Lecture 10: Universal and Perfect Hashing

Michael Dinitz

September 30, 2021 601.433/633 Introduction to Algorithms

Introduction

Another approach to dictionaries (insert, lookup, delete): hashing

• Can improve operations to O(1), but with many caveats!

Should have seen some discussion of hashing in data structures. Also in CLRS.

Separate chaining vs. open addressing

Today: discussion of caveats, more advanced versions of hashing (universal and perfect)

Hashing Basics

- Keys from universe U (think very large)
- ▶ Set $S \subseteq U$ of keys we actually care about (think relatively small). |S| = N.
- ▶ Hash table **A** (array) of size **M**.
- ▶ Hash function $h: U \rightarrow [M]$
 - $M = \{1, 2, ..., M\}$
- Idea: store x in A[h(x)]

Hashing Basics

- Keys from universe U (think very large)
- ▶ Set $S \subseteq U$ of keys we actually care about (think relatively small). |S| = N.
- ▶ Hash table A (array) of size M.
- ▶ Hash function $h: U \rightarrow [M]$
 - $[M] = \{1, 2, ..., M\}$
- Idea: store x in A[h(x)]

One more component: collision resolution

- ▶ Today: separate chaining
- ► A[i] is a linked list containing all x inserted where h(x) = i.

Lookup(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Lookup(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} (or walk to the end of the list)

Insert(\mathbf{x}): Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$.

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Lookup(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} (or walk to the end of the list)

Insert(\mathbf{x}): Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$.

Delete(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} . Remove it from the list.

Question: What should hash function be?

Properties we want:

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(\mathbf{x}): Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$.

Delete(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} . Remove it from the list.

Question: What should hash function be?

Properties we want:

Few collisions. Time of lookup, delete for x is O(length of list at <math>A[h(x)]).

Lookup(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} (or walk to the end of the list)

Insert(\mathbf{x}): Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$.

Delete(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} . Remove it from the list.

Question: What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is O(length of list at <math>A[h(x)]).
- ► Small M. Ideally, M = O(N).

Lookup(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} (or walk to the end of the list)

Insert(\mathbf{x}): Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$.

Delete(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} . Remove it from the list.

Question: What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is O(length of list at <math>A[h(x)]).
- ► Small M. Ideally, M = O(N).
- h fast to compute.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

▶ Option 1: don't worry about it, hope adversary isn't looking at your **h** when deciding on elements.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- ▶ Option 1: don't worry about it, hope adversary isn't looking at your **h** when deciding on elements.
- Option 2: Randomness! Random function h: U → [M]
 - ▶ For each $x \in U$, choose $y \in [M]$ uniformly at random and set h(x) = y.
 - Hopefully good behavior in expectation.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- ▶ Option 1: don't worry about it, hope adversary isn't looking at your **h** when deciding on elements.
- Option 2: Randomness! Random function h: U → [M]
 - For each $x \in U$, choose $y \in [M]$ uniformly at random and set h(x) = y.
 - Hopefully good behavior in expectation.
 - Problem: How can we store/remember/create h?

Definition

A probability distribution H over hash functions $\{h: U \rightarrow [M]\}$ is universal if

$$\Pr_{h\sim H}[h(x)=h(y)]\leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Definition

A probability distribution H over hash functions $\{h: U \rightarrow [M]\}$ is universal if

$$\Pr_{h \sim H}[h(x) = h(y)] \le 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by \mathbf{H} = uniform distribution over all hash functions

Definition

A probability distribution H over hash functions $\{h: U \rightarrow [M]\}$ is universal if

$$\Pr_{h\sim H}[h(x)=h(y)]\leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by \mathbf{H} = uniform distribution over all hash functions

Theorem

If **H** is universal, then for every set $S \subseteq U$ with |S| = N and for every $x \in U$, the expected number of collisions (when we draw **h** from **H**) between x and elements of S is at most N/M.

Definition

A probability distribution H over hash functions $\{h: U \rightarrow [M]\}$ is universal if

$$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by \mathbf{H} = uniform distribution over all hash functions

Theorem

If **H** is universal, then for every set $S \subseteq U$ with |S| = N and for every $x \in U$, the expected number of collisions (when we draw **h** from **H**) between x and elements of S is at most N/M.

So Lookup(x) and Delete(x) have expected time O(N/M).

 \implies If $M = \Omega(N)$, operations in O(1) time!

Main Proof

Theorem

If **H** is universal, then for every set $S \subseteq U$ with |S| = N and for every $x \in U$, the expected number of collisions (when we draw **h** from **H**) between x and elements of S is at most N/M.

Proof.

Let
$$C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$

$$\implies E[C_{xy}] = \Pr_{h \in H}[h(x) = h(y)] \le 1/M$$

Main Proof

Theorem

If **H** is universal, then for every set $S \subseteq U$ with |S| = N and for every $x \in U$, the expected number of collisions (when we draw **h** from **H**) between **x** and elements of **S** is at most N/M.

Proof.

