Lecture 10: Universal and Perfect Hashing

Michael Dinitz

September 30, 2021
601.433/633 Introduction to Algorithms
Another approach to dictionaries (insert, lookup, delete): hashing
 ▶ Can improve operations to $O(1)$, but with many caveats!

Should have seen some discussion of hashing in data structures. Also in CLRS.
 ▶ Separate chaining vs. open addressing

Today: discussion of caveats, more advanced versions of hashing (universal and perfect)
Hashing Basics

- Keys from universe U (think very large)
- Set $S \subseteq U$ of keys we actually care about (think relatively small). $|S| = N$.
- Hash table A (array) of size M.
- Hash function $h : U \rightarrow [M]$
 - $[M] = \{1, 2, \ldots, M\}$
- Idea: store x in $A[h(x)]$

One more component: collision resolution

Today: separate chaining

$A[i]$ is a linked list containing all x inserted where $h(x) = i$.
Hashing Basics

- Keys from universe U (think very large)
- Set $S \subseteq U$ of keys we actually care about (think relatively small). $|S| = N$.
- Hash table A (array) of size M.
- Hash function $h: U \rightarrow [M]$
 - $[M] = \{1, 2, \ldots, M\}$
- Idea: store x in $A[h(x)]$

One more component: collision resolution

- Today: separate chaining
- $A[i]$ is a linked list containing all x inserted where $h(x) = i$.
Dictionary Operations

Lookup(x): Walk down the list at $A[h(x)]$ until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at $A[h(x)]$.

Delete(x): Walk down the list at $A[h(x)]$ until we find x. Remove it from the list.

Question:
What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is $O(\text{length of list at } A[h(x)])$.
- Small M. Ideally, $M = O(N)$.
- h fast to compute.
Dictionary Operations

Lookup(x): Walk down the list at $A[h(x)]$ until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at $A[h(x)]$.

Delete(x): Walk down the list at $A[h(x)]$ until we find x. Remove it from the list.

Question: What should hash function be?
Dictionary Operations

Lookup\(x\): Walk down the list at \(A[h(x)]\) until we find \(x\) (or walk to the end of the list)

Insert\(x\): Add \(x\) to the beginning of the list at \(A[h(x)]\).

Delete\(x\): Walk down the list at \(A[h(x)]\) until we find \(x\). Remove it from the list.

Question: What should hash function be?

Properties we want:
Dictionary Operations

Lookup(x): Walk down the list at $A[h(x)]$ until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at $A[h(x)]$.

Delete(x): Walk down the list at $A[h(x)]$ until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is $O(\text{length of list at } A[h(x)])$.

Dictionary Operations

Lookup(x): Walk down the list at $A[h(x)]$ until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at $A[h(x)]$.

Delete(x): Walk down the list at $A[h(x)]$ until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:
- Few collisions. Time of lookup, delete for x is $O(\text{length of list at } A[h(x)])$.
- Small M. Ideally, $M = O(N)$.
Dictionary Operations

Lookup(x): Walk down the list at $A[h(x)]$ until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at $A[h(x)]$.

Delete(x): Walk down the list at $A[h(x)]$ until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is $O(\text{length of list at } A[h(x)])$.
- Small M. Ideally, $M = O(N)$.
- h fast to compute.
Bad News

Theorem

For any hash function h, if $|U| \geq (N - 1)M + 1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your h when deciding on elements.
- Option 2: Randomness!

Random function $h : U \to [M]$.

For each $x \in U$, choose $y \in [M]$ uniformly at random and set $h(x) = y$.

Hopefully good behavior in expectation.

