
601.433 / 601.633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Introduction, Karatsuba/Strassen Date: 8/31/21

1.1 Administrative Stuff

Welcome to Algorithms! In this class you will learn the basics of the theory of algorithms. Most
importantly, you will learn how to design and analyze algorithms with an eye towards provable
performance.

About me: This is my eigth time teaching this class. My research is in theoretical CS, and is
mostly in approximation algorithms, which we might touch on towards the end of the semester.
But I dabble in other areas of theory (algorithmic game theory, complexity theory, and distributed
computing mostly) and even occasionally collaborate with more practical people on problems in
computer networking and distributed systems.

Prerequisites: the official prereqs are Data Structures and Discrete Math. All undergrads should
have taken these already, and most graduate students should have taken equivalent classes. We will
quickly do some review in the next lecture, but you should already be comfortable with asymptotic
notation, basic data structures, and basic combinatorics and graph theory. The most important
thing, though, is that you are mathematically mature: you should know how to do a formal
mathematical proof, particularly by induction. If you’re not sure whether your background is
sufficient, please contact me.

Some beginning trivia for the class:

• This course is full. In the past I have allowed all junior and senior CS majors to enroll, and
I hope to do the same this year, but it depends on how many CAs this course is assigned.
I’m also hoping to allow any CS MSE students on the waitlist to enroll, but similarly have to
wait and see. If you are such a student, I would encourage you to wait and take it in a later
semester. But if you really want to take it this semester, for now be sure to attend lecture
and do the first homework. Hopefully spots will open up. And if you’re currently enrolled
but want to drop, please do so ASAP to free up spots.

• There is one TA, Isabel Cachola, who is a CS PhD student. Tanuj Alapati, a senior under-
graduate, is the head CA. There will also be some CAs, but these have not yet been finalized.
Office hours will be posted later, but mine are 2–4pm Wednesdays.

• The course website is http://www.cs.jhu.edu/~mdinitz/classes/IntroAlgorithms/Fall2021/.
All materials can be found there, including the syllabus with the official class policies and a
tentative schedule.

• Homeworks will generally be due every 1.5 weeks (three lectures). The first one, though is
out now and will be due next Tuesday (in order to make things line up and since it’s a review
homework anyway). Homeworks and deadlines will be posted on the course website as they
are released, so please stay up to date. You can work in groups of at most 3, but everyone
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needs to do their own, independent writeup. That is, collaboration is limited to talking and
working on the problems, and cannot include writing up the solutions. Please include who
you worked with at the top of your homework. There will likely be 8 homeworks, and you
are allowed 5 total late days (=120 late hours according to Gradescope)

• Turn in homeworks on Gradescope. We require homeworks to be typed (not handwritten),
and strongly prefer that you write them up using LaTeX (resources on course webpage).

• Final exam, date determined by the registrar. This exam will be in-person, since JHU is offi-
cially in-person this semester. See my post on Campuswire about taking this exam remotely
if you are not in Baltimore – the summary is that the only valid reasons to not be in Baltimore
are disability-related or visa-related, and you must have official permission and documenta-
tion of these. Undergraduates have an official process to go through, while graduate students
need permission from your department and should also email me.

• Unlike previous years, I’ve decided not to have a midterm – I don’t like remote exams, and
putting everyone physically in the same room just for a midterm doesn’t seem worth it to
me.

• Grading breakdown: 65% homeworks, 35% final.

• Compared to the same class in the spring (taught by Prof. Braverman), I tend to go faster
and cover more material. Some people like this, and some don’t. But our grade distribution
tends to be similar (if anything, I am a little more generous). I usually curve to approximately
a B+, so a bit less than 50% of students get some kind of A, a bit less than 50% get some
kind of B, and a few people get C’s and below.

• Please don’t cheat. Cheating makes you a bad person, and you don’t want to be a bad person.