Let
$$C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$

$$\Longrightarrow E[C_{xy}] = \Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$

Number of collisions between x and S is exactly
$$\sum_{y \in S} C_{xy}$$

$$\implies E\left[\sum_{y \in S} C_{xy}\right] = \sum_{y \in S} E\left[C_{xy}\right] \leq \sum_{y \in S} \frac{1}{M} = N/M + a(f)$$

Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most O(M) elements in the system at any time, the expected total cost of the whole sequence is only O(L) (assuming h takes constant time to compute).

Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most O(M) elements in the system at any time, the expected total cost of the whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of expectations.

Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most O(M) elements in the system at any time, the expected total cost of the whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of expectations.

So universal distributions are great. Can we construct them?

Universal Hash Families

Definition

If **H** is universal and is a uniform distribution over a set of functions $\{h_1, h_2, \dots\}$, then that set is called a *universal hash family*.

Often use **H** to refer to both set of functions and uniform distribution over it.

Universal Hash Families

Definition

If **H** is universal and is a uniform distribution over a set of functions $\{h_1, h_2, \dots\}$, then that set is called a *universal hash family*.

Often use **H** to refer to both set of functions and uniform distribution over it.

Notation:

- $U = \{0, 1\}^u \text{ (so } |U| = 2^u)$
- ▶ $M = 2^b$, so an index to **A** is an element of $\{0, 1\}^b$

Universal Hash Families

Definition

If **H** is universal and is a uniform distribution over a set of functions $\{h_1, h_2, \dots\}$, then that set is called a *universal hash family*.

Often use **H** to refer to both set of functions and uniform distribution over it.

Notation:

- $U = \{0, 1\}^u \text{ (so } |U| = 2^u)$
- $M = 2^b$, so an index to A is an element of $\{0, 1\}^b$

Construction: $\mathbf{H} = \{0,1\}^{\mathbf{b} \times \mathbf{u}}$, i.e., \mathbf{H} is all $\mathbf{b} \times \mathbf{u}$ binary matrices

Each h ∈ H is a (linear) function from U to [M]: h(x) = hx ∈ {0,1}^b (all operations mod 2)

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0,1\}^u$.

Theorem

4

H is a universal hash family: $Pr_{h\sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of \mathbf{h} except for $\mathbf{h}^{\mathbf{i}}$. Let $\mathbf{h}' = \mathbf{h}$ with $\mathbf{h}^{\mathbf{i}}$ all $\mathbf{0}$'s

• h(x) = h'(x) already fixed.

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of \mathbf{h} except for $\mathbf{h}^{\mathbf{i}}$. Let $\mathbf{h}' = \mathbf{h}$ with $\mathbf{h}^{\mathbf{i}}$ all $\mathbf{0}$'s

- h(x) = h'(x) already fixed.
- If h(y) = h(x), then h^i must equal h(x) h'(y)

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of \mathbf{h} except for $\mathbf{h}^{\mathbf{i}}$. Let $\mathbf{h}' = \mathbf{h}$ with $\mathbf{h}^{\mathbf{i}}$ all $\mathbf{0}$'s

- h(x) = h'(x) already fixed.
- If h(y) = h(x), then h^i must equal h(x) h'(y)
- ▶ Happens with probability exactly $1/2^b = 1/M$

Perfect Hashing

Suppose you know **S**, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Perfect Hashing

Suppose you know **S**, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- Sorted array: lookups O(log N)
- ▶ Balanced search tree: O(log N)

Perfect Hashing

Suppose you know **S**, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- Sorted array: lookups O(log N)
- ▶ Balanced search tree: O(log N)

Can we do better with hashing?

Perfect Hashing

Suppose you know **S**, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- Sorted array: lookups O(log N)
- ▶ Balanced search tree: O(log N)

Can we do better with hashing? Yes, through universal hashing!

Use table of size $M = N^2$.

Use table of size $M = N^2$.

Theorem

Let H be universal with $M = N^2$. Then $Pr_{h\sim H}[no\ collisions\ in\ S] <math>\geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

Use table of size $M = N^2$.

Theorem

Let **H** be universal with $M = N^2$. Then $Pr_{h\sim H}[no\ collisions\ in\ S] <math>\geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

 $Pr_{h\sim H}[h(x) = h(y)] \le 1/M = 1/N^2$ by universality.

Use table of size $M = N^2$.

Theorem

Let **H** be universal with $M = N^2$. Then $Pr_{h\sim H}[no\ collisions\ in\ S] <math>\geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

$$Pr_{h\sim H}[h(x) = h(y)] \le 1/M = 1/N^2$$
 by universality.

$$\Pr_{h \sim H} [\exists \text{ collision in } S] \leq \sum_{\substack{x,y \in S \\ x \neq y}} \Pr_{h \sim H} [h(x) = h(y)] \leq \sum_{\substack{x,y \in S \\ x \neq y}} \frac{1}{N^2}$$

$$= \binom{N}{2} \frac{1}{N^2} = \frac{N(N-1)}{2} \frac{1}{N^2} \leq \frac{1}{2}$$

Use table of size $M = N^2$.