Problem: How can we store/remember/create h?
Bad News

Theorem

For any hash function h, if $|U| \geq (N - 1)M + 1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.
Bad News

Theorem

For any hash function \(h \), if \(|U| \geq (N - 1)M + 1 \), then there exists a set \(S \) of \(N \) elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?
Bad News

Theorem

For any hash function h, if $|U| \geq (N - 1)M + 1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your h when deciding on elements.
Bad News

Theorem

For any hash function h, if $|U| \geq (N - 1)M + 1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your h when deciding on elements.
- Option 2: Randomness! Random function $h : U \rightarrow [M]$
 - For each $x \in U$, choose $y \in [M]$ uniformly at random and set $h(x) = y$.
 - Hopefully good behavior in expectation.
Bad News

Theorem

For any hash function h, if $|U| \geq (N - 1)M + 1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your h when deciding on elements.
- Option 2: Randomness! *Random function $h : U \rightarrow [M]$*
 - For each $x \in U$, choose $y \in [M]$ uniformly at random and set $h(x) = y$.
 - Hopefully good behavior in expectation.
 - Problem: How can we store/remember/create h?
Universal Hashing

Definition

A probability distribution H over hash functions $\{h : U \rightarrow [M]\}$ is universal if

$$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by $H = \text{uniform distribution over all hash functions}$

Theorem

If H is universal, then for every set $S \subseteq U$ with $\#S = N$ and for every $x \in U$, the expected number of collisions (when we draw h from H) between x and elements of S is at most $N \cdot M$.

So $\text{Lookup}(x)$ and $\text{Delete}(x)$ have expected time $O(N \cdot M)$.

⇒ If $M = \Theta(N)$, operations in $O(1)$ time!
Universal Hashing

Definition

A probability distribution H over hash functions $\{h : U \rightarrow [M]\}$ is *universal* if

$$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by $H =$ uniform distribution over all hash functions.
Universal Hashing

Definition

A probability distribution H over hash functions $\{h : U \rightarrow [M]\}$ is \textit{universal} if

$$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by $H = \text{uniform distribution over all hash functions}$

Theorem

\textit{If H is universal, then for every set $S \subseteq U$ with $|S| = N$ and for every $x \in U$, the expected number of collisions (when we draw h from H) between x and elements of S is at most N/M.}
Universal Hashing

Definition

A probability distribution H over hash functions $\{h : U \to [M]\}$ is universal if

$$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by $H = \text{uniform distribution over all hash functions}$

Theorem

If H is universal, then for every set $S \subseteq U$ with $|S| = N$ and for every $x \in U$, the expected number of collisions (when we draw h from H) between x and elements of S is at most N/M.

So Lookup(x) and Delete(x) have expected time $O(N/M)$.

\implies If $M = \Omega(N)$, operations in $O(1)$ time!
Main Proof

Theorem

If H is universal, then for every set $S \subseteq U$ with $|S| = N$ and for every $x \in U$, the expected number of collisions (when we draw h from H) between x and elements of S is at most N/M.

Proof.

Let $C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$

$$\implies E[C_{xy}] = \Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$
Main Proof

Theorem

If H is universal, then for every set $S \subseteq U$ with $|S| = N$ and for every $x \in U$, the expected number of collisions (when we draw h from H) between x and elements of S is at most N/M.

Proof.

Let $C_{xy} = \begin{cases}
1 & \text{if } h(x) = h(y) \\
0 & \text{otherwise}
\end{cases}$

$$\implies E[C_{xy}] = Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$

The number of collisions between x and S is exactly $\sum_{y \in S} C_{xy}$.

$$\implies E\left[\sum_{y \in S} C_{xy} \right] = \sum_{y \in S} E[C_{xy}] \leq \sum_{y \in S} \frac{1}{M} = \frac{N}{M} + O(\epsilon)$$

\square
Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most $O(M)$ elements in the system at any time, the expected total cost of the whole sequence is only $O(L)$ (assuming h takes constant time to compute).
Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most $O(M)$ elements in the system at any time, the expected total cost of the whole sequence is only $O(L)$ (assuming h takes constant time to compute).

Proof.

By theorem, each operation $O(1)$ in expectation. Total time is sum: linearity of expectations.
Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most $O(M)$ elements in the system at any time, the expected total cost of the whole sequence is only $O(L)$ (assuming h takes constant time to compute).

Proof.

By theorem, each operation $O(1)$ in expectation. Total time is sum: linearity of expectations.

So universal distributions are great. Can we construct them?
Universal Hash Families

Definition

If H is universal and is a uniform distribution over a set of functions $\{h_1, h_2, \ldots\}$, then that set is called a *universal hash family*.

