Lecture 1: Introduction

Michael Dinitz

August 31, 2021
601.433/633 Introduction to Algorithms

Welcome!

Introduction to (the theory of) algorithms

- How to design algorithms
- How to analyze algorithms

Prerequisites: Data Structures and Discrete Math

- Small amount of review next lecture, but should be comfortable with asymptotic notation, basic data structures, basic combinatorics and graph theory.
- Undergrads from prereqs.
- "Informal" prerequisite: mathematical maturity

About me

- 8th time teaching this class (Fall 2014 - Fall 2021).
- I'm still learning - let me know if you have suggestions!
- I'd appreciate it if you watched lectures synchronously with your webcam on if possible, but not required.
- Research in theoretical CS, particularly algorithms: approximation algorithms, graph algorithms, distributed algorithms, online algorithms.
- Also other parts of math (graph theory) and CS theory (algorithmic game theory, complexity theory) and theory of networking.
- Office hours: Wednesdays 2-4pm (zoom link on webpage; not lecture link).

Administrative Stuff

- TA: Isabel Cachola (CS PhD student). Office hours TBD
- Head CA: Tanuj Alapati (senior undergraduate). Office hours: Mondays 10am-12pm
- CAs: Many, still finalizing.
- Website:
http://www.cs.jhu.edu/~mdinitz/classes/IntroAlgorithms/Fall2021/
- Syllabus, schedule, lecture notes, ...
- Campuswire for discussion/announcements
- Gradescope for homeworks/exams.

Administrative Stuff

- TA: Isabel Cachola (CS PhD student). Office hours TBD
- Head CA: Tanuj Alapati (senior undergraduate). Office hours: Mondays 10am-12pm
- CAs: Many, still finalizing.
- Website:
http://www.cs.jhu.edu/~mdinitz/classes/IntroAlgorithms/Fall2021/
- Syllabus, schedule, lecture notes, ...
- Campuswire for discussion/announcements
- Gradescope for homeworks/exams.
- Expectation is that you are in Baltimore and attending synchronously, even though course is online.
- If you're not in Baltimore, must be because of either disability or visa-related issue.
- Undergrads: official accommodations.
- Grad students: permission from your department, email me, fill out WSE survey (see Campuswire post)

Course Size and Waitlist

Course is very full!

- 433: 75 enrolled, 31 waitlist
- 633: 75 enrolled, 28 waitlist

Problem with expanding: grading.

- Grading has to be done individually, by hand!
- Don't know how many CAs will be assigned, but seems like fewer than past few years

Course Size and Waitlist

Course is very full!

- 433: 75 enrolled, 31 waitlist
- 633: 75 enrolled, 28 waitlist

Problem with expanding: grading.

- Grading has to be done individually, by hand!
- Don't know how many CAs will be assigned, but seems like fewer than past few years

If enough CAs get assigned, would like to allow junior/senior CS majors and CS MSE students to enroll off of waitlist

Course Size and Waitlist

Course is very full!

- 433: 75 enrolled, 31 waitlist
- 633: 75 enrolled, 28 waitlist

Problem with expanding: grading.

- Grading has to be done individually, by hand!
- Don't know how many CAs will be assigned, but seems like fewer than past few years

If enough CAs get assigned, would like to allow junior/senior CS majors and CS MSE students to enroll off of waitlist

In meantime, if you're on the waitlist:

- Take course in the spring!
- Or attend lectures, do homeworks.

Assignments

Homeworks:

- Approximately every 1.5 weeks, posted on website (HW1 out, due next Tuesday!)
- Must be typeset (LATEX preferred, not required)
- Work in groups up ≤ 3 (highly recommended). But individual writeups.
- Work together at a whiteboard to solve, then write up yourself.
- Write group members at top of homework
- 120 late hours (5 late days) total

Assignments

Homeworks:

- Approximately every 1.5 weeks, posted on website (HW1 out, due next Tuesday!)
- Must be typeset (LATEX preferred, not required)
- Work in groups up ≤ 3 (highly recommended). But individual writeups.
- Work together at a whiteboard to solve, then write up yourself.
- Write group members at top of homework
- 120 late hours (5 late days) total

Exams: final. No midterm.

