601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Intro, Vertex Cover Date: 1/20/26

1.1 Introduction, Course Info

Welcome to Approximation Algorithms! A quick overview of the syllabus, and a few notes:

e Who am [: I'm an associate professor in the theory group, where I focus on the theory of al-
gorithms, particularly approximation algorithms and algorithmic problems arising from com-
puter networking and distributed computing. I particularly like “network design problems”,
which we’ll talk about pretty extensively in this course, starting on Thursday.

e TAs: None!

e Prerequisite: Intro to Algorithms. This class will be extremely difficult (if not impossible) if
you’re not familiar with the content from that class.

e This is designed to be a PhD-level class. I'm excited that others are taking it, but it’s still
designed for PhD students. What does this mean? Among other things, the following.

— The course will not have as strict a timetable/schedule as an undergrad course. The
schedule, including lecture topics, homework due dates, etc., will be played a bit by ear.

— There won’t be a lot of handholding. I will give the high level view and some details,
but I'll also assume that you can fill in the blanks. But please come to office hours or
get in touch with me if there’s something you don’t understand!

— Hopefully this class won’t be as much work as my undergraduate class (Intro to Algo-
rithms), since PhD students should mostly be focused on research. But it will definitely
move faster.

— Basically: this should be a fun class where you learn a lot but don’t need to work a lot,
but the material is not particularly simple!

e Textbook: The Design of Approximation Algorithms, by Williamson and Shmoys. You can
download a copy from http://www.designofapproxalgs.com/. We’'ll be taking a lot of
liberties with the book, though — we’ll be following it only very loosely.

e Course website: http://www.cs.jhu.edu/~mdinitz/classes/ApproxAlgorithms/Spring2026/.

e Online discussion group: we’ll be using Courselore| for online discussion. You can join with
this link.

e Grade breakdown: 50% homework, 35% final project, 15% participation.

— Homeworks: probably around 5. Can work in groups of up to three people, but must
write up solutions separately and turn them in separately (on gradescope).

http://www.designofapproxalgs.com/
http://www.cs.jhu.edu/~mdinitz/classes/ApproxAlgorithms/Spring2026/
https://www.courselore.org/
https://courselore.org/courses/1316055748/invitations/4133350118

— Final Project: I'm going to be very flexible — this can be almost whatever you want.
You can work in small groups if you want. My current plan is to have you all do
presentations during the last week of class, and then turn in a final report when the
final exam would be scheduled. Or we might also have presentations during the final
exam slot. If you’re a PhD student in some other area, maybe find some application of
approximation algorithms in your area. If you're an MSE or undergrad student, maybe
find an area that we talk about that you’re interested in and dig into it deeper, or find
some recent research that looks exciting and write about it. Before you start working,
though, run your idea by me so I can make sure that it’s reasonable. If you’re stuck on
ideas, feel free to ask me, and maybe look at some approximation algorithms papers that
have recently appeared in the major conferences: STOC, FOCS, SODA, and APPROX
are the most important ones, but approximation algorithms papers appear all over.

— Participation: I'm not going to take attendance or anything, but I do expect you to come
to lecture and participate, as well as be active on campuswire, come to office hours, etc.
Basically, I want to see that you’re engaged with the class. This is a graduate class —
you have to be engaged to actually get anything out of it.

1.2 Approximation Algorithms: What and Why

Recall the following (informal) definitions from undergrad algorithms:

e P: problems decidable / solvable in polynomial time

e NP: problems decidable/solvable in nondeterministic polynomial time. Equivalently: solu-
tions can be written down and verified in polynomial time.

e NP-hard: Problems that all problems in NP reduce to in polynomial time. Solving one in
polynomial time would imply that P = NP

e NP-complete: in NP and NP-hard.

Our main motivation (but not the only possible motivation) for studying approximation algorithms
is that we believe that P = NP, but we still want to solve NP-hard optimization problems. So what
can we do? Let’s actually think in a bit more detail about what we “want” that NP-hardness is
telling us we can’t do. Given an optimization problem, we would like to:

1. find the optimal solution,
2. in polynomial time,
3. for every instance.
Assuming the P # NP, we cannot get all three of this. What should we give up on? If we give up

on the third condition, we start designing algorithms for special cases (e.g., “random” instances).
If we give up on the second condition, we start designing algorithm that are (hopefully) fast in

practice but might be slow in theory. This, for example, is where all of the integer programming
work in the OR community is. If we give up on the first condition (but don’t give up on theory),
then we get the topic of this class: approximation algorithms.

Slightly more formally (but still pretty informally), a problem consists of three things:
1. An input / instance,
2. Description of the feasible solutions for the input, and
3. An objective function.
Let’s see an example.
Definition 1.2.1 The VERTEX COVER problem is defined as follows:
o Input: Graph G = (V,E)
e Feasible solutions: V' CV such that |eN'V'| > 1 foralle € E
e Objective: minimize |V'|
VERTEX COVER is known to be NP-hard (we proved this in 433/633).

Definition 1.2.2 The optimal solution s the feasible solution with the best objective value.

