Lecture 10: Universal and Perfect Hashing

Michael Dinitz

September 30, 2021
601.433/633 Introduction to Algorithms

Introduction

Another approach to dictionaries (insert, lookup, delete): hashing

- Can improve operations to $\mathbf{O}(\mathbf{1})$, but with many caveats!

Should have seen some discussion of hashing in data structures. Also in CLRS.

- Separate chaining vs. open addressing

Today: discussion of caveats, more advanced versions of hashing (universal and perfect)

Hashing Basics

- Keys from universe \mathbf{U} (think very large)
- Set $\mathbf{S} \subseteq \mathbf{U}$ of keys we actually care about (think relatively small). $|\mathbf{S}|=\mathbf{N}$.
- Hash table A (array) of size M.
- Hash function $\mathbf{h}: \mathbf{U} \rightarrow[\mathbf{M}]$
- $[M]=\{1,2, \ldots, M\}$
- Idea: store \mathbf{x} in $\mathbf{A}[\mathbf{h}(\mathbf{x})$]

Hashing Basics

- Keys from universe \mathbf{U} (think very large)
- Set $\mathbf{S} \subseteq \mathbf{U}$ of keys we actually care about (think relatively small). $|\mathbf{S}|=\mathbf{N}$.
- Hash table A (array) of size M.
- Hash function $\mathbf{h}: \mathbf{U} \rightarrow[\mathbf{M}]$
- $[M]=\{1,2, \ldots, M\}$
- Idea: store \mathbf{x} in $\mathbf{A}[\mathbf{h}(\mathbf{x})$]

One more component: collision resolution

- Today: separate chaining
- $\mathbf{A}[\mathbf{i}]$ is a linked list containing all \mathbf{x} inserted where $\mathbf{h (x)}=\mathbf{i}$.

Dictionary Operations

Lookup(\mathbf{x} : Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})$] until we find \mathbf{x} (or walk to the end of the list) Insert (\mathbf{x}) : Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})$].

Delete (\mathbf{x}) : Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x}. Remove it from the list.

Dictionary Operations

Lookup(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} (or walk to the end of the list) Insert (\mathbf{x}) : Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathrm{x})]$.

Delete (\mathbf{x}) : Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x}. Remove it from the list.
Question: What should hash function be?

Dictionary Operations

Lookup(\mathbf{x} : Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})$] until we find \mathbf{x} (or walk to the end of the list) Insert (\mathbf{x}) : Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})$].

Delete (\mathbf{x}) : Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x}. Remove it from the list.
Question: What should hash function be?
Properties we want:

Dictionary Operations

Lookup(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} (or walk to the end of the list) Insert(\mathbf{x}): Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})$].

Delete (\mathbf{x}) : Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x}. Remove it from the list.
Question: What should hash function be?
Properties we want:

- Few collisions. Time of lookup, delete for \mathbf{x} is \mathbf{O} (length of list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$).

Dictionary Operations

Lookup(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} (or walk to the end of the list) Insert(\mathbf{x}): Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})$].

Delete(\mathbf{x} : Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x}. Remove it from the list.
Question: What should hash function be?
Properties we want:

- Few collisions. Time of lookup, delete for \mathbf{x} is \mathbf{O} (length of list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$).
- Small M. Ideally, $\mathbf{M}=\mathbf{O}(\mathbf{N})$.

Dictionary Operations

Lookup(\mathbf{x}): Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x} (or walk to the end of the list) Insert(\mathbf{x}): Add \mathbf{x} to the beginning of the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})$].

Delete(\mathbf{x} : Walk down the list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$ until we find \mathbf{x}. Remove it from the list.
Question: What should hash function be?
Properties we want:

- Few collisions. Time of lookup, delete for \mathbf{x} is \mathbf{O} (length of list at $\mathbf{A}[\mathbf{h}(\mathbf{x})]$).
- Small M. Ideally, $\mathbf{M}=\mathbf{O}(\mathbf{N})$.
- \mathbf{h} fast to compute.

Bad News

Theorem

For any hash function \mathbf{h}, if $|\mathbf{U}| \geq(\mathbf{N}-\mathbf{1}) \mathbf{M}+\mathbf{1}$, then there exists a set \mathbf{S} of \mathbf{N} elements that all hash to the same location.

