601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Dynamic Programming I Date: 10/5/21

11.1 Introduction

Dynamic programming can be very confusing until you’ve used it a bunch of times, so the best way
to learn it is to simply do a whole bunch of examples. One way of viewing it is as a much more
complicated version of divide-and-conquer a la mergesort or quicksort. In those cases, we could
divide the problem into two subproblems, solve it optimally on each subproblem, and then combine
the solutions (in the case of mergesort by a merge, in the case of quicksort trivially). This is great
when it works, but in some cases it’s not so simple. Dynamic programming is a way of rescuing
divide-and-conquer ideas from cases where it seems like they shouldn’t work — for example, if the
subproblems overlap.

Fundamentally, dynamic programming is a method of solving a problem by breaking it down into
a collection of “smaller” subproblems, and then using the solutions to these subproblems to build
a solution to the actual problem of interest. So far this sounds a lot like divide-and-conquer, but in
dynamic programming we will divide into subproblems which overlap significantly, and moreover,
a naive divide-and-conquer algorithm would end up “re-solving” the same subproblem many times.
We overcome this by solving each of those subproblems just once, and storing their solutions. The
next time the same subproblem occurs, instead of recomputing its solution, we simply look up the
previously computed solution. So the two key requirements of any dynamic programming algorithm
are that 1) there aren’t too many subproblems, and 2) the optimal solution to any subproblem can
be computed efficiently if we are given the optimal solutions to “smaller” subproblems.

Dynamic programming is used all over the place. It was originally developed in the context of control
theory, and immediately found uses in economics. It was later realized that it was useful for a huge
variety of combinatorial optimization problems. Nowadays, the most famous users of dynamic
programming (particularly at JHU) tend to be people in bioinformatics and natural language
processing. This is because dynamic programming tends to be a very good fit for algorithms on
strings, which are fundamental objects in both bioinformatics (DNA/RNA) and NLP.

Quick diversion: Dynamic programming was invented by Richard Bellman (although there were
people like von Neumann who had used similar ideas earlier). The first question people usually ask
about dynamic programming is “why is it called dynamic programming”. The somewhat depressing
but true answer, from Bellman’s autobiography:

An interesting question is, Where did the name, dynamic programming, come from?
The 1950s were not good years for mathematical research. We had a very interesting
gentleman in Washington named Wilson. He was Secretary of Defense, and he actually
had a pathological fear and hatred of the word research. I’'m not using the term lightly;
I’'m using it precisely. His face would suffuse, he would turn red, and he would get violent
if people used the term research in his presence. You can imagine how he felt, then,



about the term mathematical. The RAND Corporation was employed by the Air Force,
and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something
to shield Wilson and the Air Force from the fact that I was really doing mathematics
inside the RAND Corporation. What title, what name, could I choose? In the first
place I was interested in planning, in decision making, in thinking. But planning, is not
a good word for various reasons. I decided therefore to use the word “programming”.
I wanted to get across the idea that this was dynamic, this was multistage, this was
time-varying. I thought, let’s kill two birds with one stone. Let’s take a word that has
an absolutely precise meaning, namely dynamic, in the classical physical sense. It also
has a very interesting property as an adjective, and that it’s impossible to use the word
dynamic in a pejorative sense. Try thinking of some combination that will possibly give
it a pejorative meaning. It’s impossible. Thus, I thought dynamic programming was a
good name. It was something not even a Congressman could object to. So I used it as
an umbrella for my activities.

The first example we’ll see is Weighted Interval Scheduling.

11.2 Weighted Interval Scheduling

In this problem we are given a collection of n requests, where each request ¢ has a start time s; and
a finish time f;. Each request also has a value v;. The goal is to find a subset S C {1,2,...,n}
such that no two intervals in S overlap and the value ), g v; is maximized. These requests are
sometimes called “jobs”, due to the original scheduling motivation (we have one CPU that can
process one job at a time, and we are trying to maximize the value of the jobs that we schedule).

Let’s assume that the requests come sorted by finish time, so f1 < fo < -+ < f,,. Let’s set up a
little bit more notation: for each i € {1,2,...,n}, we let p(i) be the largest index j < i such that
intervals ¢ and j are disjoint. In other words, we know that j must finish before i finishes, but we
also require j to finish before before i even starts.

For example, our input might look like the following, where each job also has an arbitrary value
(not pictured):



< time

In this case p(1) = 0,p(2) = 0,p(3) = 0, and p(5) = 0 (by convention this means that it conflicts
with all previous jobs). For the other jobs, p(4) = 1,p(6) = 2,p(7) = 3, and p(8) = 5.

