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Welcome!

Introduction to (the theory of) algorithms

� How to design algorithms

� How to analyze algorithms

Prerequisites: Data Structures and Discrete Math

� Small amount of review next lecture, but should be comfortable with asymptotic
notation, basic data structures, basic combinatorics and graph theory.

� Undergrads from prereqs.

� “Informal” prerequisite: mathematical maturity
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About me

� 8th time teaching this class (Fall 2014 - Fall 2021).
� I’m still learning – let me know if you have suggestions!
� I’d appreciate it if you watched lectures synchronously with your webcam on if possible, but
not required.

� Research in theoretical CS, particularly algorithms: approximation algorithms, graph
algorithms, distributed algorithms, online algorithms.

� Also other parts of math (graph theory) and CS theory (algorithmic game theory,
complexity theory) and theory of networking.

� O�ce hours: Wednesdays 2 - 4pm (zoom link on webpage; not lecture link).
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Administrative Stu↵

� TA: Isabel Cachola (CS PhD student). O�ce hours TBD

� Head CA: Tanuj Alapati (senior undergraduate). O�ce hours: Mondays 10am-12pm

� CAs: Many, still finalizing.
� Website:
http://www.cs.jhu.edu/~mdinitz/classes/IntroAlgorithms/Fall2021/

� Syllabus, schedule, lecture notes, . . .
� Campuswire for discussion/announcements
� Gradescope for homeworks/exams.

� Expectation is that you are in Baltimore and attending synchronously, even though course
is online.

� If you’re not in Baltimore, must be because of either disability or visa-related issue.
� Undergrads: o�cial accommodations.
� Grad students: permission from your department, email me, fill out WSE survey (see
Campuswire post)
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Course Size and Waitlist
Course is very full!

� 433: 75 enrolled, 31 waitlist

� 633: 75 enrolled, 28 waitlist

Problem with expanding: grading.

� Grading has to be done individually, by hand!

� Don’t know how many CAs will be assigned, but seems like fewer than past few years

If enough CAs get assigned, would like to allow junior/senior CS majors and CS MSE students
to enroll o↵ of waitlist

In meantime, if you’re on the waitlist:

� Take course in the spring!

� Or attend lectures, do homeworks.
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Assignments
Homeworks:
� Approximately every 1.5 weeks, posted on website (HW1 out, due next Tuesday!)
� Must be typeset (LATEX preferred, not required)
� Work in groups up ≤ 3 (highly recommended). But individual writeups.

� Work together at a whiteboard to solve, then write up yourself.
� Write group members at top of homework

� 120 late hours (5 late days) total

Exams: final. No midterm.
� Used to have midterm, but I don’t like exams for online courses. Trying without midterm
this year.

� Final: in person, scheduled by registrar. 3 hours, traditional, closed book.

Grading: 65% homework, 35% final exam,
� “Curve”: Historically, average ≈ B+. About 50% A’s, 50% B’s, a few below.

� Curve only helps! Someone else doing well does not hurt you.
� Be collaborative and helpful (within guidelines).
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Academic Honesty

� Cheating makes you a bad person. Don’t cheat.

� Cheating includes:
� Collaborating with people outside your group of three.
� Collaborating with your group on the writeup.
� Looking online for the solutions/ideas to the problem or related problems, rather than to
understand concepts from class.

� Using Chegg, CourseHero, your friends, . . . , to find back tests, old homeworks, etc.
� Uploading anything to the above sites.
� etc.

� Just solve the problems with your group and write them up yourself!
� Use the internet, classmates other resources to understand concepts from class, not to help
with assignments.

� In previous years, punishments have included zero on assignment, grade penalty, mark on
transcript, etc. ≥ 1 person has had PhD acceptance revoked.

