Lecture 10: Universal and Perfect Hashing

Michael Dinitz

September 30, 2021
601.433/633 Introduction to Algorithms
Introduction

Another approach to dictionaries (insert, lookup, delete): hashing
 ▶ Can improve operations to $O(1)$, but with many caveats!

Should have seen some discussion of hashing in data structures. Also in CLRS.
 ▶ Separate chaining vs. open addressing

Today: discussion of caveats, more advanced versions of hashing (universal and perfect)
Hashing Basics

- Keys from universe U (think very large)
- Set $S \subseteq U$ of keys we actually care about (think relatively small). $|S| = N$.
- Hash table A (array) of size M.
- Hash function $h : U \to [M]$
 - $[M] = \{1, 2, \ldots, M\}$
- Idea: store x in $A[h(x)]$
Hashing Basics

- Keys from universe U (think very large)
- Set $S \subseteq U$ of keys we actually care about (think relatively small). $|S| = N$.
- Hash table A (array) of size M.
- Hash function $h : U \to [M]$
 - $[M] = \{1, 2, \ldots, M\}$
- Idea: store x in $A[h(x)]$

One more component: collision resolution

- Today: separate chaining
- $A[i]$ is a linked list containing all x inserted where $h(x) = i$.
Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question:

Properties we want:

- Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
- Small M. Ideally, M = O(N).
- h fast to compute.
Dictionary Operations

Lookup(x): Walk down the list at $A[h(x)]$ until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at $A[h(x)]$.

Delete(x): Walk down the list at $A[h(x)]$ until we find x. Remove it from the list.

Question: What should hash function be?
Dictionary Operations

Lookup(x): Walk down the list at \(A[h(x)] \) until we find \(x \) (or walk to the end of the list)

Insert(x): Add \(x \) to the beginning of the list at \(A[h(x)] \).

Delete(x): Walk down the list at \(A[h(x)] \) until we find \(x \). Remove it from the list.

Question: What should hash function be?

Properties we want:
Dictionary Operations

Lookup(x): Walk down the list at $A[h(x)]$ until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at $A[h(x)]$.

Delete(x): Walk down the list at $A[h(x)]$ until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is $O($length of list at $A[h(x)]$).

Michael Dinitz
Lecture 10: Universal and Perfect Hashing
September 30, 2021
Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is $O(\text{length of list at } A[h(x)])$.
- Small M. Ideally, $M = O(N)$.
Dictionary Operations

Lookup(x): Walk down the list at $A[h(x)]$ until we find x (or walk to the end of the list).

Insert(x): Add x to the beginning of the list at $A[h(x)]$.

Delete(x): Walk down the list at $A[h(x)]$ until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is O(length of list at $A[h(x)]$).
- Small M. Ideally, $M = O(N)$.
- h fast to compute.
Bad News

Theorem

For any hash function h, if $|U| \geq (N - 1)M + 1$, then there exists a set S of N elements that all hash to the same location.

Proof. Pigeonhole principle / contradiction / contrapositive. So worst case behavior always bad! How can we get around this?

Option 1: don't worry about it, hope adversary isn't looking at your h when deciding on elements.

Option 2: Randomness! Random function $h : U \rightarrow [M]$

For each $x \in U$, choose $y \in [M]$ uniformly at random and set $h(x) = y$.

Hopefully good behavior in expectation.

Problem: How can we store/remember/create h?
Bad News

Theorem

For any hash function \(h \), if \(|U| \geq (N-1)M + 1 \), then there exists a set \(S \) of \(N \) elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.
Theorem

For any hash function h, if $|U| \geq (N - 1)M + 1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?
Bad News

Theorem

For any hash function \(h \), if \(|U| \geq (N - 1)M + 1 \), then there exists a set \(S \) of \(N \) elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your \(h \) when deciding on elements.
Bad News

Theorem

For any hash function \(h \), if \(|U| \geq (N - 1)M + 1 \), then there exists a set \(S \) of \(N \) elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your \(h \) when deciding on elements.
- Option 2: Randomness! \(\text{Random function } h : U \rightarrow [M] \)
 - For each \(x \in U \), choose \(y \in [M] \) uniformly at random and set \(h(x) = y \).
 - Hopefully good behavior in expectation.
Bad News