Bad News

Theorem

For any hash function \mathbf{h}, if $|\mathbf{U}| \geq(\mathbf{N}-\mathbf{1}) \mathbf{M}+\mathbf{1}$, then there exists a set \mathbf{S} of \mathbf{N} elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

Bad News

Theorem

For any hash function \mathbf{h}, if $|\mathbf{U}| \geq(\mathbf{N}-\mathbf{1}) \mathbf{M}+\mathbf{1}$, then there exists a set \mathbf{S} of \mathbf{N} elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.
So worst case behavior always bad! How can we get around this?

Bad News

Theorem

For any hash function \mathbf{h}, if $|\mathbf{U}| \geq(\mathbf{N}-\mathbf{1}) \mathbf{M}+\mathbf{1}$, then there exists a set \mathbf{S} of \mathbf{N} elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your \mathbf{h} when deciding on elements.

Bad News

Theorem

For any hash function \mathbf{h}, if $|\mathbf{U}| \geq(\mathbf{N}-\mathbf{1}) \mathbf{M}+\mathbf{1}$, then there exists a set \mathbf{S} of \mathbf{N} elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your \mathbf{h} when deciding on elements.
- Option 2: Randomness! Random function h: U \rightarrow [M]
- For each $\mathbf{x} \in \mathbf{U}$, choose $\mathbf{y} \in[\mathbf{M}]$ uniformly at random and set $\mathbf{h}(\mathbf{x})=\mathbf{y}$.
- Hopefully good behavior in expectation.

Bad News

Theorem

For any hash function \mathbf{h}, if $|\mathbf{U}| \geq(\mathbf{N}-\mathbf{1}) \mathbf{M}+\mathbf{1}$, then there exists a set \mathbf{S} of \mathbf{N} elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your \mathbf{h} when deciding on elements.
- Option 2: Randomness! Random function $\mathbf{h}: \mathbf{U} \rightarrow[\mathbf{M}]$
- For each $\mathbf{x} \in \mathbf{U}$, choose $\mathbf{y} \in[\mathbf{M}]$ uniformly at random and set $\mathbf{h}(\mathbf{x})=\mathbf{y}$.
- Hopefully good behavior in expectation.
- Problem: How can we store/remember/create \mathbf{h} ?

Universal Hashing

Definition

A probability distribution \mathbf{H} over hash functions $\{\mathbf{h}: \mathbf{U} \rightarrow[\mathbf{M}]\}$ is universal if

$$
\underset{h \sim H}{\operatorname{Pr}}[h(x)=h(y)] \leq 1 / M
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbf{U}$ with $\mathbf{x} \neq \mathbf{y}$.

Universal Hashing

Definition

A probability distribution \mathbf{H} over hash functions $\{\mathbf{h}: \mathbf{U} \rightarrow[\mathbf{M}]\}$ is universal if

$$
\operatorname{Pr}_{h \sim H}[h(x)=h(y)] \leq 1 / M
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbf{U}$ with $\mathbf{x} \neq \mathbf{y}$.
Clearly satisfied by $\mathbf{H}=$ uniform distribution over all hash functions

Universal Hashing

Definition

A probability distribution \mathbf{H} over hash functions $\{\mathbf{h}: \mathbf{U} \rightarrow[\mathbf{M}]\}$ is universal if

$$
\operatorname{Pr}_{h \sim H}[h(x)=h(y)] \leq 1 / M
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbf{U}$ with $\mathbf{x} \neq \mathbf{y}$.
Clearly satisfied by $\mathbf{H}=$ uniform distribution over all hash functions

Theorem

If \mathbf{H} is universal, then for every set $\mathbf{S} \subseteq \mathbf{U}$ with $|\mathbf{S}|=\mathbf{N}$ and for every $\mathbf{x} \in \mathbf{U}$, the expected number of collisions (when we draw \mathbf{h} from \mathbf{H}) between \mathbf{x} and elements of \mathbf{S} is at most \mathbf{N} / \mathbf{M}.

Universal Hashing

Definition

A probability distribution \mathbf{H} over hash functions $\{\mathbf{h}: \mathbf{U} \rightarrow[\mathbf{M}]\}$ is universal if

$$
\operatorname{Pr}_{h \sim H}[h(x)=h(y)] \leq 1 / M
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbf{U}$ with $\mathbf{x} \neq \mathbf{y}$.
Clearly satisfied by $\mathbf{H}=$ uniform distribution over all hash functions

Theorem

If \mathbf{H} is universal, then for every set $\mathbf{S} \subseteq \mathbf{U}$ with $|\mathbf{S}|=\mathbf{N}$ and for every $\mathbf{x} \in \mathbf{U}$, the expected number of collisions (when we draw \mathbf{h} from \mathbf{H}) between \mathbf{x} and elements of \mathbf{S} is at most \mathbf{N} / \mathbf{M}.

