

1/20/26: Intro, Vertex Cover

Course Staff:

- Me: www.cs.jhu.edu/~mdinitz/

- TAs: None!

Course webpage: (Not (ahus))

- www.cs.jhu.edu/~mdinitz/classes/ApproxAlgorithms/Spring2026/

- Courseware

- Gradescope

Prereq: Intro Algorithms

Grading: - 50% homework

- 35% final project

- 15% participation

Final project: Flexible!

- Possibly presentations last week of class, reports by scheduled exam

Note: PhD-level class!

- Course schedule more flexible

- Not much handholding

- Hopefully not a ton of work, so you can focus on research

Approximation Algorithms: What and Why

P: Solvable in polytime

NP: Verifiable in polytime

NP-hard: Problems that all problems in NP reduce to in polytime

NP-complete: in NP and NP-hard

Given NP-hard optimization problem, what do we want that NP-hardness prevents?

1. Find the optimal solution
2. In polynomial time
3. For every instance

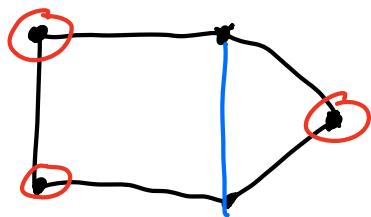
Could relax any of these!

Problem consists of:

- 1) Description of inputs/instances
- 2) Description of **feasible** solutions for input
- 3) Objective function

Example: Vertex Cover

- Input: Graph $G = (V, E)$
- Feasible solutions: $V' \subseteq V$ s.t. $e \cap V' \neq \emptyset \forall e \in E$
- Objective: minimize $|V'|$



Def: The **optimal solution** is the feasible solution with the best objective value

Def: A some problem, I instance of A

- ALG: some algorithm for A

- OPT(I): objective value of optimal solution for I

- ALG(I): objective value of solution returned by ALG on I

ALG is an α -approximation if:

- always returns a feasible solution

- runs in polytime

- $\frac{\text{ALG}(I)}{\text{OPT}(I)} \leq \alpha$ \forall instances I of A (min problem)

$\frac{\text{ALG}(I)}{\text{OPT}(I)} \geq \alpha$ \forall instances I of A (max problem)

α is the approximation ratio or approximation factor

why?

- really do need algorithms for NP-hard problems!

- "fine-grained complexity": not all NP-hard problems are the same!

A_1, A_2 problems.

A_1 : design a 2 -approximation

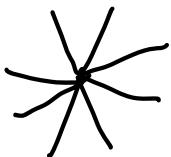
A_2 : Assuming $P \neq NP$, no α -approx for $\alpha < 10$

- forcing ourselves to handle worst-case forces new techniques

Approximating Vertex Cover

Idea 1: Arbitrarily add vertices until have feasible vertex cover

Star:

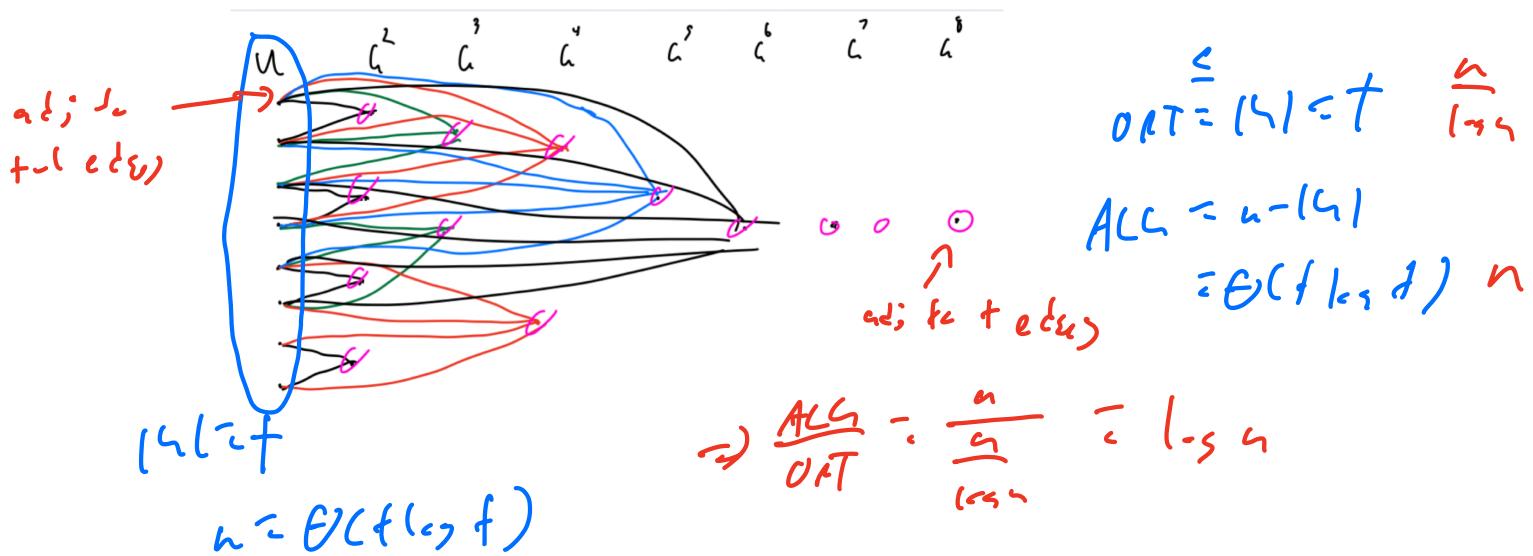


OPT: 1

ALG: $n-1$

Idea 2: Greedy algorithm

Add node covering most uncovered edges



ALG: n

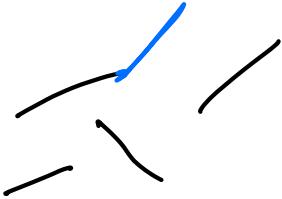
OPT: $\frac{n}{\log n}$

Better Algorithm:

```
-  $S = \emptyset$ 
- while  $E \neq \emptyset$  {
    - Let  $\{u, v\}$  be arbitrary edge
    -  $S \leftarrow S \cup \{u, v\}$ 
    - Remove  $u, v, \text{ all incident edges}$  from  $G$ 
}
```

Poly time:

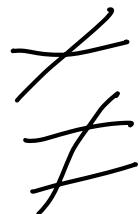
Lemma: S feasible (S a vertex cover)

Pf: 

Def: $M \subseteq E$ is a **matching** if no two edges in M share an endpoint: $e \cap e' = \emptyset \quad \forall e, e' \in M$ with $e \neq e'$

Lemma: Let M be a matching, and S be a vertex cover. Then $|S| \geq |M|$

PF:



Thy: Algorithm is a 2-approx.

PF: polytime, feasible: \checkmark

Let S^* optimal vertex cover.

wTS: $|S| \leq 2|S^*|$

structure of edges considered by algorithm: matching M
def of AGL

$$\Rightarrow |S| = 2|M| \leq 2|S^*|$$

by lemma

Q: Are we happy?

Q1: Is analysis tight?

A: yes (star, $k_{\epsilon, \eta}, \dots$)

Q2: Is algorithm tight?

- Best known approx: $2 - \frac{1}{\sqrt{1+\epsilon}}$

- Assuming P \neq NP, no alg better than $|10\sqrt{5} - 2| \approx 1.3606$ approx

- Assuming UGC, \forall constant $\epsilon > 0$ there is no $(2 - \epsilon)$ -approx