- Used to have midterm, but I don't like exams for online courses. Trying without midterm this year.
- Final: in person, scheduled by registrar. 3 hours, traditional, closed book.

Assignments

Homeworks:

- Approximately every 1.5 weeks, posted on website (HW1 out, due next Tuesday!)
- Must be typeset (LATEX preferred, not required)
- Work in groups up ≤ 3 (highly recommended). But individual writeups.
- Work together at a whiteboard to solve, then write up yourself.
- Write group members at top of homework
- 120 late hours (5 late days) total

Exams: final. No midterm.

- Used to have midterm, but I don't like exams for online courses. Trying without midterm this year.
- Final: in person, scheduled by registrar. 3 hours, traditional, closed book.

Grading: 65\% homework, 35\% final exam,

- "Curve": Historically, average $\approx B+$. About 50% A's, 50% B's, a few below.
- Curve only helps! Someone else doing well does not hurt you.
- Be collaborative and helpful (within guidelines).

Academic Honesty

- Cheating makes you a bad person. Don't cheat.

Academic Honesty

- Cheating makes you a bad person. Don't cheat.
- Cheating includes:
- Collaborating with people outside your group of three.
- Collaborating with your group on the writeup.
- Looking online for the solutions/ideas to the problem or related problems, rather than to understand concepts from class.
- Using Chegg, CourseHero, your friends, to find back tests, old homeworks, etc.
- Uploading anything to the above sites.
- etc.

Academic Honesty

- Cheating makes you a bad person. Don't cheat.
- Cheating includes:
- Collaborating with people outside your group of three.
- Collaborating with your group on the writeup.
- Looking online for the solutions/ideas to the problem or related problems, rather than to understand concepts from class.
- Using Chegg, CourseHero, your friends, to find back tests, old homeworks, etc.
- Uploading anything to the above sites.
- etc.
- Just solve the problems with your group and write them up yourself!
- Use the internet, classmates other resources to understand concepts from class, not to help with assignments.

Academic Honesty

- Cheating makes you a bad person. Don't cheat.
- Cheating includes:
- Collaborating with people outside your group of three.
- Collaborating with your group on the writeup.
- Looking online for the solutions/ideas to the problem or related problems, rather than to understand concepts from class.
- Using Chegg, CourseHero, your friends, ... , to find back tests, old homeworks, etc.
- Uploading anything to the above sites.
- etc.
- Just solve the problems with your group and write them up yourself!
- Use the internet, classmates other resources to understand concepts from class, not to help with assignments.
- In previous years, punishments have included zero on assignment, grade penalty, mark on transcript, etc. $\geq \mathbf{1}$ person has had PhD acceptance revoked.

Course Overview

- Introduction to Theory of Algorithms: math not programming.
- Two goals: how to design algorithms, and how to analyze algorithms.
- Sometimes focus more on one than other, but both important

Course Overview

- Introduction to Theory of Algorithms: math not programming.
- Two goals: how to design algorithms, and how to analyze algorithms.
- Sometimes focus more on one than other, but both important
- Algorithm: "recipe" for solving a computational problem.
- Computational problem: given input \mathbf{X}, want to output $\mathbf{f}(\mathbf{X})$. How to do this?

Course Overview

- Introduction to Theory of Algorithms: math not programming.
- Two goals: how to design algorithms, and how to analyze algorithms.
- Sometimes focus more on one than other, but both important
- Algorithm: "recipe" for solving a computational problem.
- Computational problem: given input \mathbf{X}, want to output $\mathbf{f}(\mathbf{X})$. How to do this?
- Things to prove about an algorithm:
- Correctness: it does solve the problem.
- Running time: worst-case, average-case, worst-case expected, amortized, ...
- Space usage
- and more!