Michael Dinitz Lecture 1: Introduction August 31, 2021 7 / 23



Academic Honesty

� Cheating makes you a bad person. Don’t cheat.
� Cheating includes:

� Collaborating with people outside your group of three.
� Collaborating with your group on the writeup.
� Looking online for the solutions/ideas to the problem or related problems, rather than to
understand concepts from class.

� Using Chegg, CourseHero, your friends, . . . , to find back tests, old homeworks, etc.
� Uploading anything to the above sites.
� etc.

� Just solve the problems with your group and write them up yourself!
� Use the internet, classmates other resources to understand concepts from class, not to help
with assignments.

� In previous years, punishments have included zero on assignment, grade penalty, mark on
transcript, etc. ≥ 1 person has had PhD acceptance revoked.

Michael Dinitz Lecture 1: Introduction August 31, 2021 7 / 23



Academic Honesty

� Cheating makes you a bad person. Don’t cheat.
� Cheating includes:

� Collaborating with people outside your group of three.
� Collaborating with your group on the writeup.
� Looking online for the solutions/ideas to the problem or related problems, rather than to
understand concepts from class.

� Using Chegg, CourseHero, your friends, . . . , to find back tests, old homeworks, etc.
� Uploading anything to the above sites.
� etc.

� Just solve the problems with your group and write them up yourself!
� Use the internet, classmates other resources to understand concepts from class, not to help
with assignments.

� In previous years, punishments have included zero on assignment, grade penalty, mark on
transcript, etc. ≥ 1 person has had PhD acceptance revoked.

Michael Dinitz Lecture 1: Introduction August 31, 2021 7 / 23



Academic Honesty

� Cheating makes you a bad person. Don’t cheat.
� Cheating includes:

� Collaborating with people outside your group of three.
� Collaborating with your group on the writeup.
� Looking online for the solutions/ideas to the problem or related problems, rather than to
understand concepts from class.

� Using Chegg, CourseHero, your friends, . . . , to find back tests, old homeworks, etc.
� Uploading anything to the above sites.
� etc.

� Just solve the problems with your group and write them up yourself!
� Use the internet, classmates other resources to understand concepts from class, not to help
with assignments.

� In previous years, punishments have included zero on assignment, grade penalty, mark on
transcript, etc. ≥ 1 person has had PhD acceptance revoked.

Michael Dinitz Lecture 1: Introduction August 31, 2021 7 / 23



Course Overview

� Introduction to Theory of Algorithms: math not programming.
� Two goals: how to design algorithms, and how to analyze algorithms.

� Sometimes focus more on one than other, but both important

� Algorithm: “recipe” for solving a computational problem.
� Computational problem: given input X, want to output f(X). How to do this?

� Things to prove about an algorithm:
� Correctness: it does solve the problem.
� Running time: worst-case, average-case, worst-case expected, amortized, . . .
� Space usage
� and more!

� This class: mostly correctness and asymptotic running time, focus on worst-case
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Why analyze? Why worst case?

� Obviously want to prove correctness!
� Testing good, but want to be 100% sure that the algorithm does what you want it to do!

� What is a “real-life” or “average” instance?
� Especially if your algorithm is “low-level”, will be used in many di↵erent settings.

� We will focus on how algorithm “scales”: how running times change as input grows. Hard
to determine experimentally.

� Most importantly: want to understand.
� Experiments can (maybe) convince you that something is true. But can’t tell you why!
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Example 1: Multiplication
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Multiplication I

Often an obvious way to solve a problem just from the definition. But might not be the right
way!

Multiplication: Given two n-bit integers X and Y. Compute XY.

� Since n bits, each integer in [0,2n − 1].
How to do this?

Definition of multiplication:

� Add X to itself Y times: X +X + ⋅ ⋅ ⋅ +X. Or add Y to itself X times: Y +Y + ⋅ ⋅ ⋅ +Y.

Running time:

� ⇥(Y) or ⇥(X).
� Could be ⇥(2n). Exponential in size of input (2n).
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Multiplication II

Better idea?