• We will use Campuswire for content questions. I’ve been using Piazza the last few years, but
I’m going to try Campuswire this year. If you have a question about a lecture, homework,
book chapter, etc., please post it on Campuswire instead of emailing the instructor, TA, or
CAs. Not only does this get multiple eyes on your question, it also avoids duplication since
other students might have the same question.

• I have terrible handwriting. If there’s something you don’t understand, just ask!

1.2 Course Overview

This course is about the theory of algorithms. Note the word theory : there will be no programming
assignments in this class. Instead, we will do formal mathematical proofs about algorithms and,
at the end of the course, their converse: complexity theory. We will learn how to design efficient
and correct algorithms, and also how to analyze correctness, running time, and other properties of
algorithms.

What is an algorithm? A method for solving computational problems, sometimes explained as a
recipe. At a minimum we want to have correctness: the algorithm does correctly solve the problem,
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i.e. its outputs are what you think they are. Many times we also want other guarantees, e.g. that
it runs in time at most f(n) on any input of size n. This course will focus on both aspects: how to
design an algorithm, and how to prove that they meet the desired specification.

1.3 Why?

Obvious why we want to prove correctness. But why prove bounds on running time? Why not just
try on a bunch of examples to test experimentally if the algorithm is fast? Many reasons, including
but not limited to:

1. How do you know that your test instances are an accurate representation of “real-life” in-
stances? Particularly important for “low-level” algorithms – if the algorithm will be a sub-
routine for many different, larger algorithms, might encounter a huge variety of different
instances with different properties.

2. We will care about how running time changes with respect to the instance size, i.e. how
the algorithm scales. Hard (but not necessarily impossible) to determine scaling behavior
experimentally.

3. Perhaps most importantly, when we prove something about an algorithm, we understand
it. Experimental evidence does not provide any understanding – it wouldn’t be able to tell
us why the algorithm exhibits the behavior, just that it does. Forcing ourselves to prove
bounds forces us to really understand what’s going on. This is particularly true when paired
with complexity theory, which lets us provide lower bounds on algorithms. If we can prove
matching upper and lower bounds, we really understand a problem.

1.4 Karatsuba Multiplication

One of the reasons that it is interesting to study algorithms is that, surprisingly often, the “obvious”
way to do something from the definition is in fact quite bad. As an example, consider vanilla
multiplication. Suppose we want to multiply two n-bit numbers X and Y (so each number is
between 0 and 2n − 1). From the definition of multiplication, we could add X to itself Y times to
get X × Y . But this takes Θ(2n) additions, so at least that much time!

Better idea: grade-school algorithm. Suppose we want to multiply 54 and 41:

110110 = 54

x 101001 = 41

----------------

110110

110110

+ 110110

----------------

100010100110 = 2 + 4 + 32 + 128 + 2048 = 2214
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Algorithmically, we scan the second number from right to left, and each time we see a 1 we write
the first number (padded with an appropriate number of 0’s) down. We then add up each column
(with appropriate carries) to get the total. So 2n−1 additions, and each addition takes O(n) time.
Total time: O(n2).

So this shows that sometimes the “obvious” algorithm from the definition might not be the right
one. But is the grade-school algorithm the best possible? It turns out that the answer is no: better
algorithms are possible! The following algorithm is due to Anatoli Karatsuba, from 1962. Suppose
we want to multiply X and Y , both of which are n-bit numbers. We first rewrite them:

X = 2n/2A + B

Y = 2n/2C + D

Then we get that

XY = (2n/2A + B)(2n/2C + D) = 2nAC + 2n/2AD + 2n/2BC + BD (1.4.1)

Computing XY with this formula takes four n/2-bit multiplications, three shifts, and three O(n)-
bit adds. It turns out that each shift and add can be done in O(n) time (think about this at home
if you’re not sure). So if we let T (n) be the time necessary for this algorithm, we get the recurrence
relation