Course Overview

- Introduction to Theory of Algorithms: math not programming.
- Two goals: how to design algorithms, and how to analyze algorithms.
- Sometimes focus more on one than other, but both important
- Algorithm: "recipe" for solving a computational problem.
- Computational problem: given input \mathbf{X}, want to output $\mathbf{f}(\mathbf{X})$. How to do this?
- Things to prove about an algorithm:
- Correctness: it does solve the problem.
- Running time: worst-case, average-case, worst-case expected, amortized, ...
- Space usage
- and more!
- This class: mostly correctness and asymptotic running time, focus on worst-case

Why analyze? Why worst case?

- Obviously want to prove correctness!
- Testing good, but want to be 100% sure that the algorithm does what you want it to do!

Why analyze? Why worst case?

- Obviously want to prove correctness!
- Testing good, but want to be 100% sure that the algorithm does what you want it to do!
- What is a "real-life" or "average" instance?
- Especially if your algorithm is "low-level", will be used in many different settings.

Why analyze? Why worst case?

- Obviously want to prove correctness!
- Testing good, but want to be 100% sure that the algorithm does what you want it to do!
- What is a "real-life" or "average" instance?
- Especially if your algorithm is "low-level", will be used in many different settings.
- We will focus on how algorithm "scales": how running times change as input grows. Hard to determine experimentally.

Why analyze? Why worst case?

- Obviously want to prove correctness!
- Testing good, but want to be 100% sure that the algorithm does what you want it to do!
- What is a "real-life" or "average" instance?
- Especially if your algorithm is "low-level", will be used in many different settings.
- We will focus on how algorithm "scales" : how running times change as input grows. Hard to determine experimentally.
- Most importantly: want to understand.
- Experiments can (maybe) convince you that something is true. But can't tell you why!

Example 1: Multiplication

Multiplication I

Often an obvious way to solve a problem just from the definition. But might not be the right way!

Multiplication I

Often an obvious way to solve a problem just from the definition. But might not be the right way!

Multiplication: Given two \mathbf{n}-bit integers \mathbf{X} and \mathbf{Y}. Compute $\mathbf{X Y}$.

- Since \mathbf{n} bits, each integer in $\left[\mathbf{0}, \mathbf{2}^{\mathbf{n}} \mathbf{- 1}\right.$].

How to do this?

Multiplication I

Often an obvious way to solve a problem just from the definition. But might not be the right way!

Multiplication: Given two \mathbf{n}-bit integers \mathbf{X} and \mathbf{Y}. Compute $\mathbf{X Y}$.

- Since \mathbf{n} bits, each integer in $\left[\mathbf{0}, \mathbf{2}^{\mathbf{n}}-\mathbf{1}\right]$.

How to do this?
Definition of multiplication:

- Add \mathbf{X} to itself \mathbf{Y} times: $\mathbf{X}+\mathbf{X}+\cdots+\mathbf{X}$. Or add \mathbf{Y} to itself \mathbf{X} times: $\mathbf{Y}+\mathbf{Y}+\cdots+\mathbf{Y}$.

Multiplication I

Often an obvious way to solve a problem just from the definition. But might not be the right way!

Multiplication: Given two \mathbf{n}-bit integers \mathbf{X} and \mathbf{Y}. Compute $\mathbf{X Y}$.

- Since \mathbf{n} bits, each integer in $\left[\mathbf{0}, \mathbf{2}^{\mathbf{n}}-\mathbf{1}\right]$.

How to do this?

Definition of multiplication:

- Add \mathbf{X} to itself \mathbf{Y} times: $\mathbf{X}+\mathbf{X}+\cdots+\mathbf{X}$. Or add \mathbf{Y} to itself \mathbf{X} times: $\mathbf{Y}+\mathbf{Y}+\cdots+\mathbf{Y}$. Running time:

Multiplication I

Often an obvious way to solve a problem just from the definition. But might not be the right way!