Often use H to refer to both set of functions and uniform distribution over it.
Universal Hash Families

Definition

If \(H \) is universal and is a uniform distribution over a set of functions \(\{ h_1, h_2, \ldots \} \), then that set is called a *universal hash family*.

Often use \(H \) to refer to both set of functions and uniform distribution over it.

Notation:
- \(U = \{0, 1\}^u \) (so \(|U| = 2^u \))
- \(M = 2^b \), so an index to \(A \) is an element of \(\{0, 1\}^b \)
Universal Hash Families

Definition

If \(H \) is universal and is a uniform distribution over a set of functions \(\{h_1, h_2, \ldots \} \), then that set is called a *universal hash family*.

Often use \(H \) to refer to both set of functions and uniform distribution over it.

Notation:
- \(U = \{0, 1\}^u \) (so \(|U| = 2^u\))
- \(M = 2^b \), so an index to \(A \) is an element of \(\{0, 1\}^b \)

Construction: \(H = \{0, 1\}^{b \times u} \), i.e., \(H \) is all \(b \times u \) binary matrices
 - Each \(h \in H \) is a (linear) function from \(U \) to \([M]\):
 \[
 h(x) = hx \in \{0, 1\}^b \text{ (all operations mod 2)}
 \]
Theorem

H is a universal hash family: $\Pr_{h \sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0, 1\}^u$.

Proof.

Matrix multiplication:

$h(x) = hx = \sum_{i: x_i = 1} h_i$ (where h_i is the i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of h except for h_i. Let $h' = h$ with h_i all 0's.

If $h(y) = h(x)$, then h_i must equal $h(x) - h'(y)$.

Happens with probability exactly $1/M$.

Michael Dinitz
Lecture 10: Universal and Perfect Hashing
September 30, 2021 10 / 16
Universality

Theorem

\[H \text{ is a universal hash family: } \Pr_{h \sim H}[h(x) = h(y)] = 1/M \text{ for all } x \neq y \in \{0, 1\}^u. \]

Proof.

Matrix multiplication: \(h(x) = hx = \sum_{i:x_i=1} h^i \) (where \(h^i \) is \(i \)'th column of \(h \)).
Universality

Theorem

H is a universal hash family: \(\Pr_{h \sim H}[h(x) = h(y)] = 1/M \) for all \(x \neq y \in \{0, 1\}^u \).

Proof.

Matrix multiplication: \(h(x) = hx = \sum_{i:x_i=1} h^i \) (where \(h^i \) is i’th column of \(h \)).

Since \(x \neq y \), there is \(i \) s.t. \(x_i \neq y_i \). WLOG, \(x_i = 0 \) and \(y_i = 1 \).
Universality

Theorem

\(H \) is a universal hash family: \(\Pr_{h \sim H}[h(x) = h(y)] = 1/M \) for all \(x \neq y \in \{0, 1\}^u \).

Proof.

Matrix multiplication: \(h(x) = hx = \sum_{i : x_i = 1} h_i \) (where \(h_i \) is \(i \)'th column of \(h \)).

Since \(x \neq y \), there is \(i \) s.t. \(x_i \neq y_i \). WLOG, \(x_i = 0 \) and \(y_i = 1 \).

Draw all entries of \(h \) except for \(h^i \). Let \(h' = h \) with \(h^i \) all 0's
- \(h(x) = h'(x) \) already fixed.
Universality

Theorem

H is a universal hash family: $\Pr_{h \sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0, 1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i : x_i = 1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of h except for h^i. Let $h' = h$ with h^i all 0's.