So Lookup(x) and Delete(\mathbf{x}) have expected time $\mathbf{O}(\mathbf{N} / \mathbf{M})$.
\Longrightarrow If $M=\boldsymbol{\Omega}(\mathbf{N})$, operations in $\mathbf{O}(\mathbf{1})$ time!

Main Proof

Theorem

If \mathbf{H} is universal, then for every set $\mathbf{S} \subseteq \mathbf{U}$ with $|\mathbf{S}|=\mathbf{N}$ and for every $\mathbf{x} \in \mathbf{U}$, the expected number of collisions (when we draw \mathbf{h} from \mathbf{H}) between \mathbf{x} and elements of \mathbf{S} is at most \mathbf{N} / \mathbf{M}.

Proof.

Let $\mathbf{C}_{\mathrm{xy}}= \begin{cases}\mathbf{1} & \text { if } \mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y}) \\ \mathbf{0} & \text { otherwise }\end{cases}$

$$
\Longrightarrow E\left[C_{x y}\right]=\operatorname{Pr}_{h \sim H}[h(x)=h(y)] \leq 1 / M
$$

Main Proof

Theorem

If \mathbf{H} is universal, then for every set $\mathbf{S} \subseteq \mathbf{U}$ with $|\mathbf{S}|=\mathbf{N}$ and for every $\mathbf{x} \in \mathbf{U}$, the expected number of collisions (when we draw \mathbf{h} from \mathbf{H}) between \mathbf{x} and elements of \mathbf{S} is at most \mathbf{N} / \mathbf{M}.

Proof.

Let $\mathbf{C}_{\mathrm{xy}}= \begin{cases}\mathbf{1} & \text { if } \mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y}) \\ \mathbf{0} & \text { otherwise }\end{cases}$

$$
\Longrightarrow E\left[C_{x y}\right]=\operatorname{Pr}_{h \sim H}[h(x)=h(y)] \leq 1 / M
$$

Number of collisions between \mathbf{x} and \mathbf{S} is exactly $\sum_{\mathbf{y} \in \mathrm{S}} \mathbf{C}_{\mathbf{x y}}$

$$
\Longrightarrow E\left[\sum_{y \in S} C_{x y}\right]=\sum_{y \in S} E\left[C_{x y}\right] \leq \sum_{y \in S} \frac{1}{M}=N / M
$$

Main Corollary

Corollary

If \mathbf{H} is universal, then for any sequence of \mathbf{L} insert, lookup, and delete operations in which there are at most $\mathbf{O}(\mathrm{M})$ elements in the system at any time, the expected total cost of the whole sequence is only $\mathbf{O}(\mathbf{L})$ (assuming \mathbf{h} takes constant time to compute).

Main Corollary

Corollary

If \mathbf{H} is universal, then for any sequence of \mathbf{L} insert, lookup, and delete operations in which there are at most $\mathbf{O}(\mathbf{M})$ elements in the system at any time, the expected total cost of the whole sequence is only $\mathbf{O}(\mathbf{L})$ (assuming \mathbf{h} takes constant time to compute).

Proof.

By theorem, each operation $\mathbf{O (1)}$ in expectation. Total time is sum: linearity of expectations.

Main Corollary

Corollary
 If \mathbf{H} is universal, then for any sequence of \mathbf{L} insert, lookup, and delete operations in which there are at most $\mathbf{O}(\mathbf{M})$ elements in the system at any time, the expected total cost of the whole sequence is only $\mathbf{O}(\mathbf{L})$ (assuming \mathbf{h} takes constant time to compute).

Proof.

By theorem, each operation $\mathbf{O (1)}$ in expectation. Total time is sum: linearity of expectations.

So universal distributions are great. Can we construct them?

Universal Hash Families

Definition

If \mathbf{H} is universal and is a uniform distribution over a set of functions $\left\{\mathbf{h}_{\mathbf{1}}, \mathbf{h}_{2}, \ldots\right\}$, then that set is called a universal hash family.

Often use \mathbf{H} to refer to both set of functions and uniform distribution over it.

Universal Hash Families

Definition

If \mathbf{H} is universal and is a uniform distribution over a set of functions $\left\{\mathbf{h}_{\mathbf{1}}, \mathbf{h}_{2}, \ldots\right\}$, then that set is called a universal hash family.