Multiplication: Given two \mathbf{n}-bit integers \mathbf{X} and \mathbf{Y}. Compute $\mathbf{X Y}$.

- Since \mathbf{n} bits, each integer in $\left[\mathbf{0}, \mathbf{2}^{\mathbf{n}} \mathbf{- 1}\right.$].

How to do this?
Definition of multiplication:

- Add \mathbf{X} to itself \mathbf{Y} times: $\mathbf{X}+\mathbf{X}+\cdots+\mathbf{X}$. Or add \mathbf{Y} to itself \mathbf{X} times: $\mathbf{Y}+\mathbf{Y}+\cdots+\mathbf{Y}$. Running time:
- $\boldsymbol{\Theta}(\mathbf{Y})$ or $\boldsymbol{\Theta}(\mathbf{X})$.

Multiplication I

Often an obvious way to solve a problem just from the definition. But might not be the right way!

Multiplication: Given two \mathbf{n}-bit integers \mathbf{X} and \mathbf{Y}. Compute $\mathbf{X Y}$.

- Since \mathbf{n} bits, each integer in $\left[\mathbf{0}, \mathbf{2}^{\mathbf{n}} \mathbf{- 1}\right.$].

How to do this?
Definition of multiplication:

- Add \mathbf{X} to itself \mathbf{Y} times: $\mathbf{X}+\mathbf{X}+\cdots+\mathbf{X}$. Or add \mathbf{Y} to itself \mathbf{X} times: $\mathbf{Y}+\mathbf{Y}+\cdots+\mathbf{Y}$. Running time:
- $\boldsymbol{\Theta}(\mathbf{Y})$ or $\boldsymbol{\Theta}(\mathbf{X})$.
- Could be $\boldsymbol{\Theta}\left(\mathbf{2}^{\mathbf{n}}\right)$. Exponential in size of input (2n).

Multiplication II

Better idea?

Multiplication II

Better idea? Grade school algorithm!

Multiplication II

Better idea? Grade school algorithm!

Multiplication II

Better idea? Grade school algorithm!

```
    110110 = 54
    101001 = 41
            1 1 0 1 1 0
            1 1 0 1 1 0
+ 110110
    100010100110 = 2 + 4 + 32 + 128 + 2048 = 2214
```

Running time:

Multiplication II

Better idea? Grade school algorithm!

Running time:

- $\mathbf{O}(\mathbf{n})$ column additions, each takes $\mathbf{O}(\mathrm{n})$ time $\Longrightarrow \mathbf{O}\left(\mathbf{n}^{2}\right)$ time.
- Better than obvious algorithm!

Multiplication III

Can we do even better?

Multiplication III

Can we do even better? Yes: Karatsuba Multiplication

Multiplication III

Can we do even better? Yes: Karatsuba Multiplication

$$
X=2^{n / 2} A+B
$$

$$
Y=2^{n / 2} C+D
$$

Multiplication III

Can we do even better? Yes: Karatsuba Multiplication

$$
\begin{aligned}
& X=2^{n / 2} A+B \\
& Y=2^{n / 2} C+D
\end{aligned}
$$

Multiplication III

Can we do even better? Yes: Karatsuba Multiplication

$$
\begin{aligned}
& X=2^{n / 2} A+B \\
& Y=2^{n / 2} C+D
\end{aligned}
$$

$$
X Y=\left(2^{n / 2} A+B\right)\left(2^{n / 2} C+D\right)
$$

Multiplication III

Can we do even better? Yes: Karatsuba Multiplication

$$
\begin{aligned}
& X=2^{n / 2} A+B \\
& Y=2^{n / 2} C+D
\end{aligned}
$$

$$
\begin{aligned}
X Y & =\left(2^{n / 2} A+B\right)\left(2^{n / 2} C+D\right) \\
& =2^{n} A C+2^{n / 2} A D+2^{n / 2} B C+B D
\end{aligned}
$$

Multiplication III

Can we do even better? Yes: Karatsuba Multiplication

$$
\begin{aligned}
& X=2^{n / 2} A+B \\
& Y=2^{n / 2} C+D
\end{aligned}
$$

$$
\begin{aligned}
X Y & =\left(2^{n / 2} A+B\right)\left(2^{n / 2} C+D\right) \\
& =2^{n} A C+2^{n / 2} A D+2^{n / 2} B C+B D
\end{aligned}
$$

Four $\mathbf{n} / \mathbf{2}$-bit multiplications, three shifts, three $\mathbf{O}(\mathbf{n})$-bit adds.