- $h(x) = h'(x)$ already fixed.
- If $h(y) = h(x)$, then h^i must equal $h(x) - h'(y)$
Theorem

H is a universal hash family: $\Pr_{h \sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0, 1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of h except for h^i. Let $h' = h$ with h^i all 0's

- $h(x) = h'(x)$ already fixed.
- If $h(y) = h(x)$, then h^i must equal $h(x) - h'(y)$
- Happens with probability exactly $1/2^b = 1/M$
Perfect Hashing

Suppose you know S, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary
Perfect Hashing

Suppose you know S, never changes.
 - Build table, then do lookups. Like a real dictionary!
 - Care more about time to do lookup than time to build dictionary

Obvious approaches:
 - Sorted array: lookups $O(\log N)$
 - Balanced search tree: $O(\log N)$
Perfect Hashing

Suppose you know S, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- Sorted array: lookups $O(\log N)$
- Balanced search tree: $O(\log N)$

Can we do better with hashing?
Perfect Hashing

Suppose you know S, never changes.
- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:
- Sorted array: lookups $O(\log N)$
- Balanced search tree: $O(\log N)$

Can we do better with hashing? Yes, through universal hashing!
Method 1

Use table of size $M = N^2$.

Theorem

Let H be universal with $M = N^2$. Then $\Pr[h \sim H] \left[\text{no collisions in } S \right] \geq \frac{1}{2}$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

$\Pr[h \sim H] \left[h(x) = h(y) \right] \leq \frac{1}{M} = \frac{1}{N^2}$ by universality.

$\Pr[h \sim H] \left[\exists \text{collision in } S \right] \leq \frac{1}{M} = \frac{1}{N^2} \leq \frac{1}{N(N-1)} \leq \frac{1}{2}$.

So keep sampling $h \sim H$ until get one with no collisions!
Method 1

Use table of size $M = N^2$.

Theorem

Let H be universal with $M = N^2$. Then $\Pr_{h \sim H}[\text{no collisions in } S] \geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$. So keep sampling $h \sim H$ until get one with no collisions!
Method 1

Use table of size $M = N^2$.

Theorem

Let H be universal with $M = N^2$. Then $\Pr_{h \sim H}[\text{no collisions in } S] \geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M = 1/N^2$ by universality.
Method 1

Use table of size \(M = N^2 \).

Theorem

Let \(H \) be universal with \(M = N^2 \). Then \(\Pr_{h \sim H}[\text{no collisions in } S] \geq 1/2 \).

Proof.

Fix \(x, y \in S \) with \(x \neq y \).

\[
\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M = 1/N^2 \text{ by universality.}
\]

\[
\Pr_{h \sim H}[\exists \text{ collision in } S] \leq \sum_{x, y \in S \atop x \neq y} \Pr_{h \sim H}[h(x) = h(y)] \leq \sum_{x, y \in S \atop x \neq y} \frac{1}{N^2}
\]

\[
= \left(\begin{array}{c} N \\ 2 \end{array} \right) \frac{1}{N^2} = \frac{N(N-1)}{2} \frac{1}{N^2} \leq \frac{1}{2}
\]
Method 1

Use table of size $M = N^2$.

Theorem

Let H be universal with $M = N^2$. Then $\Pr_{h \sim H}[\text{no collisions in } S] \geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M = 1/N^2$ by universality.

$\Pr_{h \sim H}[\exists \text{ collision in } S] \leq \sum_{x, y \in S, x \neq y} \Pr_{h \sim H}[h(x) = h(y)] \leq \sum_{x, y \in S, x \neq y} \frac{1}{N^2}$

$= \binom{N}{2} \frac{1}{N^2} = \frac{N(N - 1)}{2} \frac{1}{N^2} \leq \frac{1}{2}$

So keep sampling $h \sim H$ until get one with no collisions!
Method 2

\(M = N^2 \) is pretty big!

- Only storing \(N \) things, and know them ahead of time
- Want space \(O(N) \)
- Open question for a long time!
Method 2

\(M = N^2 \) is pretty big!

- Only storing \(N \) things, and know them ahead of time
- Want space \(O(N) \)
- Open question for a long time!

Starting approach: set \(M = N \), use a universal hash family \(H \). Draw \(h \sim H \).

- Will have collisions. Need to do something other than chaining.
Method 2

\(M = N^2 \) is pretty big!

- Only storing \(N \) things, and know them ahead of time
- Want space \(O(N) \)
- Open question for a long time!

Starting approach: set \(M = N \), use a universal hash family \(H \). Draw \(h \sim H \).

