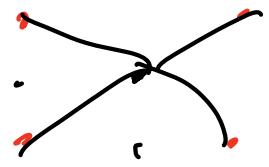


Steiner Tree:

- Input: - graph $h = (V, E)$
- costs $c: E \rightarrow \mathbb{R}^+$
- Terminals $T \subseteq V$

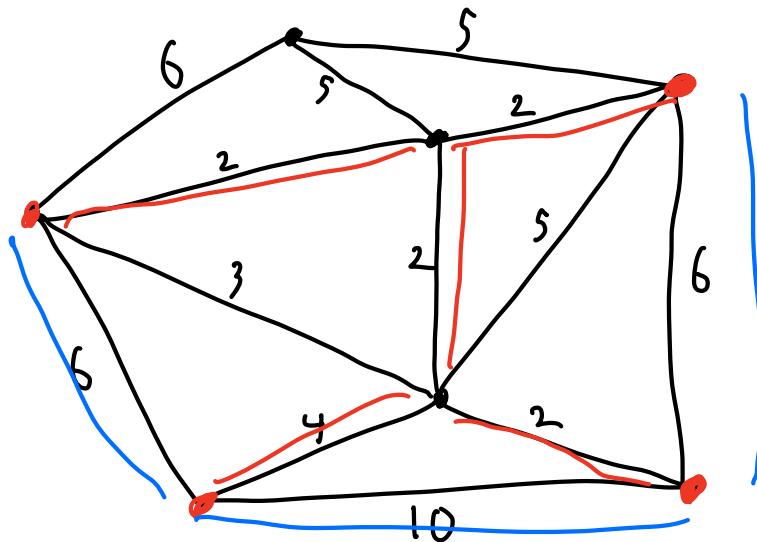


- Feasible solutions: $F \subseteq E$ s.t. F connected, spans all terminals

- Objective: $\min \sum_{e \in F} c(e) = \min_F c(F)$

$MS\bar{T}$: Steiner tree with $T = V$

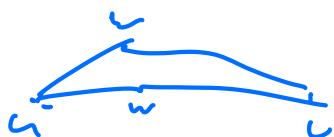
ST : ST with $T = \{s, t\}$



- terminals
- Steiner nodes (non-terminals)

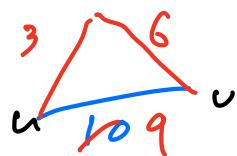
Def: $d: V \times V \rightarrow \mathbb{R}_{\geq 0}$ is a metric space on V if:

- $d(u, v) = 0$ iff $u = v$
- $d(u, v) = d(v, u) \quad \forall u, v \in V$
- $d(u, v) \leq d(u, w) + d(w, v) \quad \forall u, v, w \in V$ (triangle inequality)



Metric Steiner Tree: (special case of ST on a metric space)

- Input: V , metric $c: V \times V \rightarrow \mathbb{R}_{\geq 0}$ on V , terminals $T \subseteq V$
- Feasible: $F \subseteq V \times V$ s.t. F connected, spans all terminals
- Objective: $\min \sum_{e \in F} c(e)$



Thm: If there is an α -approx for Metric ST, then there is an α -approx for Steiner Tree

Def: The metric completion c' of $(G = (V, E), c)$ is the metric on V where $c'(u, v)$ is the cost of the shortest path between u and v under edge lengths c

Lemma: Let H be a solution (a Steiner Tree) for Steiner Tree problem on input (G, c, T) . Then H solution to Metric ST problem on input (V, c', T) with $c'(H) \leq c(H)$

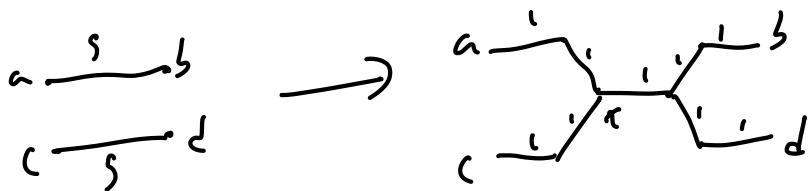
PF: H feasible for metric: ✓

$c'(u, v) \leq c(u, v)$ by def of c' $\forall \{u, v\} \in E$

$$\Rightarrow c'(H) = \sum_{e \in H} c'(e) \leq \sum_{e \in H} c(e) = c(H) \quad \checkmark$$

Lemma: Let H' be a solution to Metric Steiner Tree on (V, c', T) . Then there is some solution H to Steiner Tree on (G, c, T) with $c(H) \leq c'(H')$, and given H' we can find H in polytime.

Pf: Replace each $\{u, v\} \in H'$ by shortest $u-v$ path in G
 \Rightarrow subgraph \hat{H} of G , $c(\hat{H}) \leq c(H')$



Let H arbitrary spanning tree of \hat{H}

$$\Rightarrow c(H) \leq c(\hat{H}) \leq c'(H')$$

Pf of reduction thm:

Let A α -approx for metric ST. Given input (G, c, T) , run A on (V, c', T) to get H' ; use previous lemma to get H .

Let OPT_{metric} be opt solution for (V, c', T)
 OPT be opt solution for (G, c, T)

$$\begin{aligned}
 c(H) &\leq c(H') && \text{(lemma)} \\
 &\leq \alpha \cdot c(\text{OPTmetric}) && \text{(def of } \mathcal{A} \text{)} \\
 &\leq \alpha \cdot c(\text{OPT}) && \text{(def of OPTmetric)} \\
 &\leq \alpha \cdot c(\text{OPT}) && \text{(first lemma)}
 \end{aligned}$$

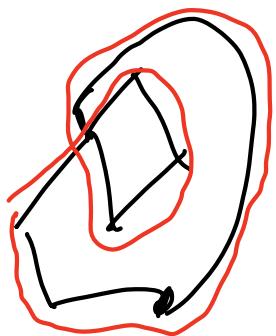
So just need to design good alg for metric case

Alg:

- Return $F = \text{MST}$ on terminals!