Multiplication III

Can we do even better? Yes: Karatsuba Multiplication

$$
\begin{aligned}
& X=2^{n / 2} A+B \\
& Y=2^{n / 2} C+D
\end{aligned}
$$

$$
\begin{aligned}
X Y & =\left(2^{n / 2} A+B\right)\left(2^{n / 2} C+D\right) \\
& =2^{n} A C+2^{n / 2} A D+2^{n / 2} B C+B D
\end{aligned}
$$

Four $\mathbf{n} / \mathbf{2}$-bit multiplications, three shifts, three $\mathbf{O}(\mathbf{n})$-bit adds.
Running Time: $\mathbf{T}(\mathbf{n})=4 \mathbf{T}(\mathbf{n} / 2)+\mathbf{c n}$

Multiplication III

Can we do even better? Yes: Karatsuba Multiplication

$$
\begin{aligned}
& X=2^{n / 2} A+B \\
& Y=2^{n / 2} C+D
\end{aligned}
$$

$$
\begin{aligned}
X Y & =\left(2^{n / 2} A+B\right)\left(2^{n / 2} C+D\right) \\
& =2^{n} A C+2^{n / 2} A D+2^{n / 2} B C+B D
\end{aligned}
$$

Four $\mathbf{n} / 2$-bit multiplications, three shifts, three $\mathbf{O}(\mathbf{n})$-bit adds.
Running Time: $\mathbf{T}(\mathbf{n})=4 \mathbf{T}(\mathbf{n} / 2)+\mathbf{c n} \Longrightarrow \mathbf{T}(n)=\mathbf{O}\left(n^{2}\right)$

Karatsuba Multiplication

Rewrite equation for $\mathbf{X Y}$:

$$
\begin{aligned}
X Y & =2^{n} A C+2^{n / 2} A D+2^{n / 2} B C+B D \\
& =2^{n / 2}(A+B)(C+D)+\left(2^{n}-2^{n / 2}\right) A C+\left(1-2^{n / 2}\right) B D
\end{aligned}
$$

Karatsuba Multiplication

Rewrite equation for $\mathbf{X Y}$:

$$
\begin{aligned}
X Y & =2^{n} A C+2^{n / 2} A D+2^{n / 2} B C+B D \\
& =2^{n / 2}\left(A^{\frac{1}{2}}+B\right)(C+D)+\left(2^{n}-2^{n / 2}\right) A C+\left(1-2^{n / 2}\right) B D
\end{aligned}
$$

Three $\mathbf{n} / 2$-bit multiplications, $\mathbf{O}(1)$ shifts and $\mathbf{O}(\mathbf{n})$-bit adds.

Karatsuba Multiplication

Rewrite equation for $\mathbf{X Y}$:

$$
\begin{aligned}
X Y & =2^{n} A C+2^{n / 2} A D+2^{n / 2} B C+B D \\
& =2^{n / 2}(A+B)(C+D)+\left(2^{n}-2^{n / 2}\right) A C+\left(1-2^{n / 2}\right) B D
\end{aligned}
$$

Three $\mathbf{n} / 2$-bit multiplications, $\mathbf{O}(1)$ shifts and $\mathbf{O}(\mathbf{n})$-bit adds.