Often use \mathbf{H} to refer to both set of functions and uniform distribution over it.
Notation:

- $\mathbf{U}=\{\mathbf{0}, \mathbf{1}\}^{\mathbf{u}}$ (so $|\mathbf{U}|=\mathbf{2}^{\mathbf{u}}$)
- $\mathbf{M}=\mathbf{2}^{\mathbf{b}}$, so an index to \mathbf{A} is an element of $\{\mathbf{0}, \mathbf{1}\}^{\mathbf{b}}$

Universal Hash Families

Definition

If \mathbf{H} is universal and is a uniform distribution over a set of functions $\left\{\mathbf{h}_{\mathbf{1}}, \mathbf{h}_{\mathbf{2}}, \ldots\right\}$, then that set is called a universal hash family.

Often use \mathbf{H} to refer to both set of functions and uniform distribution over it.
Notation:

- $\mathbf{U}=\{\mathbf{0}, \mathbf{1}\}^{\mathbf{u}}$ (so $|\mathbf{U}|=\mathbf{2}^{\mathbf{u}}$)
- $\mathbf{M}=\mathbf{2}^{\mathbf{b}}$, so an index to \mathbf{A} is an element of $\{\mathbf{0}, \mathbf{1}\}^{\mathbf{b}}$

Construction: $\mathbf{H}=\{\mathbf{0}, \mathbf{1}\}^{\mathbf{b} \times \mathbf{u}}$, i.e., \mathbf{H} is all $\mathbf{b} \times \mathbf{u}$ binary matrices

- Each $\mathbf{h} \in \mathbf{H}$ is a (linear) function from \mathbf{U} to [$\mathbf{M}]$: $\mathbf{h}(\mathbf{x})=\mathbf{h} \mathbf{x} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{b}}$ (all operations mod 2)

c
h
1 0 0 0 0 1 1 1 1 1 1 0

0

1

0\end{array}\right|=\)| 1 |
| :--- |
| 1 |
| 0 |

Universality

Theorem

H is a universal hash family: $\operatorname{Pr}_{\mathbf{h \sim H}}[\mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y})]=\mathbf{1} / \mathrm{M}$ for all $\mathbf{x} \neq \mathbf{y} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{u}}$.

Universality

Theorem

\mathbf{H} is a universal hash family: $\mathbf{P r}_{\mathbf{h} \sim \mathbf{H}}[\mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y})]=\mathbf{1} / \mathbf{M}$ for all $\mathbf{x} \neq \mathbf{y} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{u}}$.

Proof.

Matrix multiplication: $\mathbf{h}(\mathbf{x})=\mathbf{h x}=\sum_{\mathrm{i}: \mathrm{x}_{\mathrm{i}}=1} \mathbf{h}^{\mathbf{i}}$ (where $\mathbf{h}^{\mathbf{i}}$ is \mathbf{i}^{\prime} th column of \mathbf{h}).

Universality

Theorem

H is a universal hash family: $\operatorname{Pr}_{\mathbf{h \sim H}}[\mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y})]=\mathbf{1} / \mathrm{M}$ for all $\mathbf{x} \neq \mathbf{y} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{u}}$.

Proof.

Matrix multiplication: $\mathbf{h}(\mathbf{x})=\mathbf{h x}=\sum_{\mathrm{i}: \mathrm{x}_{\mathrm{i}}=1} \mathbf{h}^{\mathbf{i}}$ (where $\mathbf{h}^{\mathbf{i}}$ is \mathbf{i}^{\prime} th column of \mathbf{h}).
Since $\mathbf{x} \neq \mathbf{y}$, there is \mathbf{i} s.t. $\mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{i}}$. WLOG, $\mathbf{x}_{\mathbf{i}}=\mathbf{0}$ and $\mathbf{y}_{\mathbf{i}}=\mathbf{1}$.

Universality

Theorem

H is a universal hash family: $\operatorname{Pr}_{\mathbf{h \sim H}}[\mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y})]=\mathbf{1} / \mathrm{M}$ for all $\mathbf{x} \neq \mathbf{y} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{u}}$.

Proof.