Grade school algorithm!

110110 = 54

x 101001 = 41

----------------

110110

110110

+ 110110

----------------

100010100110 = 2 + 4 + 32 + 128 + 2048 = 2214

Running time:

� O(n) column additions, each takes O(n) time �⇒ O(n2) time.

� Better than obvious algorithm!
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Multiplication III

Can we do even better?

Yes: Karatsuba Multiplication

XY = (2n�2A +B)(2n�2C +D)
= 2nAC + 2n�2AD + 2n�2BC +BD

Four n�2-bit multiplications, three shifts, three O(n)-bit adds.
Running Time: T(n) = 4T(n�2) + cn �⇒ T(n) = O(n2)
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Karatsuba Multiplication

Rewrite equation for XY:

XY = 2nAC + 2n�2AD + 2n�2BC +BD
= 2n�2(A +B)(C +D) + (2n − 2n�2)AC + (1 − 2n�2)BD

Three n�2-bit multiplications, O(1) shifts and O(n)-bit adds.
�⇒ T(n) = 3T(n�2) + c′n
�⇒ T(n) = O(nlog2 3) ≈ O(n1.585)
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�⇒ T(n) = O(nlog2 3) ≈ O(n1.585)
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Even Better Multiplication?

Can we do even better than Karatsuba?

Theorem (Karp)

There is an O(n log2 n)-time algorithm for multiplication.

Uses Fast Fourier Transform (FFT)

Theorem (Harvey and van der Hoeven ’19)

There is an O(n log n)-time algorithm for multiplication.
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Example 2: Matrix Multiplication
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Matrix Multiplication: Definition

Given X,Y ∈ Rn×n, compute XY ∈ Rn×n
� (XY)ij = ∑n

k=1 XikYkj

� Don’t worry for now about representing real numbers

� Assume multiplication in O(1) time

Algorithm from definition:

� For each i, j ∈ {1,2, . . . ,n}, compute (XY)ij using formula.

Running time:

� O(n2) entries, each entry takes n multiplications and n − 1 additions �⇒ O(n3) time.
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Strassen I

Break X and Y each into four (n�2) × (n�2) matrices:

X = A B

C D

Y = E F

G H

So can rewrite XY:

XY = AE +BG AF +BH
CE +DG CF +DH

Recursive algorithm: compute eight (n�2) × (n�2) matrix multiplies, four additions
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Strassen II

XY = AE +BG AF +BH
CE +DG CF +DH

Recursive algorithm: compute eight (n�2) × (n�2) matrix multiplies, four additions

Running time: T(n) = 8T(n�2) + cn2 �⇒ T(n) = O(n3).
Improve on this?
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Strassen III

XY = AE +BG AF +BH
CE +DG CF +DH

M1 = (A +D)(E +H) M2 = (C +D)E M3 = A(F −H)
M4 = D(G − E) M5 = (A +B)H M6 = (C −A)(E + F)
M7 = (B −D)(G +H)

XY = M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6
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Strassen IV

M1 = (A +D)(E +H) M2 = (C +D)E M3 = A(F −H)
M4 = D(G − E) M5 = (A +B)H M6 = (C −A)(E + F)
M7 = (B −D)(G +H)

XY = M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

Only seven (n�2) × (n�2) matrix multiplies, O(1) additions

Running time: T(n) = 7T(n�2) + c′n2 �⇒ T(n) = O(nlog2 7) ≈ O(n2.8074).
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Further Progress

� Coppersmith and Winograd ’90: O(n2.375477)
� Virginia Vassilevska Williams ’13: O(n2.3728642)
� François Le Gall ’14: O(n2.3728639)
� Josh Alman and Virginia Vassilevska Williams ’21: O(n2.3728596)

Is there an algorithm for matrix multiplication in O(n2) time?

If you answer this (with proof!), automatic A+ in course and PhD
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See you Thursday!
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