Theorem

For any hash function h, if $|U| \geq (N - 1)M + 1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope adversary isn't looking at your h when deciding on elements.
- Option 2: Randomness! *Random function* $h : U \rightarrow [M]$
 - For each $x \in U$, choose $y \in [M]$ uniformly at random and set $h(x) = y$.
 - Hopefully good behavior in expectation.
 - Problem: How can we store/remember/create h?
Universal Hashing

Definition

A probability distribution H over hash functions $\{h : U \to [M]\}$ is universal if

$$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$

for all $x, y \in U$ with $x \neq y$. Clearly satisfied by $H = \text{uniform distribution over all hash functions}$

Theorem

If H is universal, then for every set $S \subseteq U$ with $|S| = N$ and for every $x \in U$, the expected number of collisions (when we draw h from H) between x and elements of S is at most N/M.

So $\text{Lookup}(x)$ and $\text{Delete}(x)$ have expected time $O(N/M)$.

$Leftrightarrow$ If $M = \Omega(N)$, operations in $O(1)$ time!
Definition
A probability distribution H over hash functions $\{h: U \rightarrow [M]\}$ is universal if

$$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by $H = \text{uniform distribution over all hash functions}$
Universal Hashing

Definition

A probability distribution \(H \) over hash functions \(\{ h : U \rightarrow [M] \} \) is universal if
\[
\Pr_{h \sim H} [h(x) = h(y)] \leq \frac{1}{M}
\]
for all \(x, y \in U \) with \(x \neq y \).

Clearly satisfied by \(H = \) uniform distribution over all hash functions

Theorem

If \(H \) is universal, then for every set \(S \subseteq U \) with \(|S| = N \) and for every \(x \in U \), the expected number of collisions (when we draw \(h \) from \(H \)) between \(x \) and elements of \(S \) is at most \(N/M \).
Universal Hashing

Definition

A probability distribution H over hash functions $\{h : U \rightarrow [M]\}$ is universal if

$$\Pr_{h \sim H}[h(x) = h(y)] \leq \frac{1}{M}$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by $H = \text{uniform distribution over all hash functions}$

Theorem

If H is universal, then for every set $S \subseteq U$ with $|S| = N$ and for every $x \in U$, the expected number of collisions (when we draw h from H) between x and elements of S is at most $\frac{N}{M}$.

So Lookup(x) and Delete(x) have expected time $O(N/M)$.

\Rightarrow If $M = \Omega(N)$, operations in $O(1)$ time!
Main Proof

Theorem

If H *is universal, then for every set* $S \subseteq U$ *with* $|S| = N$ *and for every* $x \in U$, *the expected number of collisions (when we draw* h *from* H *) between* x *and elements of* S *is at most* N/M.

Proof.

Let $C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$

$$\implies E[C_{xy}] = \Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$$
Main Proof

Theorem

If H is universal, then for every set $S \subseteq U$ with $|S| = N$ and for every $x \in U$, the expected number of collisions (when we draw h from H) between x and elements of S is at most N/M.

Proof.

Let $C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$

\[\implies E[C_{xy}] = \Pr_{h \sim H} [h(x) = h(y)] \leq 1/M \]

Number of collisions between x and S is exactly $\sum_{y \in S} C_{xy}$

\[\implies E \left[\sum_{y \in S} C_{xy} \right] = \sum_{y \in S} E[C_{xy}] \leq \sum_{y \in S} \frac{1}{M} = N/M \]

\[\square \]
If \(H \) is universal, then for any sequence of \(L \) insert, lookup, and delete operations in which there are at most \(O(M) \) elements in the system at any time, the expected total cost of the whole sequence is only \(O(L) \) (assuming \(h \) takes constant time to compute).
Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most $O(M)$ elements in the system at any time, the expected total cost of the whole sequence is only $O(L)$ (assuming h takes constant time to compute).

Proof.

By theorem, each operation $O(1)$ in expectation. Total time is sum: linearity of expectations.
Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most $O(M)$ elements in the system at any time, the expected total cost of the whole sequence is only $O(L)$ (assuming h takes constant time to compute).