$$
\Longrightarrow T(n)=3 T(n / 2)+c^{\prime} n
$$

Karatsuba Multiplication

Rewrite equation for $\mathbf{X Y}$:

$$
\begin{aligned}
X Y & =2^{n} A C+2^{n / 2} A D+2^{n / 2} B C+B D \\
& =2^{n / 2}(A+B)(C+D)+\left(2^{n}-2^{n / 2}\right) A C+\left(1-2^{n / 2}\right) B D
\end{aligned}
$$

Three $\mathbf{n} / 2$-bit multiplications, $\mathbf{O}(1)$ shifts and $\mathbf{O}(\mathbf{n})$-bit adds.

$$
\begin{aligned}
& \Longrightarrow T(n)=3 T(n / 2)+c^{\prime} n \\
& \Longrightarrow T(n)=O\left(n^{\log _{2} 3}\right) \approx O\left(n^{1.585}\right)
\end{aligned}
$$

Even Better Multiplication?

Can we do even better than Karatsuba?

Even Better Multiplication?

Can we do even better than Karatsuba?
Theorem (Karp)
There is an $\mathbf{O}\left(\mathbf{n} \log ^{\mathbf{2}} \mathbf{n}\right)$-time algorithm for multiplication.
Uses Fast Fourier Transform (FFT)

Even Better Multiplication?

Can we do even better than Karatsuba?

Theorem (Karp)

There is an $\mathbf{O}\left(\mathbf{n} \log ^{\mathbf{2}} \mathbf{n}\right)$-time algorithm for multiplication.
Uses Fast Fourier Transform (FFT)
Theorem (Harvey and van der Hoeven '19)
There is an $\mathbf{O}(\mathbf{n} \log \mathbf{n})$-time algorithm for multiplication.

Example 2: Matrix Multiplication

Matrix Multiplication: Definition

Given $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{\mathbf{n \times n}}$, compute $\mathbf{X Y} \in \mathbb{R}^{\mathbf{n \times n}}$

- $(\mathbf{X Y})_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ik}} \mathbf{Y}_{\mathrm{kj}}$
- Don't worry for now about representing real numbers
- Assume multiplication in $\mathbf{O (1)}$ time

Matrix Multiplication: Definition

Given $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{\mathbf{n \times n}}$, compute $\mathbf{X Y} \in \mathbb{R}^{\mathbf{n \times n}}$

- $(X Y)_{i j}=\sum_{k=1}^{n} X_{i k} \mathbf{Y}_{\mathrm{kj}}$
- Don't worry for now about representing real numbers
- Assume multiplication in $\mathbf{O (1)}$ time

Algorithm from definition:

- For each $\mathbf{i}, \mathbf{j} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$, compute $(\mathbf{X Y})_{\mathbf{i j}}$ using formula.

Matrix Multiplication: Definition

Given $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{\mathbf{n \times n}}$, compute $\mathbf{X Y} \in \mathbb{R}^{\mathbf{n \times n}}$

- $(X Y)_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ik}} \mathbf{Y}_{\mathrm{kj}}$
- Don't worry for now about representing real numbers
- Assume multiplication in $\mathbf{O (1)}$ time

Algorithm from definition:

- For each $\mathbf{i}, \mathbf{j} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$, compute $(\mathbf{X Y})_{\mathbf{i j}}$ using formula.

Running time:

Matrix Multiplication: Definition

Given $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{\mathbf{n \times n}}$, compute $\mathbf{X Y} \in \mathbb{R}^{\mathbf{n \times n}}$

- $(\mathbf{X Y})_{\mathrm{ij}}=\sum_{\mathrm{k}=\mathbf{1}}^{\mathrm{n}} \mathbf{X}_{\mathrm{ik}} \mathbf{Y}_{\mathrm{kj}}$
- Don't worry for now about representing real numbers
- Assume multiplication in $\mathbf{O (1)}$ time

Algorithm from definition:

- For each $\mathbf{i}, \mathbf{j} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$, compute $(\mathbf{X Y})_{\mathbf{i j}}$ using formula.

Running time:

- $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$ entries, each entry takes \mathbf{n} multiplications and $\mathbf{n}-\mathbf{1}$ additions $\Longrightarrow \mathbf{O}\left(\mathbf{n}^{\mathbf{3}}\right)$ time.

