601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Set Cover and Max k-Cover Date: 1/29/26

Today we’re going to talk about perhaps the most famous and fundamental covering problem:
Set Cover. We'll also talk about a very related problem known as Max k-Cover, or sometimes
as Maximum Coverage. Our real goal, though, is going to be understanding the use of greedy
algorithms in approximation algorithms. Greedy algorithms are used extensively in approximation
algorithms, so we’re just going to see some examples, but the type of analysis that we’re going to
do is very common, and Set Cover is most famous example of it. So it’s a good first problem to
start with.

3.1 Set Cover

Definition 3.1.1 The input in the Set Cover problem is a universe U, with |U| = n, and a family
of sets S1,852,...,Sm with S; C U for each i. Feasible solutions are index sets I C [m] such that
Uier Si = U, and the objective is to minimize |I|.

There’s an obvious greedy algorithm for Set Cover.

Algorithm 1 A greedy algorithm for SET COVER
Input: Universe U of n elements, family {S;}, of subsets of U.
Output: A minimum-size index set I C [m] satisfying | J,.; Si = U.
I+ 0,X+U
while X # () do
Let ¢ be the index maximizing | X N .S;]
I—i, X+ X\S;
end while
return [

Theorem 3.1.2 If OPT contains k sets, the greedy algorithm uses at most k(14 1n %) sets.

Proof: Let I; be the sets selected by the greedy algorithm in the first ¢ iterations. Let n; be the
number of uncovered elements after iteration t. Then ny; = n — | Uielt Sil,no =n, Iy = 2.

To prove this we will first prove the following claim.
Claim 3.1.3 n; < (1 — £)m41
Proof: Let J; = U\(U;¢;, Si), then OPT covers J;_1 with < k sets.

Because |J;—1| = ny—1, we know that OPT covers n;_; uncovered elements with < k sets. Therefore

there exists a set in OPT which covers at least nt,; L uncovered elements.

Because the greedy algorithm always chooses the set which covers most uncovered elements, the

greedy algorithm covers at least ntk‘ L uncovered elements at iteration t.

Therefore ny < ny_q1 — "tk’l =(1- %)nt,l]

Now, by induction, n; < (1 — %)tn Consider t = kln 7,

kln %
1 k —In2%
ng< | 1——+ n<e “k-n<

i n==k

S|

Note that this uses the inequality 1 4+ x < e* for all z € R, which is an incredibly useful inequality
that we will use regularly.

The greedy algorithm covers the remaining k elements using at most k sets, so the greedy algorithm
uses at most k + kIn = k(1 +In) sets overall.]

Corollary 3.1.4 The greedy algorithm is an O(logn)-approzimation for Set Cover
Proof: By Theorem we know that ALG/OPT <1+ In 557 < O(logn). |
Corollary 3.1.5 If|S;| < « for alli € [m], then the greedy algorithm is an O(log &) approzimation.

Proof: Clearly in this case we have that kK = OPT > n/a, since every set covers at most «
elements and there are n elements to cover in total. Thus Theorem implies that ALG/OPT <
1+ln%20(loga). []

Is the analysis tight? Yes. Consider the following example.

U = {al,...,an,bhw-7bnacla"‘7CN}7 Sl = {al,...,an}, SQ = {b17...;bn}7 SS = {017-..7071}7
S’L{:{ajvijcj | %<j§21%}’2:1”10gn+1

The greedy algorithm will choose all the set S/, i = 1,...,logn + 1, since each one covers exactly
half of the remaining elements. But the optimal solution is Sy, 59, S3.

Is there any better algorithm? No, due to a recent result of Dinur and Steurer [DS14]:

Theorem 3.1.6 Unless P = NP, there is no C - Inn-approx for set cover problem with constant
C <1

Feige [Fei98] showed a weaker result: Unless NP C DTIM E(nP°W1°8™) there is no C - In n-approx
for set cover problem with constant C' < 1.

3.2 Weighted Set Cover

Consider the following generalization, in which we assign weights to sets and try to minimize the
total weight of the sets chosen.

e Valid instances : Universe U, |U| = n. Family of sets F' = {S1,...,Sn}, S; C U for all 7.
Each set S; has a cost ¢;.

e Feasible solutions : A set I C [m] such that |J;c; S; = U.

e Objective function : Minimize) . ; ¢;.

In this context, the natural greedy algorithm is the following: In each iteration, pick a set which
maximizes 2umber of unccgs‘l’tef)ef‘iﬁl}eg;‘;ms in the set (this is called the density of the set), until all the ele-
ments are covered.

Theorem 3.2.1 The greedy algorithm is an H, = ©(logn)-approximation algorithm. Here H, =
1,1 1
1+§+§+...+*.

n

Proof: Let I; be the sets selected by the greedy algorithm up to ¢ iterations. Let n; be the number
of uncovered elements at iteration ¢. Let C* =} ;o py ¢i. Then ny = n—| Uz‘elt Sil,no =n, Iy = 2.

We first prove that in iteration t there is a set of reasonably large density remaining.
Claim 3.2.2 In iteration t, there exists a set in OPT with cost of the set < <

number of uncovered elements — ni_1°
Proof: Let J;=U\ (U

Suppose the claim is false. We have:

*

iel, Si), then OPT covers J;_1 with cost < ¢*.

C; c* C*
ot = Z c = Z %]Siﬁjt_1‘> Z 1S; 0 Jpq] > |Jy_q| = c*
i€OPT icOPT |5 01 Jp1] icopr -1 Ne—1

This is a contradiction, and hence the claim is true. [|

Thus the greedy algorithm picks a set with density = 2umber g(fslt‘rgcfoz’ﬁgeitelemems > "2:1 in iteration

t, since some such set exists and the greedy algorithm chooses the set with highest density.