Proof.

By theorem, each operation $O(1)$ in expectation. Total time is sum: linearity of expectations.

So universal distributions are great. Can we construct them?
Universal Hash Families

Definition

If \(H \) is universal and is a uniform distribution over a set of functions \(\{h_1, h_2, \ldots \} \), then that set is called a *universal hash family*.

Often use \(H \) to refer to both set of functions and uniform distribution over it.
Universal Hash Families

Definition

If \(H \) is universal and is a uniform distribution over a set of functions \(\{h_1, h_2, \ldots \} \), then that set is called a *universal hash family*.

Often use \(H \) to refer to both set of functions and uniform distribution over it.

Notation:

- \(U = \{0, 1\}^u \) (so \(|U| = 2^u \))
- \(M = 2^b \), so an index to \(A \) is an element of \(\{0, 1\}^b \)
Universal Hash Families

Definition

If H is universal and is a uniform distribution over a set of functions $\{h_1, h_2, \ldots\}$, then that set is called a *universal hash family*.

Often use H to refer to both set of functions and uniform distribution over it.

Notation:

- $U = \{0, 1\}^u$ (so $|U| = 2^u$)
- $M = 2^b$, so an index to A is an element of $\{0, 1\}^b$

Construction: $H = \{0, 1\}^{b \times u}$, i.e., H is all $b \times u$ binary matrices

- Each $h \in H$ is a (linear) function from U to $[M]$: $h(x) = hx \in \{0, 1\}^b$ (all operations mod 2)
Universality

Theorem

H is a universal hash family: $\Pr_{h \sim H}[h(x) = h(y)] = \frac{1}{M}$ for all $x \neq y \in \{0, 1\}^u$.

Proof.

Matrix multiplication:

$h(x) = h'x = \sum_{i : x_i = 1} h_i$ (where h_i is the i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of h except for h_i. Let $h' = h$ with h_i all 0's/"/.$h(x)$ already fixed.

If $h(y) = h(x)$, then h_i must equal $h(x) - h'(y)$/"/.H happens with probability exactly $1/M = \frac{1}{M}$.

Michael Dinitz
Lecture 10: Universal and Perfect Hashing
September 30, 2021 10 / 16
Theorem

H is a universal hash family: $\Pr_{h \sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0, 1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i’th column of h).
Universality

Theorem

H is a universal hash family: \(\Pr_{h \sim H}[h(x) = h(y)] = 1/M \) for all \(x \neq y \in \{0, 1\}^u \).

Proof.

Matrix multiplication: \(h(x) = hx = \sum_{i:x_i=1} h^i \) (where \(h^i \) is the \(i \)’th column of \(h \)).

Since \(x \neq y \), there is \(i \) s.t. \(x_i \neq y_i \). WLOG, \(x_i = 0 \) and \(y_i = 1 \).
Theorem

H is a universal hash family: $\Pr_{h \sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0, 1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i : x_i = 1} h^i$ (where h^i is i’th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of h except for h^i. Let $h' = h$ with h^i all 0’s

- $h(x) = h'(x)$ already fixed.
Theorem

H is a universal hash family: \(\Pr_{h \sim H}[h(x) = h(y)] = \frac{1}{M} \) for all \(x \neq y \in \{0, 1\}^u \).

Proof.

Matrix multiplication: \(h(x) = hx = \sum_{i:x_i=1} h^i \) (where \(h^i \) is \(i \)'th column of \(h \)).

Since \(x \neq y \), there is \(i \) s.t. \(x_i \neq y_i \). WLOG, \(x_i = 0 \) and \(y_i = 1 \).