How do we design an algorithm for this? It’s pretty clear that obvious techniques such as greedily
picking the remaining interval of maximum value don’t work. (Good exercise to do at home: try
to design a greedy algorithm and find an example where it doesn’t give the optimal solution). For
example, the greedy algorithm where we pick greedily by earliest finishing time does work if all
values are 1, but works very poorly with arbitrary values:

weight = 999 ——> b
weight =1 —— a
h -
> time
0 1 2 3 4 5 6 7 8 9 10 11

Instead, let’s start by reasoning about the optimal solution S*. We don’t know what S™* is, but
there are certainly some simple things we can say about it. For example: the last interval n is
either in S* or it’s not.

What happens if n ¢ S*7 Then clearly S* is also the optimal solution for intervals {1,2,...,n—1}.
On the other hand, if n € S* then clearly S* cannot contain any jobs between p(n) and n, since
they all interfere with job n. Moreover, whatever choices are made in jobs {1,2,...,p(n)} do not
affect job n, so in fact we know that S* is just job n together with the optimal solution for intervals
{1,2,...,p(n)}.



Let’s try to write this down a little more formally. Let OPT'(i) denote the value of the optimal
solution of jobs {1,2,...,i}. We can define OPT'(0) = 0 just by convention. With this notation,
what we just said is that if n € S* then OPT'(n) = v, + OPT(p(n)), and if n & S* then OPT (n) =
OPT(n —1). So whether n € S* depends only on whether v, + OPT(p(n)) > OPT(n —1). In
other words, OPT (n) = max{v, + OPT(p(n)), OPT(n — 1)}.

We can prove this a bit more formally by contradiction. First, by the above discussion and the
definition of OPT, we know that there is a feasible solution of value v, + OPT(p(n)), and another
feasible solution of value OPT'(n — 1). Thus OPT(n) > max{v, + OPT(p(n)), OPT(n — 1)}.

On the other hand, assume for contradiction that OPT (n) > max{v, + OPT(p(n)), OPT(n —1)}.
Let S* denote the solution which has value OPT (n). If n ¢ S* then by definition S* is feasible for
the intervals {1,2,...,n — 1}, so this together with out assumption that OPT'(n) > OPT'(n — 1)
implies that there is a solution for the intervals {1,2,...,n — 1} of value larger than OPT'(n — 1).
This contradicts the definition of OPT(n — 1). Hence OPT(n) < OPT(n — 1) < max{v, +
OPT(p(n)),OPT(n—1)}if n & S*.

Similarly, if n € S* then by definition S*\ {n} is a feasible solution for the intervals {1,2,...,p(n)}.
Thus there is a solution for the intervals {1,2,...,p(n)} of value OPT(n) — v, > v, + OPT(p(n)) —
v, = OPT(p(n)), where the inequality is by our starting assumption that OPT(n) > max{v, +
OPT(p(n)),OPT(n—1)}. Thus there is a solution for the intervals {1,2,...,p(n)} of value strictly
larger than O PT (p(n)), which contradicts the definition of OPT'(p(n)). Hence OPT(n) < OPT(n—
1) < max{v, + OPT(p(n)),OPT(n—1)} if n € S*.

Note that there was nothing special about n here. If we want to analyze OPT(j) the same analysis
still holds. So we get the recurrence relation

OPT(j) = max{v; + OPT(p(j)),OPT(j — 1)} (11.2.1)

This suggest the following obvious algorithm:

Schedule(j) {
If 7=0 return 0;
else return max(Schedule(j—1), v; + Schedule(p(j))

}

This algorithm clearly gives the correct solution, by our above argument. To see this a bit more
formally, let’s prove by induction on j that the value returned by Schedule(j) is equal to OPT ().
When j = 0 this is certainly true. For the inductive step, suppose it holds true for all 7/ < j. Then
the value returned by Schedule(j) is equal to max(Schedule(j — 1), v; + Schedule(p(j)), which by
the induction hypothesis is equal to max(OPT(j —1),v; + OPT(p(j))), which by is equal
to OPT'(j).

But what is its running time? It depends on the instance, but in the worst case its running time
can be very bad. To see this, consider an instance where p(j) = j — 2 for all j. Then the recursion
tree grows like the Fibonacci numbers, since Schedule(j) calls both Schedule(j-1) and Schedule(j-2)!
This means that the number of recursive calls is exponential, so the running time for this algorithm
is exponential.