T (n) = 4T (n/2) + cn

where c is a constant that handles the cost of this shifts and adds. When we solve this recurrence,
we get that T (n) = O(n2), so we unfortunately have not made any progress. But now let’s rewrite
Equation (1.4.1):

XY = 2n/2(A + B)(C + D) + (2n − 2n/2)AC + (1 − 2n/2)BD

This looks a lot more complicated, but when we count the operations we see that there are only
three n/2-bit multiplications, together with a constant number of shifts and O(n)-bit additions. So
now the recurrence relation looks like

T (n) = 3T (n/2) + cn

(where the new c is larger than the old one, but still a constant). When we solve this, we get that
T (n) = O(nlog2 3) ≈ O(n1.585).

It turns out that while faster than the grade-school O(n2)-time algorithm, this still is not the fastest
possible (or even known). Using the Fast Fourier Transform (which we may discuss at the end of
the semester, time permitting), it is possible to design an O(n log2 n)-time algorithm (this was first
done by Dick Karp). Even this has been improved a few times and is still being worked on: the
state of the art is an O(n log n)-time algorithm due to David Harvey and Joris van der Hoeven
which was just published in March ’19!
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1.5 Matrix Multiplication

Another famous and important example of the “obvious” algorithm not being optimal is matrix
multiplication. Suppose we want to multiply matrix X and matrix Y , both of which are n× n (so
each contains n2 entries). The normal algorithm (which you should all know) computes the output
(i, j) entry by computing the inner product of the i’th row of X with the j’th column of Y . Each
inner product computation involves n multiplies and adds, so takes time O(n)1. Since we do this
computation for each entry of the output matrix, the total time is O(n3).

It turns out that there are faster algorithms for matrix multiplication that use the same basic ideas
as Karatsuba’s algorithm. The first, and most famous, of these is due to Volker Strassen, in 1969.
We start by breaking each of X and Y into four (n/2) × (n/2) matrices:

X =
A B

C D
Y =

E F

G H

It’s not hard to see that we can write XY using these 8 smaller (n/2) × (n/2) matrices:

XY =
AE + BG AF + BH

CE + DG CF + DH

This algorithm recursively computes 8 products of (n/2)× (n/2) matrices, and does 4 additions of
these matrices. Each addition takes time O(n2), so the running time for this algorithm is

T (n) = 8T (n/2) + cn2.

Solving this recurrence gives T (n) = O(n3), which is not an improvement over the previous algo-
rithm. However, Strassen realized that, like with Karatsuba, there is a way to compute the same
product using fewer multiplications. In particular, we compute the following 7 products:

M1 = (A + D)(E + H)

M2 = (C + D)E

M3 = A(F −H)

M4 = D(G− E)

M5 = (A + B)H

M6 = (C −A)(E + F )

M7 = (B −D)(G + H)

You can check that these seven matrices let us compute XY as follows:

XY =
M1 + M4 −M5 + M7 M3 + M5

M2 + M4 M1 −M2 + M3 + M6

1Note that here, unlike the previous example, we are assuming that a single add or multiply takes a constant
amount of time. This is an example of where the costs we use are determined from context and history.
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So now we’ve won! The recurrence relation for the running time is T (n) = 7T (n/2) + cn2, which
solves to T (n) = O(nlog2 7) ≈ O(n2.8074).

While Strassen’s algorithm was the first to break the n3 barrier, it too can be improved. The first
major improvement was due to Coppersmith and Winograd, who in 1990 gave an algorithm with
running time O(n2.375477). This was the best result known until recently: in 2011 Virginia Vas-
silevska Williams showed how to extend the Coppersmith-Winograd framework to get O(n2.3728642),
which was later improved by Le Gall to O(n2.3728639) in 2012. In 2021 this was improved by Josh
Alman and Virginia Vassilevska Williams to O(n2.3728596). But as far as we know, there could be
an O(n2)-time algorithm for matrix multiplication that no one has figured out yet!
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