. . S’ *
Now, assume the greedy algorithm picks S7,...,S;, then w;g%” < 5 Let oy = |S; N Ji—1| be
the number of elements that greedy covers in iteration ¢. Then ¢(S]) < x; nil
k k .
c(Greedy) = > c(S)) < 3wy
i=1 i=1
= zl% + xQnixl + 3 ’nl*xCl*IQ +..t Lk nfxlfxgcf...ka,l
1 1
4+ +ot
— c*(n n+n—x1 n—:rl_}__._
T X2
1 1
ot
+n—$1—...—1}k_1 n—l‘l—...—l‘k_l)
Tk
< R4+ 4+ +1)=cH,

Remark: In some scenarios it is natural to consider problem instances where n is small, but
m (the number of sets in the family) is extremely large (exponential in n). It is worth noting
that in order to function, the greedy algorithm just needs to be able to pick the set of maximum
density. Even when m is exponential, sometimes it is reasonable to assume that we can do this,
i.e. we can find the set of maximum density in polynomial time despite an exponential number of

sets. This is known as a “density oracle”, and if one exists then the greedy algorithm still gives an
H,-approximation in polynomial time.

In fact, it suffices to simply be able to approximate the density:

Theorem 3.2.3 If there exists an a-approzimation for the max density problem, then there exists
an aH,-approrimation for the original problem.

3.3 Small Frequencies

We can see the vertex cover problem as a special set cover problem: the universe U is the edge
set F, and the family of sets is {S, | v € V} where S, = {{u,v} | {u,v} € E}. But this view
naturally leads to the following question: why does vertex cover have a 2-approximation, when the
best possible for set cover is Inn?

Definition 3.3.1 The frequency of e € U is fo = |{i € [m] | e € S;}|, the number of sets in F that
contain e.

Theorem 3.3.2 If f. < f for all e € U, then there is an f-approximation algorithm for set cover
problem.

Algorithm: In each iteration, arbitrarily choose an uncovered element and select all the sets that
contain this element. Repeat until all elements covered.

This is an f-approximation for the same reason that our algorithm for vertex cover was a 2-
approximation. Informally, for every two elements e, e’ € U considered by this algorithm, there are
no sets which cover both e and ¢’ (or else whichever was covered first would have caused this set
to be included, so the algorithm would not consider the second element). Then OPT has to be at
least as large as the number of iterations of this algorithm. On the other hand, in each iteration
this algorithm only picks f sets. Hence it includes at most f - OPT sets.

3.4 Max k-Cover Problem

This is essentially the maximization version of Set Cover.

e Valid instances : Universe U, |U| = n. Family of sets F' = {S1,...,S,}, S; C U for all i.
Integer k < n.
e Feasible solutions : A set I C [m] such that || < k.

e Objective function : Maximizing ||J;c; Sil.

e Greedy algorithm : In each iteration, pick a set which covers most uncovered elements, until
k sets are selected.

Theorem 3.4.1 The greedy algorithm is a (1 — %)—appmximatz’on algorithm.

Proof: Let I; be the sets selected by the greedy algorithm up to t iterations, J; = U\(U,cy, Si)-
Assume the greedy algorithm picks Sy,...,S;. Let xy = [S; N Ji_1|, 2 = OPT = 3, v; =
OPT — |U;<, Sj|- The key inequality is that |OPT\ ;; S;| > 2.

4

We claim that:

Claim 3.4.2 Ti4+1 > %

Proof: Because OPT covers at least z; uncovered elements with & sets, we know that there exists
a set which covers at least 7 uncovered elements. From the property of the greedy algorithm,
Ty > 3 |

We also claim that:

Claim 3.4.3 z; < (1 —)'OPT.

Proof: We prove the claim by induction method. The base case is zg < OPT, which is clearly
true since zg = OPT. Now assume that z;_1 < (1 — %)i_lOPT. Then

- 1 1\’
Zi = Zi—1 — Ti < Zi—1 — sz1 = Zi-1 (1_k> < <1_k> OPT

Therefore proved. u

Now, we know that:

k k
Greedy = z; = OPT — z > OPT — (1 — i) OPT > OPT — Lopr - (1 — 1) OPT,
e e
i=1
which proves the theorem. [|

3.4.1 Minimum k-Union

You might notice that while Maximum k-Cover is the natural maximization variant of Set Cover,
there is a natural minimization variant of Maximum k-Cover other than Set Cover: the Minimum
k-Union problem, where our goal is to choose k sets in order to minimize the size of their union
(rather than maximize). It might not be obvious, but this turns out to be a radically different
problem, which is significantly more complicated. It is a bit too advanced for this course (or at
least the first few weeks of this course), but I am very interested in this problem, and the best
known algorithm is due to Eden Chlamtac¢, me, and Yury Makarychev from a few years ago:

Theorem 3.4.4 ([CDMT17]) There is an O(m/*+¢)-approzimation to Minimum k-Union for ev-
ery constant € > 0, and under plausible (but nonstandard) complezity assumptions there is no
o(m'/*)-approzimation.

References

[CDM17] Eden Chlamta¢, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight
approximations for small set bipartite vertex expansion. In Proceedings of the 2017
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 881-899, 2017.

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings

of the Forty-sixth Annual ACM Symposium on Theory of Computing, STOC 14, pages
624633, 2014.

[Fei98] Uriel Feige. A threshold of In n for approximating set cover. J. ACM, 45(4):634-652,
1998.

	Set Cover
	Weighted Set Cover
	Small Frequencies
	Max k-Cover Problem
	Minimum k-Union