Theorem

Let **H** be universal with $M = N^2$. Then $Pr_{h\sim H}[no\ collisions\ in\ S] <math>\geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

 $Pr_{h\sim H}[h(x) = h(y)] \le 1/M = 1/N^2$ by universality.

$$\begin{aligned} \Pr_{h \sim H} \left[\exists \text{ collision in } S \right] &\leq \sum_{\substack{x,y \in S \\ x \neq y}} \Pr_{h \sim H} \left[h(x) = h(y) \right] \leq \sum_{\substack{x,y \in S \\ x \neq y}} \frac{1}{N^2} \\ &= \binom{N}{2} \frac{1}{N^2} = \frac{N(N-1)}{2} \frac{1}{N^2} \leq \frac{1}{2} \end{aligned}$$

So keep sampling **h** ~ **H** until get one with no collisions!

 $M = N^2$ is pretty big!

- Only storing N things, and know them ahead of time
- ► Want space **O(N)**
- Open question for a long time!

 $M = N^2$ is pretty big!

- Only storing N things, and know them ahead of time
- ► Want space **O(N)**
- Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw $h \sim H$.

Will have collisions. Need to do something other than chaining.

 $M = N^2$ is pretty big!

- Only storing N things, and know them ahead of time
- ▶ Want space **O(N)**
- Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw $h \sim H$.

Will have collisions. Need to do something other than chaining.

Let
$$S_i = \{x \in S : h(x) = i\}$$
 and let $n_i = |S_i|$

 $M = N^2$ is pretty big!

- Only storing N things, and know them ahead of time
- ▶ Want space **O(N)**
- Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw $h \sim H$.

Will have collisions. Need to do something other than chaining.

Let
$$S_i = \{x \in S : h(x) = i\}$$
 and let $n_i = |S_i|$

- ▶ Use another hash table for S_i!
- Use Method 1: $O(n_i^2)$ -size perfect hashing of S_i .
 - Let $h_i: U \to [n_i^2]$ be hash function for S_i , and A_i be table (pointer from A[i])

 $M = N^2$ is pretty big!

- Only storing N things, and know them ahead of time
- ▶ Want space **O(N)**
- Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw $h \sim H$.

Will have collisions. Need to do something other than chaining.

Let
$$S_i = \{x \in S : h(x) = i\}$$
 and let $n_i = |S_i|$

- ▶ Use another hash table for S_i!
- Use Method 1: $O(n_i^2)$ -size perfect hashing of S_i .
 - Let $h_i: U \to [n_i^2]$ be hash function for S_i , and A_i be table (pointer from A[i])

Lookup(x): Look in linked list at $A_{h(x)}[h_{h(x)}(x)]$

Picture

Lookup time: by analysis of Method 1, no collisions in second level.

 \implies Lookup time O(1)

Lookup time: by analysis of Method 1, no collisions in second level.

$$\implies$$
 Lookup time $O(1)$

Size:
$$O(N + \sum_{i=1}^{N} n_i^2)$$

Lookup time: by analysis of Method 1, no collisions in second level.

$$\implies$$
 Lookup time $O(1)$

Size:
$$O(N + \sum_{i=1}^{N} n_i^2)$$

Theorem

Let \mathbf{H} be universal onto a table of size \mathbf{N} . Then

$$\Pr_{h \sim H} \left[\sum_{i=1}^{N} n_i^2 > 4N \right] < 1/2.$$

So like with method 1: keep drawing $h \sim H$ until $\sum_{i=1}^{N} n_i^2 \leq 4N$

Lookup time: by analysis of Method 1, no collisions in second level.

$$\implies$$
 Lookup time $O(1)$

Size:
$$O(N + \sum_{i=1}^{N} n_i^2)$$

Theorem

Let **H** be universal onto a table of size **N**. Then

$$\Pr_{h \sim H} \left[\sum_{i=1}^{N} n_i^2 > 4N \right] < 1/2.$$

So like with method 1: keep drawing $h \sim H$ until $\sum_{i=1}^{N} n_i^2 \leq 4N$

Prove that $\mathbf{E}\left[\sum_{i=1}^{N} \mathbf{n}_{i}^{2}\right] \leq 2\mathbf{N}$.

- Implies theorem by Markov's inequality
 - ▶ $Pr[X > 2E[X]] \le 1/2$ for nonnegative random variables X.

Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of *ordered* pairs that collide, including self-collisions

► Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs: (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)

Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of *ordered* pairs that collide, including self-collisions

• Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs: (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)

Let
$$C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$

Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of *ordered* pairs that collide, including self-collisions

• Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs: (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)

Let
$$C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} E\left[\sum_{i=1}^{N}n_{i}^{2}\right] &= E\left[\sum_{x \in S}\sum_{y \in S}C_{xy}\right] \\ &= N + \sum_{x \in S}\sum_{y \in S: y \neq x}E\left[C_{xy}\right] \qquad \qquad \text{(linearity of expectations)} \\ &\leq N + \frac{N(N-1)}{M} \qquad \qquad \text{(definition of universal)} \\ &< 2N \qquad \qquad \text{(since M = N)} \end{split}$$