(1)$ time), or
- Two recursive calls, then fill in table entry that was empty

\Rightarrow running time $= O(1) \times \# \text{ recursive calls}$
Running Time

Theorem

The worst-case running time of Schedule(n) is at most $O(n)$.

Proof.

On call to Schedule(j):

- Either return entry from table ($O(1)$ time), or
- Two recursive calls, then fill in table entry that was empty

\implies running time $= O(1) \times \# \text{ recursive calls}$

Fill in one (previously empty) table entry after 2 recursive calls

\implies At most $2n$ recursive calls
Theorem

The worst-case running time of Schedule(n) is at most $O(n)$.

Proof.

On call to Schedule(j):

- Either return entry from table ($O(1)$ time), or
- Two recursive calls, then fill in table entry that was empty

\Rightarrow running time $= O(1) \times \#$ recursive calls

Fill in one (previously empty) table entry after 2 recursive calls

\Rightarrow At most $2n$ recursive calls

So running time at most $O(n)$
Running Time

Theorem

The worst-case running time of Schedule(n) is at most $O(n)$.

Proof.

On call to Schedule(j):

- Either return entry from table ($O(1)$ time), or
- Two recursive calls, then fill in table entry that was empty

\Rightarrow running time $= O(1) \times \#$ recursive calls

Fill in one (previously empty) table entry after 2 recursive calls

\Rightarrow At most $2n$ recursive calls

So running time at most $O(n)$

Dynamic Programming!
Finding the Solution

Algorithm finds *value* of optimal solution: what if we want to find the solution itself?

Idea 1: keep track of solution in another table (or in M)

Uses lots of extra space, need to be careful about how much time spend copying/moving solutions

Better idea: Backtrack through completed table!

```plaintext
Solution(j) {
  if $j = 0$ then return \emptyset;
  else if $v_j + M[p(j)] > M[j-1]$ return \$j \cup \text{Solution}(p(j))$
  else return \text{Solution}(j-1);
}
```

Correctness: Direct from correctness of previous algorithm

Running Time: $O(n)$
Finding the Solution

Algorithm finds \textit{value} of optimal solution: what if we want to find the solution itself?

- Idea 1: keep track of solution in another table (or in M)

```latex
\begin{align*}
\text{Solution}(j) = & \begin{cases}
\emptyset & \text{if } j = 0; \\
\text{if } v_j + M[p(j)] > M[j-1] & \text{return } \{j\} \cup \text{Solution}(p(j)); \\
\text{else return Solution}(j-1);
\end{cases}
\end{align*}
```

Correctness: Direct from correctness of previous algorithm

Running Time: $O(n)$
Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?

- Idea 1: keep track of solution in another table (or in M)
 - Uses lots of extra space, need to be careful about how much time spend copying/moving solutions
Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?

- Idea 1: keep track of solution in another table (or in \(M \))
 - Uses lots of extra space, need to be careful about how much time spend copying/moving solutions

- Better idea: Backtrack through completed table!

```plaintext
Solution(j)
{
  If j = 0 then return \( \emptyset \);
  else if \( v_j + M[p(j)] > M[j-1] \) return \( \{ j \} \cup Solution(p(j)) \);
  else return Solution(j-1);
}
```

Correctness: Direct from correctness of previous algorithm

Running Time: \(O(n) \)
Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?

- Idea 1: keep track of solution in another table (or in M)
 - Uses lots of extra space, need to be careful about how much time spend copying/moving solutions

- Better idea: Backtrack through completed table!

\[
\text{Solution}(j) \begin{cases}
 & \text{If } j = 0 \text{ then return } \emptyset; \\
 & \text{else if } v_j + M[p(j)] > M[j - 1] \text{ return } \{j\} \cup \text{Solution}(p(j)); \\
 & \text{else return } \text{Solution}(j - 1);
\end{cases}
\]
Finding the Solution

Algorithm finds *value* of optimal solution: what if we want to find the solution itself?

- Idea 1: keep track of solution in another table (or in M)
 - Uses lots of extra space, need to be careful about how much time spend copying/moving solutions

- Better idea: Backtrack through completed table!

```plaintext
Solution(j) {
    If $j = 0$ then return $\emptyset$;
    else if $v_j + M[p(j)] > M[j - 1]$ return $\{j\} \cup Solution(p(j))$;
    else return Solution($j - 1$);
}
```

Correctness: Direct from correctness of previous algorithm

Running Time: $O(n)$
Memoization vs Iteration: Top-Down vs Bottom-Up

Previous technique: “Memoization”, “Top-Down Dynamic Programming”

- Remember outcome of recursive calls
- Starts at “top” problem, works way “down” via recursion

Schedule

\[
M[0] = 0; \\
\text{for } (i = 1 \text{ to } n) \{ \\
M[i] = \max(v_i + M[p(i)], M[i-1]); \\
\}
\]

\[\text{return } M[n];\]
Memoization vs Iteration: Top-Down vs Bottom-Up

Previous technique: “Memoization”, “Top-Down Dynamic Programming”
- Remember outcome of recursive calls
- Starts at “top” problem, works way “down” via recursion

Alternative: “Bottom-Up Dynamic Programming”
- Start at “bottom” of table, work way up
- Every table entry we need already filled in!
Memoization vs Iteration: Top-Down vs Bottom-Up

Previous technique: “Memoization”, “Top-Down Dynamic Programming”

- Remember outcome of recursive calls
- Starts at “top” problem, works way “down” via recursion

Alternative: “Bottom-Up Dynamic Programming”

- Start at “bottom” of table, work way up
- Every table entry we need already filled in!

Schedule {
 M[0] = 0;
 for(i = 1 to n) {
 M[i] = max(v_i + M[p(i)], M[i - 1]);
 }
 return M[n];
}
Top-Down vs Bottom-Up (cont’d)

Some people only call bottom-up dynamic programming, but this is ridiculous
Top-Down vs Bottom-Up (cont’d)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:

- If $M[j]$ doesn’t need to be computed (doesn’t appear in recursion tree for $M[n]$), won’t waste time on it!
- Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers
Top-Down vs Bottom-Up (cont’d)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:
- If $M[j]$ doesn’t need to be computed (doesn’t appear in recursion tree for $M[n]$), won’t waste time on it!
- Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers

Bottom-up pros:
- Easier to analyze running time: sum over all table entries of time to compute entry
- Often faster in practice (iteration vs recursion)
Top-Down vs Bottom-Up (cont’d)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:
- If $M[j]$ doesn’t need to be computed (doesn’t appear in recursion tree for $M[n]$), won’t waste time on it!
- Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers

Bottom-up pros:
- Easier to analyze running time: sum over all table entries of time to compute entry
- Often faster in practice (iteration vs recursion)

Use whatever you feel more comfortable with (most experienced people use bottom-up)
Principles of Dynamic Programming (CLRS 15.3)

Main step: break problem into subproblems
 - WIS: Subproblems \{1, \ldots, i\} (prefixes)
 - Often determined by choice ("is n in S*?"")
 - Want small (polynomial) number of subproblems (table entries)

Prove optimal substructure: Optimal solution to subproblem can be found from optimal solutions to smaller subproblems
 - Not an algorithmic statement! Smaller very important!

Turn optimal substructure theorem into algorithm (top-down or bottom-up) which fills in table indexed by subproblems
 - Correctness: induction and optimal substructure theorem
 - Running time: sum of time of all table entries
 - Often (not always) just (\# table entries) \times (time per entry)