Matrix multiplication: $\mathbf{h}(\mathbf{x})=\mathbf{h x}=\sum_{\mathbf{i}: \mathrm{x}_{\mathrm{i}}=\mathbf{1}} \mathbf{h}^{\mathbf{i}}$ (where $\mathbf{h}^{\mathbf{i}}$ is \mathbf{i}^{\prime} th column of \mathbf{h}).
Since $\mathbf{x} \neq \mathbf{y}$, there is \mathbf{i} s.t. $\mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{i}}$. WLOG, $\mathbf{x}_{\mathbf{i}}=\mathbf{0}$ and $\mathbf{y}_{\mathbf{i}}=\mathbf{1}$.
Draw all entries of \mathbf{h} except for $\mathbf{h}^{\mathbf{i}}$. Let $\mathbf{h}^{\prime}=\mathbf{h}$ with $\mathbf{h}^{\mathbf{i}}$ all $\mathbf{0}$'s

- $\mathbf{h}(\mathbf{x})=\mathbf{h}^{\prime}(\mathbf{x})$ already fixed.

Universality

Theorem

\mathbf{H} is a universal hash family: $\operatorname{Pr}_{\mathbf{h \sim H}}[\mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y})]=\mathbf{1} / \mathrm{M}$ for all $\mathbf{x} \neq \mathbf{y} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{u}}$.

Proof.

Matrix multiplication: $\mathbf{h}(\mathbf{x})=\mathbf{h x}=\sum_{\mathbf{i}: \mathrm{x}_{\mathrm{i}}=\mathbf{1}} \mathbf{h}^{\mathbf{i}}$ (where $\mathbf{h}^{\mathbf{i}}$ is \mathbf{i}^{\prime} th column of \mathbf{h}).
Since $\mathbf{x} \neq \mathbf{y}$, there is \mathbf{i} s.t. $\mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{i}}$. WLOG, $\mathbf{x}_{\mathbf{i}}=\mathbf{0}$ and $\mathbf{y}_{\mathbf{i}}=\mathbf{1}$.
Draw all entries of \mathbf{h} except for $\mathbf{h}^{\mathbf{i}}$. Let $\mathbf{h}^{\prime}=\mathbf{h}$ with $\mathbf{h}^{\mathbf{i}}$ all $\mathbf{0}$'s

- $\mathbf{h}(\mathbf{x})=\mathbf{h}^{\prime}(\mathbf{x})$ already fixed.
- If $\mathbf{h}(\mathbf{y})=\mathbf{h}(\mathbf{x})$, then $\mathbf{h}^{\mathbf{i}}$ must equal $\mathbf{h}(\mathbf{x})-\mathbf{h}^{\prime}(\mathbf{y})$

Universality

Theorem

H is a universal hash family: $\operatorname{Pr}_{\mathbf{h \sim H}}[\mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y})]=\mathbf{1} / \mathrm{M}$ for all $\mathbf{x} \neq \mathbf{y} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{u}}$.

Proof.

Matrix multiplication: $\mathbf{h}(\mathbf{x})=\mathbf{h x}=\sum_{\mathbf{i}: \mathrm{x}_{\mathrm{i}}=\mathbf{1}} \mathbf{h}^{\mathbf{i}}$ (where $\mathbf{h}^{\mathbf{i}}$ is \mathbf{i}^{\prime} th column of \mathbf{h}).
Since $\mathbf{x} \neq \mathbf{y}$, there is \mathbf{i} s.t. $\mathbf{x}_{\mathbf{i}} \neq \mathbf{y}_{\mathbf{i}}$. WLOG, $\mathbf{x}_{\mathbf{i}}=\mathbf{0}$ and $\mathbf{y}_{\mathbf{i}}=\mathbf{1}$.
Draw all entries of \mathbf{h} except for $\mathbf{h}^{\mathbf{i}}$. Let $\mathbf{h}^{\prime}=\mathbf{h}$ with $\mathbf{h}^{\mathbf{i}}$ all $\mathbf{0}$'s

- $\mathbf{h}(\mathbf{x})=\mathbf{h}^{\prime}(\mathbf{x})$ already fixed.
- If $\mathbf{h}(\mathbf{y})=\mathbf{h}(\mathbf{x})$, then $\mathbf{h}^{\mathbf{i}}$ must equal $\mathbf{h}(\mathbf{x})-\mathbf{h}^{\prime}(\mathbf{y})$
- Happens with probability exactly $1 / 2^{\text {b }}=1 / \mathrm{M}$

Perfect Hashing

Suppose you know S, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Perfect Hashing

Suppose you know S, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- Sorted array: lookups $\mathbf{O}(\log N)$
- Balanced search tree: $\mathbf{O}(\log \mathbf{N})$

Perfect Hashing

Suppose you know S, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- Sorted array: lookups $\mathbf{O}(\log N)$
- Balanced search tree: $\mathbf{O}(\log N)$

Can we do better with hashing?