Strassen I

Break \mathbf{X} and \mathbf{Y} each into four $(\mathbf{n} / \mathbf{2}) \times(\mathbf{n} / \mathbf{2})$ matrices:

Strassen I

Break \mathbf{X} and \mathbf{Y} each into four $(\mathbf{n} / \mathbf{2}) \times(\mathbf{n} / \mathbf{2})$ matrices:

So can rewrite $\mathbf{X Y}$:

$$
X Y=\begin{array}{|l|l|}
\hline A E+B G & A F+B H \\
\hline C E+D G & C F+D H \\
\hline
\end{array}
$$

Strassen I

Break \mathbf{X} and \mathbf{Y} each into four $(\mathbf{n} / \mathbf{2}) \times(\mathbf{n} / \mathbf{2})$ matrices:

So can rewrite $\mathbf{X Y}$:

Recursive algorithm: compute eight $(\mathrm{n} / 2) \times(\mathrm{n} / 2)$ matrix multiplies, four additions

Strassen II

$$
X Y=\begin{array}{|l|l|}
\hline A E+B G & A F+B H \\
\hline C E+D G & C F+D H \\
\hline
\end{array}
$$

Recursive algorithm: compute eight $(\mathbf{n} / \mathbf{2}) \times(\mathrm{n} / \mathbf{2})$ matrix multiplies, four additions

Strassen II

$$
X Y=\begin{array}{|l|l|}
\hline A E+B G & A F+B H \\
\hline C E+D G & C F+D H \\
\hline
\end{array}
$$

Recursive algorithm: compute eight $(\mathbf{n} / \mathbf{2}) \times(\mathrm{n} / \mathbf{2})$ matrix multiplies, four additions
Running time: $T(n)=8 T(n / 2)+\mathbf{c n}^{2} \Longrightarrow T(n)=O\left(n^{3}\right)$.

Strassen II

$$
X Y=\begin{array}{|l|l|}
\hline A E+B G & A F+B H \\
\hline C E+D G & C F+D H \\
\hline
\end{array}
$$

Recursive algorithm: compute eight $(\mathbf{n} / \mathbf{2}) \times(\mathrm{n} / \mathbf{2})$ matrix multiplies, four additions
Running time: $\mathbf{T}(\mathbf{n})=\mathbf{8 T}(\mathbf{n} / 2)+\mathbf{c n}^{\mathbf{2}} \Longrightarrow \mathbf{T}(\mathrm{n})=\mathbf{O}\left(\mathbf{n}^{\mathbf{3}}\right)$.
Improve on this?

Strassen III

$$
X Y=\begin{array}{|l|l|}
\hline A E+B G & A F+B H \\
\hline C E+D G & C F+D H \\
\hline
\end{array}
$$

Strassen III

$$
X Y=\begin{array}{|l|l|}
\hline A E+B G & A F+B H \\
\hline C E+D G & C F+D H \\
\hline
\end{array}
$$

$$
\begin{array}{lll}
M_{1}=(A+D)(E+H) & M_{2}=(C+D) E & M_{3}=A(F-H) \\
M_{4}=D(G-E) & M_{5}=(A+B) H & M_{6}=(C-A)(E+F) \\
M_{7}=(B-D)(G+H) & &
\end{array}
$$

Strassen III

$$
X Y=\begin{array}{|l|l|}
\hline A E+B G & A F+B H \\
\hline C E+D G & C F+D H \\
\hline
\end{array}
$$

$$
\begin{array}{lll}
M_{1}=(A+D)(E+H) & M_{2}=(C+D) E & M_{3}=A(F-H) \\
M_{4}=D(G-E) & M_{5}=(A+B) H & M_{6}=(C-A)(E+F) \\
M_{7}=(B-D)(G+H) & &
\end{array}
$$