. Q00000
p(1) = 0, p(j) =j-2 @ @

recursion tree

So it seems like we're dead — there are a huge number of recursive calls. On the other hand, there
are only n distinct recursive calls, since Schedule is always called with some parameter between 1
and n. So the reason the recursive algorithm is bad is because its computing the exact same thing
many, many times. For example, there are a huge number of calls to Schedule(3), each one of which
makes more recursive calls. But once we’ve computed the answer for Schedule(3), why not just
remember it and return it instead of recomputing it?

To implement this, we’ll have a table M with n locations. Initially each M[i] will be empty, but
when we first compute Schedule(i) we’ll store the answer in M[i]. Then on future calls we can just
return the answer from the table.

Slightly more formally, we modify the algorithm as follows.

Schedule(j) {
If j=0 then return O;
else if M]J[j] nonempty then return M][j];

else {
M][j] = max(Schedule(j—1), v; + Schedule(p(j));
return M[j];

}
}

What’s the running time of this version? It’s definitely not immediately obvious, but we can analyze
it by analyzing the progress made towards filling out the table. What happens on a single call to
Schedule? We either return an existing value in the table (O(1) time) , or make two recursive calls
and then fill in a table entry which was empty (O(1) time to make the calls, fill in a table entry,
and return, although more time could be spent inside the recursive calls). So the running time is
O(1) times the number of recursive calls. But every time we make two recursive calls we fill in a
table entry, so the total number of recursive calls is at most 2n. Thus the total running time is

O(n).

This is dynamic programming! We combined the optimal solutions of subproblems in order to find
the optimal solution of a larger problem.



Side note: this was under the assumption that jobs are already sorted by finishing time. If they’re
not, then we can spend O(nlogn) time and sort them. Good exercise at home: what goes wrong
if we try to use this algorithm on an unsorted instance?

11.2.1 Finding the Solution

As some of you may have noticed, the dynamic programming algorithm we just designed does not
actually return the optimal solution: it returns the value of the optimal solution. This is essentially
trivial to fix. One way would be to keep track of the solution as we go. This works, but is a little
inelegant and takes up extra space (for each table entry M[j] we essentially have to store not just
the value of the optimal solution on job {1,2,...,;} but also the solution itself). You also have to
be wvery careful that yo don’t spend too much time copying all the solutions. Another way, which
is perhaps a little more elegant, is just to do a second pass once the table has been filled out. This
algorithm would look like the following:

Solution(j) {
If j=0 then return 0;
else if v;+Mp(j)] > M[j —1] return {j} U Solution (p(j));
else return Solution(j—1)

}

11.3 Memoization vs Iteration

The above technique, where we simply remember the outcome of recursive calls, is called memo-
ization. Sometimes the easiest way to think about dynamic programming is memoization. This
is sometimes called a “top-down” dynamic programming algorithm, since we start from the full
problem and make memoized recursive calls.

On the other hand, there is a completely equivalent “bottom-up” dynamic programming algorithm.
We could simply fill up the table from the smallest to the largest values. This gives the following
algorithm:

Schedule {
M[0] = 0;
for(i =1 to n) {
}M[i] = max(v; + Mp(i)], M[i—1]);

return M[n];

}

Now the running time is obvious: it is simply the number of table entries times the time to compute
each entry given the previous ones. While this is not always true, it is pretty common for it to
be easy to design the algorithm using memoization, but then easy to compute the running time
using a bottom-up algorithm. I personally tend to think about dynamic programming problems
bottom-up, by first reasoning about the table, but whatever works for you.



11.4 Principles of Dynamic Programming (Section 15.3 of CLRS)

Informally, what are the properties that a problem needs to have to use dynamic programming?
First, we have to be able to break it into subproblems. Usually these subproblems are determined
by some choice, which we know we need to make but we don’t know how to make. For example,
in weighted interval scheduling, the choice is whether or not to include the final job. Second, we
need for this choice to lead to smaller subproblems, which look like smaller instances of the original
problem.

We have this, we need the following.

1. There are only a polynomial number of subproblems (table entries)

2. The optimal solution to a subproblem can be easily computed from the optimal solutions to
“smaller” subproblems. This is sometimes called the optimal substructure property: we can
compute the optimum solution to one subproblem by computing the optimum solution to
smaller subproblems. Note: this is very intuitive, but there are many interesting problems
that do not have the optimal substructure property!

3. The solution to the original problem can be easily computed from the solution to the sub-
problems (usually, as in the above problem, it is in fact one of the subproblems itself).



	Introduction
	Weighted Interval Scheduling
	Finding the Solution

	Memoization vs Iteration
	Principles of Dynamic Programming (Section 15.3 of CLRS)