Perfect Hashing

Suppose you know S, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- Sorted array: lookups $\mathbf{O}(\log N)$
- Balanced search tree: $\mathbf{O}(\log \mathbf{N})$

Can we do better with hashing? Yes, through universal hashing!

Method 1

Use table of size $\mathbf{M}=\mathbf{N}^{\mathbf{2}}$.
Method 1Use table of size $\mathbf{M}=\mathbf{N}^{\mathbf{2}}$.
TheoremLet \mathbf{H} be universal with $\mathbf{M}=\mathbf{N}^{\mathbf{2}}$. Then $\mathbf{P r}_{\mathbf{h} \sim \mathbf{H}}[$ no collisions in $\mathbf{S}] \geq \mathbf{1} / \mathbf{2}$.
Proof.
Fix $\mathbf{x}, \mathbf{y} \in \mathbf{S}$ with $\mathbf{x} \neq \mathbf{y}$.
Method 1
Use table of size $\mathbf{M}=\mathbf{N}^{\mathbf{2}}$.
Theorem
Let \mathbf{H} be universal with $\mathbf{M}=\mathbf{N}^{\mathbf{2}}$. Then $\mathbf{P r}_{\mathbf{h} \sim \mathbf{H}}[$ no collisions in $\mathbf{S}] \geq \mathbf{1} / \mathbf{2}$.
Proof.
Proof.
Fix }\mathbf{x,y}\mathbf{y}\boldsymbol{S}\mathrm{ with }\mathbf{x}\not=\mathbf{y}
Fix }\mathbf{x,y}\mathbf{y}\boldsymbol{S}\mathrm{ with }\mathbf{x}\not=\mathbf{y}
Prh~H}[h(x)=h(y)]\leq1/M=1/N N by universality.
Prh~H}[h(x)=h(y)]\leq1/M=1/N N by universality.

Method 1

Use table of size $\mathbf{M}=\mathbf{N}^{\mathbf{2}}$.

Theorem

Let \mathbf{H} be universal with $\mathbf{M}=\mathbf{N}^{\mathbf{2}}$. Then $\mathbf{P r}_{\mathbf{h} \sim \mathbf{H}}[$ no collisions in $\mathbf{S}] \geq \mathbf{1} / \mathbf{2}$.

Proof.

Fix $\mathbf{x}, \mathbf{y} \in \mathbf{S}$ with $\mathbf{x} \neq \mathbf{y}$.
$\operatorname{Pr}_{\mathrm{h} \sim \mathrm{H}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})] \leq 1 / \mathrm{M}=1 / \mathrm{N}^{2}$ by universality.

$$
\begin{aligned}
\operatorname{Pr}_{h \sim H}[\exists \text { collision in } S] & \leq \sum_{\substack{x, y \in S \\
x \neq y}} \operatorname{Pr}_{h \sim H}[h(x)=h(y)] \leq \sum_{\substack{x, y \in S \\
x \neq y}} \frac{1}{N^{2}} \\
& =\binom{N}{2} \frac{1}{N^{2}}=\frac{N(N-1)}{2} \frac{1}{N^{2}} \leq \frac{1}{2}
\end{aligned}
$$

Method 1

Use table of size $\mathbf{M}=\mathbf{N}^{\mathbf{2}}$.

Theorem

Let \mathbf{H} be universal with $\mathbf{M}=\mathbf{N}^{\mathbf{2}}$. Then $\mathbf{P r}_{\mathbf{h} \sim \mathbf{H}}[$ no collisions in $\mathbf{S}] \geq \mathbf{1} / \mathbf{2}$.

Proof.

Fix $\mathbf{x}, \mathbf{y} \in \mathbf{S}$ with $\mathbf{x} \neq \mathbf{y}$.
$\operatorname{Pr}_{\mathrm{h} \sim \mathrm{H}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})] \leq 1 / \mathrm{M}=1 / \mathrm{N}^{2}$ by universality.

$$
\begin{aligned}
\operatorname{Pr}_{h \sim H}[\exists \text { collision in } S] & \leq \sum_{\substack{x, y \in S \\
x \neq y}} \operatorname{Pr}_{h \sim H}[h(x)=h(y)] \leq \sum_{\substack{x, y \in S \\
x \neq y}} \frac{1}{N^{2}} \\
& =\binom{N}{2} \frac{1}{N^{2}}=\frac{N(N-1)}{2} \frac{1}{N^{2}} \leq \frac{1}{2}
\end{aligned}
$$

So keep sampling $\mathbf{h} \sim \mathbf{H}$ until get one with no collisions!