Claim: F is valid solution

if: Trivial; connected and spans T



Def: G is **Eulerian** if there is a closed tour that uses every edge exactly once

Thm: G is Eulerian iff connected, all degrees even (even holds for multigraphs).

Thm: ALG is a $2(1 - \frac{1}{|T|})$ -approximation

Pf:

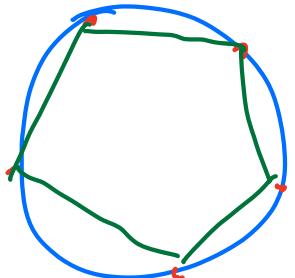
Let F^* optimal solution.

WTS: $c(F) \leq 2(1 - \frac{1}{|T|}) \cdot c(F^*)$

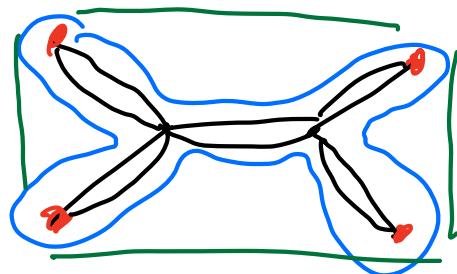
Plan: Find some spanning tree \hat{F} of T s.t.

$$c(\hat{F}) \leq 2(1 - \frac{1}{|T|}) \cdot c(F^*)$$

$\Rightarrow c(F) \leq c(\hat{F})$ since F MST of T



start with F^*



Double every edge: $2F^*$

All degrees even: Eulerian!

Tour C which uses every edge:

$$c(C) \leq c(2F^*) = 2c(F^*)$$

"shorten" C to only use terminals, see each terminal once: cycle H

Triangle inequality:

$$c(H) \leq c(C)$$

Remove heaviest edge of H : path \hat{F}

$$c(\hat{F}) \leq \left(1 - \frac{1}{|T|}\right) c(H) \leq 2 \left(1 - \frac{1}{|T|}\right) c(F^*) \quad \checkmark$$

Thm [Byrka, Grandoni, Rothvoß, Sanita]¹³: There is a $(\ln(4) + \varepsilon)$ -approx for Steiner Tree

Thm: Assuming $\text{P} \neq \text{NP}$, no approx alg with ratio $< \frac{96}{95}$

Metric TSP:

Input: Metric space (V, c)

Feasible: Hamiltonian cycle H cycle visiting all nodes once

Objective: $\min c(H) = \sum_{e \in H} c(e)$

Alg 1:

- Compute MST T
- Double T to get $2T$
- $2T$ Eulerian, so Eulerian tour C
- Shorten C to get H

Thm: $2(1 - \frac{1}{n})$ - approx

PT: Just like Steiner Tree!

Let H^* optimal solution,

F path from remaining heaviest edge from H^*

$$\Rightarrow c(H) \leq c(C) = c(2T) = 2c(T) \leq 2c(F)$$

shorten ↑

↑
For spanning tree

$$\leq 2(1 - \frac{1}{n})c(H^*)$$

Want to do better: Christofides' Algorithm

Why did we lose 2?

- Doubling MST

Why did we do that?

- Make it Eulerian

cheaper way to make MST Eulerian?

problem: odd degree nodes

Lemma: Let $G = (V, E)$ be a graph. Then there are an even # nodes with odd degree.

Pf:

$$\sum_{v \in V} d(v) = 2|E| \quad (\text{even})$$

Def: A **perfect matching** of $S \subseteq V$ is a matching on S of size $\frac{|S|}{2}$ (every node in S matched to other node in S)

Fact: Can find min-cost perfect matchings in polytime

Christofides' :

- Compute MST T
- Let D be odd-degree nodes in T
- Compute min-cost perfect matching M of D
- Let C be Eulerian tour of $T + M$
- Return $H =$ short-circuited C

Claim: Everything well-defined

Thm: $\frac{3}{2}$ -approximation

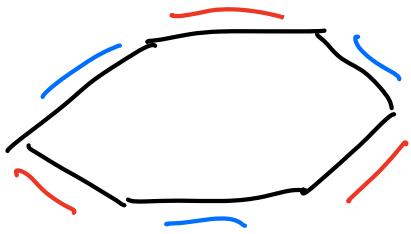
PF: Let H^* optimal solution

$$c(T) \leq c(H^*)$$

$$c(H) \leq c(C) = c(T) + c(M) \leq c(H^*) + c(M)$$

$$\text{So wTS } c(M) \leq \frac{1}{2} c(H^*)$$

Shortcut H^* to D , get H_0



$|D|$ even, so partition into "evens" M_1 and "odds" M_2
- each a perfect matching of D

$$c(M_1) + c(M_2) = c(H_0)$$

$$c(M) \leq \min(c(M_1), c(M_2)) \leq \frac{1}{2} c(H_0) \leq \frac{1}{2} c(H^*)$$

Thm [Karlin, Klein, Oveis Gharan]: There is a alg. w/
approx ratio $\frac{3}{2} - \epsilon$ for some $\epsilon > 10^{-36}$