Draw all entries of \(h \) except for \(h^i \). Let \(h' = h \) with \(h^i \) all 0's

- \(h(x) = h'(x) \) already fixed.
- If \(h(y) = h(x) \), then \(h^i \) must equal \(h(x) - h'(y) \)
Theorem

H is a universal hash family: $\Pr_{h \sim H}[h(x) = h(y)] = 1/M$ for all $x \neq y \in \{0, 1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of h except for h^i. Let $h' = h$ with h^i all 0's

- $h(x) = h'(x)$ already fixed.
- If $h(y) = h(x)$, then h^i must equal $h(x) - h'(y)$
- Happens with probability exactly $1/2^b = 1/M$
Perfect Hashing

Suppose you know S, never changes.
- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary
Perfect Hashing

Suppose you know S, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- Sorted array: lookups $O(\log N)$
- Balanced search tree: $O(\log N)$
Perfect Hashing

Suppose you know S, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- Sorted array: lookups $O(\log N)$
- Balanced search tree: $O(\log N)$

Can we do better with hashing?
Perfect Hashing

Suppose you know S, never changes.
 - Build table, then do lookups. Like a real dictionary!
 - Care more about time to do lookup than time to build dictionary

Obvious approaches:
 - Sorted array: lookups $O(\log N)$
 - Balanced search tree: $O(\log N)$

Can we do better with hashing? Yes, through universal hashing!
Method 1

Use table of size $M = N^2$.

Theorem

Let H be universal with $M = N^2$. Then $\Pr_{h \sim H}[\text{no collisions in } S] \geq \frac{1}{2}$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

$\Pr_{h \sim H}[h(x) = h(y)] \leq \frac{1}{M} = \frac{1}{N^2}$ by universality.

$\Pr_{h \sim H}[\exists \text{ collision in } S] \leq \sum_{x, y \in S \atop x \neq y} \Pr_{h \sim H}[h(x) = h(y)] \leq \frac{1}{N^2} = \frac{N(N-1)}{2} \leq \frac{1}{2}$.

So keep sampling $h \sim H$ until get one with no collisions!
Method 1

Use table of size \(M = N^2 \).

Theorem

Let \(H \) be universal with \(M = N^2 \). Then \(\Pr_{h \sim H}[\text{no collisions in } S] \geq 1/2 \).

Proof.

Fix \(x, y \in S \) with \(x \neq y \).
Method 1

Use table of size $M = N^2$.

Theorem

Let H be universal with $M = N^2$. Then $\Pr_{h \sim H}[\text{no collisions in } S] \geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M = 1/N^2$ by universality.
Method 1

Use table of size $M = N^2$.

Theorem

Let H be universal with $M = N^2$. Then $\Pr_{h \sim H}[\text{no collisions in } S] \geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M = 1/N^2$ by universality.

$$\Pr_{h \sim H}[\exists \text{ collision in } S] \leq \sum_{x, y \in S, x \neq y} \Pr_{h \sim H}[h(x) = h(y)] \leq \sum_{x, y \in S, x \neq y} \frac{1}{N^2}$$

$$= \binom{N}{2} \frac{1}{N^2} = \frac{N(N - 1)}{2} \frac{1}{N^2} \leq \frac{1}{2}$$

So keep sampling $h \sim H$ until get one with no collisions!
Method 1

Use table of size $M = N^2$.

Theorem

Let H be universal with $M = N^2$. Then $\Pr_{h \sim H}[\text{no collisions in } S] \geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

$\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M = 1/N^2$ by universality.

$$\Pr_{h \sim H}[\exists \text{ collision in } S] \leq \sum_{x, y \in S} \Pr_{h \sim H}[h(x) = h(y)] \leq \sum_{x, y \in S} \frac{1}{N^2}$$

$$= \binom{N}{2} \frac{1}{N^2} = \frac{N(N-1)}{2} \frac{1}{N^2} \leq \frac{1}{2}$$

So keep sampling $h \sim H$ until get one with no collisions!
Method 2

\[M = N^2 \] is pretty big!

- Only storing \(N \) things, and know them ahead of time
- Want space \(O(N) \)
- Open question for a long time!
Method 2

\[M = N^2 \] is pretty big!

- Only storing \(N \) things, and know them ahead of time
- Want space \(O(N) \)
- Open question for a long time!

Starting approach: set \(M = N \), use a universal hash family \(H \). Draw \(h \sim H \).

- Will have collisions. Need to do something other than chaining.
Method 2

\(M = N^2 \) is pretty big!

- Only storing \(N \) things, and know them ahead of time
- Want space \(O(N) \)
- Open question for a long time!