Method 2

$\mathbf{M}=\mathbf{N}^{\mathbf{2}}$ is pretty big!

- Only storing \mathbf{N} things, and know them ahead of time
- Want space O(N)
- Open question for a long time!

Method 2

$\mathbf{M}=\mathbf{N}^{\mathbf{2}}$ is pretty big!

- Only storing \mathbf{N} things, and know them ahead of time
- Want space O(N)
- Open question for a long time!

Starting approach: set $\mathbf{M}=\mathbf{N}$, use a universal hash family \mathbf{H}. Draw $\mathbf{h} \sim \mathbf{H}$.

- Will have collisions. Need to do something other than chaining.

Method 2

$\mathbf{M}=\mathbf{N}^{\mathbf{2}}$ is pretty big!

- Only storing \mathbf{N} things, and know them ahead of time
- Want space O(N)
- Open question for a long time!

Starting approach: set $\mathbf{M}=\mathbf{N}$, use a universal hash family \mathbf{H}. Draw $\mathbf{h} \sim \mathbf{H}$.

- Will have collisions. Need to do something other than chaining.

Let $\mathbf{S}_{\mathbf{i}}=\{\mathbf{x} \in \mathbf{S}: \mathbf{h}(\mathbf{x})=\mathbf{i}\}$ and let $\mathbf{n}_{\mathbf{i}}=\left|\mathbf{S}_{\mathbf{i}}\right|$

Method 2

$\mathbf{M}=\mathbf{N}^{\mathbf{2}}$ is pretty big!

- Only storing \mathbf{N} things, and know them ahead of time
- Want space $\mathbf{O}(\mathbf{N})$
- Open question for a long time!

Starting approach: set $\mathbf{M}=\mathbf{N}$, use a universal hash family \mathbf{H}. Draw $\mathbf{h} \sim \mathbf{H}$.

- Will have collisions. Need to do something other than chaining.

Let $\mathbf{S}_{\mathbf{i}}=\{\mathbf{x} \in \mathbf{S}: \mathbf{h}(\mathbf{x})=\mathbf{i}\}$ and let $\mathbf{n}_{\mathbf{i}}=\left|\mathbf{S}_{\mathbf{i}}\right|$

- Use another hash table for $\mathbf{S}_{\mathbf{i}}$!
- Use Method 1: $\mathbf{O}\left(\mathbf{n}_{\mathbf{i}}^{2}\right)$-size perfect hashing of $\mathbf{S}_{\mathbf{i}}$.
- Let $\mathbf{h}_{\mathbf{i}}: \mathbf{U} \rightarrow\left[\mathbf{n}_{\mathbf{i}}^{2}\right]$ be hash function for $\mathbf{S}_{\mathbf{i}}$, and $\mathbf{A}_{\mathbf{i}}$ be table (pointer from $\mathbf{A}[\mathbf{i}]$)

Method 2

$\mathbf{M}=\mathbf{N}^{\mathbf{2}}$ is pretty big!

- Only storing \mathbf{N} things, and know them ahead of time
- Want space O(N)
- Open question for a long time!

Starting approach: set $\mathbf{M}=\mathbf{N}$, use a universal hash family \mathbf{H}. Draw $\mathbf{h} \sim \mathbf{H}$.

- Will have collisions. Need to do something other than chaining.

Let $\mathbf{S}_{\mathbf{i}}=\{\mathbf{x} \in \mathbf{S}: \mathbf{h}(\mathbf{x})=\mathbf{i}\}$ and let $\mathbf{n}_{\mathbf{i}}=\left|\mathbf{S}_{\mathbf{i}}\right|$

- Use another hash table for $\mathbf{S}_{\mathbf{i}}$!
- Use Method 1: $\mathbf{O}\left(\mathbf{n}_{\mathbf{i}}^{2}\right)$-size perfect hashing of $\mathbf{S}_{\mathbf{i}}$.
- Let $\mathbf{h}_{\mathbf{i}}: \mathbf{U} \rightarrow\left[\mathbf{n}_{\mathbf{i}}^{2}\right]$ be hash function for $\mathbf{S}_{\mathbf{i}}$, and $\mathbf{A}_{\mathbf{i}}$ be table (pointer from $\mathbf{A}[\mathbf{i}]$)

Lookup(\mathbf{x} : Look in linked list at $\mathbf{A}_{\mathbf{h}(\mathrm{x})}\left[\mathbf{h}_{\mathbf{h (x)}}(\mathbf{x})\right]$