$X Y=$| $M_{1}+M_{4}-M_{5}+M_{7}$ | $M_{3}+M_{5}$ |
| :---: | :---: |
| $M_{2}+M_{4}$ | $M_{1}-M_{2}+M_{3}+M_{6}$ |

Strassen IV

$$
\begin{array}{lll}
M_{1}=(A+D)(E+H) & M_{2}=(C+D) E & M_{3}=A(F-H) \\
M_{4}=D(G-E) & M_{5}=(A+B) H & M_{6}=(C-A)(E+F) \\
M_{7}=(B-D)(G+H) & &
\end{array}
$$

$X Y=$| $M_{1}+M_{4}-M_{5}+M_{7}$ | $M_{3}+M_{5}$ |
| :---: | :---: |
| $M_{2}+M_{4}$ | $M_{1}-M_{2}+M_{3}+M_{6}$ |

Only seven $(\mathbf{n} / \mathbf{2}) \times(\mathrm{n} / \mathbf{2})$ matrix multiplies, $\mathbf{O}(\mathbf{1})$ additions

Strassen IV

$$
\begin{array}{lll}
M_{1}=(A+D)(E+H) & M_{2}=(C+D) E & M_{3}=A(F-H) \\
M_{4}=D(G-E) & M_{5}=(A+B) H & M_{6}=(C-A)(E+F) \\
M_{7}=(B-D)(G+H) & &
\end{array}
$$

$X Y=$| $M_{1}+M_{4}-M_{5}+M_{7}$ | $M_{3}+M_{5}$ |
| :---: | :---: |
| $M_{2}+M_{4}$ | $M_{1}-M_{2}+M_{3}+M_{6}$ |

Only seven $(\mathbf{n} / \mathbf{2}) \times(\mathrm{n} / \mathbf{2})$ matrix multiplies, $\mathbf{O}(\mathbf{1})$ additions
Running time: $\mathbf{T}(\mathbf{n})=\mathbf{7 T}(\mathbf{n} / 2)+\mathbf{c}^{\prime} \mathbf{n}^{2} \Longrightarrow \mathbf{T}(\mathbf{n})=\mathbf{O}\left(\mathbf{n}^{\log _{2} 7}\right) \approx \mathbf{O}\left(\mathbf{n}^{2.8074}\right)$.

Further Progress

- Coppersmith and Winograd '90: O($\left.\mathbf{n}^{2.375477}\right)$
- Virginia Vassilevska Williams '13: O($\left.\mathbf{n}^{2.3728642}\right)$
- François Le Gall '14: O($\left.\mathbf{n}^{2.3728639}\right)$
- Josh Alman and Virginia Vassilevska Williams '21: O($\left.\mathbf{n}^{2.3728596}\right)$

Further Progress

- Coppersmith and Winograd '90: O($\left.\mathbf{n}^{2.375477}\right)$
- Virginia Vassilevska Williams '13: O($\left.\mathbf{n}^{2.3728642}\right)$
- François Le Gall '14: O($\left.\mathbf{n}^{2.3728639}\right)$
- Josh Alman and Virginia Vassilevska Williams '21: O($\left.\mathbf{n}^{2.3728596}\right)$

Is there an algorithm for matrix multiplication in $\mathbf{O}\left(\mathbf{n}^{2}\right)$ time?

Further Progress

- Coppersmith and Winograd '90: O($\left.\mathbf{n}^{2.375477}\right)$
- Virginia Vassilevska Williams '13: O($\left.\mathbf{n}^{\mathbf{2 . 3 7 2 8 6 4 2}}\right)$
- François Le Gall '14: O($\left.\mathbf{n}^{2.3728639}\right)$
- Josh Alman and Virginia Vassilevska Williams '21: O($\left.\mathbf{n}^{2.3728596}\right)$

Is there an algorithm for matrix multiplication in $\mathbf{O}\left(\mathbf{n}^{2}\right)$ time?
If you answer this (with proof!), automatic $\mathrm{A}+$ in course and PhD

See you Thursday!