Starting approach: set \(M = N \), use a universal hash family \(H \). Draw \(h \sim H \).

- Will have collisions. Need to do something other than chaining.

Let \(S_i = \{ x \in S : h(x) = i \} \) and let \(n_i = |S_i| \)
Method 2

\(M = N^2 \) is pretty big!
- Only storing \(N \) things, and know them ahead of time
- Want space \(O(N) \)
- Open question for a long time!

Starting approach: set \(M = N \), use a universal hash family \(H \). Draw \(h \sim H \).
- Will have collisions. Need to do something other than chaining.

Let \(S_i = \{ x \in S : h(x) = i \} \) and let \(n_i = |S_i| \)
- Use another hash table for \(S_i \)!
- Use Method 1: \(O(n_i^2) \)-size perfect hashing of \(S_i \).
 - Let \(h_i : U \to [n_i^2] \) be hash function for \(S_i \), and \(A_i \) be table (pointer from \(A[i] \))
Method 2

\(M = N^2 \) is pretty big!

- Only storing \(N \) things, and know them ahead of time
- Want space \(O(N) \)
- Open question for a long time!

Starting approach: set \(M = N \), use a universal hash family \(H \). Draw \(h \sim H \).

- Will have collisions. Need to do something other than chaining.

Let \(S_i = \{ x \in S : h(x) = i \} \) and let \(n_i = |S_i| \)

- Use another hash table for \(S_i \)!
- Use Method 1: \(O(n_i^2) \)-size perfect hashing of \(S_i \).
 - Let \(h_i : U \to [n_i^2] \) be hash function for \(S_i \), and \(A_i \) be table (pointer from \(A[i] \))

Lookup\((x)\): Look in linked list at \(A_{h(x)}[h_{h(x)}(x)] \)
Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

\[\text{Lookup time } O(1)\]
Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

Lookup time $O(1)$

Size: $O(N + \sum_{i=1}^{N} n_i^2)$
Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

⇒ Lookup time $O(1)$

Size: $O(N + \sum_{i=1}^{N} n_i^2)$

Theorem

Let H be universal onto a table of size N. Then

$$\Pr_{h \sim H} \left[\sum_{i=1}^{N} n_i^2 > 4N \right] < 1/2.$$

So like with method 1: keep drawing $h \sim H$ until $\sum_{i=1}^{N} n_i^2 \leq 4N$
Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

\[\text{Lookup time } O(1) \]

Size: \(O(N + \sum_{i=1}^{N} n_i^2) \)

Theorem

Let \(H \) be universal onto a table of size \(N \). Then

\[
\Pr_{h \sim H} \left[\sum_{i=1}^{N} n_i^2 > 4N \right] < 1/2.
\]

So like with method 1: keep drawing \(h \sim H \) until \(\sum_{i=1}^{N} n_i^2 \leq 4N \)

Prove that \(E \left[\sum_{i=1}^{N} n_i^2 \right] \leq 2N \).

- Implies theorem by Markov’s inequality
 - \(\Pr[X > 2E[X]] \leq 1/2 \) for nonnegative random variables \(X \).
Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of ordered pairs that collide, including self-collisions

- Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs:
 - (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)
Proof

Observation: \(\sum_{i=1}^{N} n_i^2 \) is exactly number of ordered pairs that collide, including self-collisions.

- Example: If \(S_i = \{a, b, c\} \) then \(n_i^2 = 9 \). Ordered colliding pairs:
 \[(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\]

Let \(C_{xy} = \begin{cases}
1 & \text{if } h(x) = h(y) \\
0 & \text{otherwise}
\end{cases} \)
Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of ordered pairs that collide, including self-collisions

- Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs:
 $(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)$

Let $C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$

$$
E \left[\sum_{i=1}^{N} n_i^2 \right] = E \left[\sum_{x \in S} \sum_{y \in S} C_{xy} \right] \\
= N + \sum_{x \in S} \sum_{y \in S : y \neq x} E[C_{xy}] \\
\leq N + \frac{N(N-1)}{M} \\
< 2N
$$

(linearity of expectations)

(definition of universal)

(since $M = N$)