Picture

Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

\Longrightarrow Lookup time $\mathbf{O}(\mathbf{1})$

Size: $\mathbf{O}\left(\mathbf{N}+\sum_{i=1}^{N} n_{i}^{2}\right)$

Analysis

Lookup time: by analysis of Method 1, no collisions in second level.
\Longrightarrow Lookup time $\mathbf{O}(\mathbf{1})$
Size: $\mathbf{O}\left(\mathbf{N}+\sum_{i=1}^{N} n_{i}^{2}\right)$

Theorem

Let \mathbf{H} be universal onto a table of size \mathbf{N}. Then

$$
\underset{h \sim H}{\operatorname{Pr}}\left[\sum_{i=1}^{N} n_{i}^{2}>4 N\right]<1 / 2 .
$$

So like with method 1: keep drawing $\mathbf{h} \sim \mathbf{H}$ until $\sum_{i=1}^{N} \mathbf{n}_{\mathbf{i}}^{2} \leq \mathbf{4 N}$

Analysis

Lookup time: by analysis of Method 1, no collisions in second level.
\Longrightarrow Lookup time $\mathbf{O}(\mathbf{1})$
Size: $\mathbf{O}\left(\mathbf{N}+\sum_{i=1}^{N} n_{i}^{2}\right)$

Theorem

Let \mathbf{H} be universal onto a table of size \mathbf{N}. Then

$$
\underset{h \sim H}{\operatorname{Pr}}\left[\sum_{i=1}^{N} n_{i}^{2}>4 N\right]<1 / 2 .
$$

So like with method 1: keep drawing $\mathbf{h} \sim \mathbf{H}$ until $\sum_{i=1}^{N} \mathbf{n}_{\mathbf{i}}^{2} \leq 4 \mathbf{N}$
Prove that $\mathbf{E}\left[\sum_{i=1}^{N} \mathbf{n}_{\mathbf{i}}^{2}\right] \leq \mathbf{N N}$.

- Implies theorem by Markov's inequality
- $\operatorname{Pr}[X>2 E[X]] \leq 1 / 2$ for nonnegative random variables X.

Proof

Observation: $\sum_{i=1}^{N} n_{i}^{2}$ is exactly number of ordered pairs that collide, including self-collisions

- Example: If $\mathbf{S}_{\mathbf{i}}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ then $\mathbf{n}_{\mathbf{i}}^{2}=\mathbf{9}$. Ordered colliding pairs: $(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c)$

Proof

Observation: $\sum_{i=1}^{N} n_{i}^{2}$ is exactly number of ordered pairs that collide, including self-collisions

- Example: If $\mathbf{S}_{\mathbf{i}}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ then $\mathbf{n}_{\mathbf{i}}^{2}=\mathbf{9}$. Ordered colliding pairs: $(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{b}),(\mathrm{c}, \mathrm{c})$
Let $\mathbf{C}_{\mathrm{x} y}= \begin{cases}\mathbf{1} & \text { if } \mathbf{h}(\mathrm{x})=\mathbf{h}(\mathbf{y}) \\ \mathbf{0} & \text { otherwise }\end{cases}$

Proof

Observation: $\sum_{i=1}^{N} n_{i}^{2}$ is exactly number of ordered pairs that collide, including self-collisions

- Example: If $\mathbf{S}_{\mathbf{i}}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ then $\mathbf{n}_{\mathbf{i}}^{2}=\mathbf{9}$. Ordered colliding pairs:

$$
(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{~b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{~b}),(\mathrm{c}, \mathrm{c})
$$

Let $\mathbf{C}_{\mathrm{x} y}= \begin{cases}\mathbf{1} & \text { if } \mathbf{h}(\mathrm{x})=\mathbf{h}(\mathrm{y}) \\ \mathbf{0} & \text { otherwise }\end{cases}$

$$
\begin{array}{rlr}
E\left[\sum_{i=1}^{N} n_{i}^{2}\right] & =E\left[\sum_{x \in S} \sum_{y \in S} C_{x y}\right] & \\
& =N+\sum_{x \in S} \sum_{y \in S: y \neq x} E\left[C_{x y}\right] & \text { (linearity of expectations) } \\
& \leq N+\frac{N(N-1)}{M} & \text { (definition of universal) } \\
& <2 N & \text { (since } \mathbf{M}=\mathbf{N} \text {) }
\end{array}
$$