- Will have collisions. Need to do something other than chaining.

Let \(S_i = \{ x \in S : h(x) = i \} \) and let \(n_i = |S_i| \).
Method 2

\(M = N^2 \) is pretty big!
- Only storing \(N \) things, and know them ahead of time
- Want space \(O(N) \)
- Open question for a long time!

Starting approach: set \(M = N \), use a universal hash family \(H \). Draw \(h \sim H \).
- Will have collisions. Need to do something other than chaining.

Let \(S_i = \{x \in S : h(x) = i\} \) and let \(n_i = |S_i| \)
- Use another hash table for \(S_i \)!
- Use Method 1: \(O(n_i^2) \)-size perfect hashing of \(S_i \).
 - Let \(h_i : U \to [n_i^2] \) be hash function for \(S_i \), and \(A_i \) be table (pointer from \(A[i] \))
Method 2

\(M = N^2\) is pretty big!

- Only storing \(N\) things, and know them ahead of time
- Want space \(O(N)\)
- Open question for a long time!

Starting approach: set \(M = N\), use a universal hash family \(H\). Draw \(h \sim H\).

- Will have collisions. Need to do something other than chaining.

Let \(S_i = \{x \in S : h(x) = i\}\) and let \(n_i = |S_i|\)

- Use another hash table for \(S_i\)!
- Use Method 1: \(O(n_i^2)\)-size perfect hashing of \(S_i\).
 - Let \(h_i : U \rightarrow [n_i^2]\) be hash function for \(S_i\), and \(A_i\) be table (pointer from \(A[i]\))

Lookup\((x)\): Look in linked list at \(A_{h(x)}[h_{h(x)}(x)]\)
Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

⇒ Lookup time $O(1)$
Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

\[\text{Lookup time } \mathcal{O}(1) \]

Size: \(\mathcal{O}(N + \sum_{i=1}^{N} n_i^2) \)
Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

\[\text{Lookup time } O(1) \]

Size: \(O(N + \sum_{i=1}^{N} n_i^2) \leq O(N) \)

Theorem

Let \(H \) be universal onto a table of size \(N \). Then

\[\Pr_{h \sim H} \left[\sum_{i=1}^{N} n_i^2 > 4N \right] < 1/2. \]

So like with method 1: keep drawing \(h \sim H \) until \(\sum_{i=1}^{N} n_i^2 \leq 4N \)
Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

\[\text{Lookup time } O(1) \]

Size: \(O(N + \sum_{i=1}^{N} n_i^2) \)

Theorem

Let \(H \) be universal onto a table of size \(N \). Then

\[
\Pr_{h \sim H} \left[\sum_{i=1}^{N} n_i^2 > 4N \right] < 1/2.
\]

So like with method 1: keep drawing \(h \sim H \) until \(\sum_{i=1}^{N} n_i^2 \leq 4N \)

Prove that \(E \left[\sum_{i=1}^{N} n_i^2 \right] \leq 2N \).

Implies theorem by Markov’s inequality

\[
\Pr[X > 2E[X]] \leq 1/2 \text{ for nonnegative random variables } X.
\]
Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of ordered pairs that collide, including self-collisions.

- Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs:
 $(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)$
Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of *ordered* pairs that collide, including self-collisions

- Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs:
 - $(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)$

Let $C_{xy} = \begin{cases}
1 & \text{if } h(x) = h(y) \\
0 & \text{otherwise}
\end{cases}$
Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of ordered pairs that collide, including self-collisions

- Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs:
 (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)

Let $C_{xy} = \begin{cases}
1 & \text{if } h(x) = h(y) \\
0 & \text{otherwise}
\end{cases}$

\[
E \left[\sum_{i=1}^{N} n_i^2 \right] = E \left[\sum_{x \in S} \sum_{y \in S} C_{xy} \right] \\
= N + \sum_{x \in S} \sum_{y \in S: y \neq x} E[C_{xy}] \\
\leq N + \frac{N(N-1)}{M} \\
< 2N
\]

(linearity of expectations)

(definition of universal)

(since $M = N$)