Definition 1.2.3 Let A be some problem, and let I be an instance of that problem. Let OPT(I) be
the value of the optimal solution on that instance. Let ALG be a polynomial-time algorithm for A,
and let ALG(I) denote the value of the solution returned by ALG on instance I. Then we say that

ALG is an a-approximation if ALG always returns a feasible solution, runs in polynomial time,
and if

s

LG(I
PTEI < « for all instances I of A, where A is a minimization problem

LG(I
T(I > « for all instances I of A, where A is a maximization problem

Ol O

The value a above is called the approximation ratio or approximation factor.

Note: as defined a > 1 for minimization problems and a < 1 for maximization problems. We could
change the definition for the maximization case to be OPT(I)/ALG(I) < «, in which case a would
be at least 1 for both cases. Sometimes we’ll do this — it should be clear from context. Ask if you're
not sure.

So for VERTEX COVER, and a-approximation would be an algorithm which always returns a feasible
vertex cover with at most « times as many vertices as the optimal solution.

So why study approximation algorithms? There are a few reasons, aside from the fact that it’s fun.

e We want to solve NP-hard problems! If we can’t solve them, still want to get as close as
possible, and don’t want to give up on theoretical guarantees.

1.3

Let’s

“Fine-grained” hardness. By definition, all NP-complete problems can be reduced to each
other, so they are in some sense “equally hard”. But problems with a 1.01-approximation
are “easier” than problems with only an O(logn)-approximation. So approximability let’s us
make more nuanced distinctions between NP-complete problems.

Forcing ourselves to still give worst-case guarantees helps us develop new and useful algorith-
mic techniques.

Approximating Vertex Cover

try to design our first approximation algorithm. What would be some natural approaches?

. Idea 1: Pick an arbitrary vertex with at least one uncovered edge incident on it, add it to the

cover, and repeat. Unfortunately this is arbitrarily far from optimal: see the star graph.

. Idea 2: Instead of picking arbitrarily, let’s try to pick smartly. In particular, an obvious thing

to try is the greedy algorithm: pick the vertex with the largest number of uncovered edges
incident to it, and add it to the cover. Repeat until all edges are covered.

While this is a better idea, it’s still not very good. We’ll give a quick overview of the
counterexample, but fleshing out the details is a good exercise to do at home. Consider a set
U of t nodes. For every i € {2,3,...,t}, divide U into [t/i] disjoint groups of size exactly 4
(if 7 does not divide ¢, then there will be less than i nodes which are not in any group). Let
the groups for value i be G%,GY, .. "Git/ij' For every i € {2,...,t} and every j € [[t/i]], we
create a vertex U;- and add edges between v} and every node in G; We refer to the nodes
{U;'}J'E[Lt/iﬂ as layer i nodes. A rough sketch of this graph is in Figure m

7 b
(R A

Figure 1.3.1: Bad example for greedy algorithm for Vertex Cover

It is easy to see that in this graph, every node in U has degree at most ¢t —1 since it is adjacent
to at most one node from each layer. Every node in layer ¢ has degree exactly i. So at the
beginning of the algorithm, the maximum degree node is the one node v} in layer t. After we
pick this node, the nodes in U now have degree at most ¢ — 2, so the algorithm woul next pick

the node in layer t — 1. It is easy to see by induction that this will continue: the algorithm
will always choose the nodes in the largest remaining layer rather than the nodes in U.

Notice that OPT(G) < t, since U itself is a vertex cover of size t. On the other hand, we just

argued that '
) gy S A |

=2 =2 =2

Since ALG(G)/OPT(G) > logt is not a constant, the greedy algorithm is not an a-approximation
for any constant a.

OK, so now let’s find some algorithms which work better. Here’s an algorithm which sounds stupid
but is actually pretty good: Pick an arbitrary edge which is not yet covered. Add both endpoints
to the cover, and repeat. More formally, consider the following algorithm:

e S=1
e While E # (:
— Let {u,v} € F be an arbitrary edge
- S« Su{u,v}
— Remove u, v, and all their incident edges from G

e Return S.

I claim that this algorithm is a 2-approximation. First, let’s show that it runs in polynomial time.
Lemma 1.3.1 The algorithm runs in polynomial time

Proof: In every iteration two vertices are deleted from G. Thus there are at most n/2 iterations.
Clearly each iteration takes polynomial time, and thus the total running time is polynomial. [|

Now let’s show that it returns a feasible solution.
Lemma 1.3.2 S is a vertex cover (a feasible solution).

Proof: Consider an arbitrary edge {u,v} € E. It was deleted in some iteration, since the
algorithm terminates with no remaining edges. In the iteration in which it was deleted, either u or
v (or both) was added to S. Thus |S N {u,v}| > 1.]

Now we’ll start to prove that approximation ratio. A simple definition and lemma will help us.

Definition 1.3.3 M C FE is a matching if no two edges of M share an endpoint, i.e., ifeNe’ =
for all e,e’ € M with e # €.

Lemma 1.3.4 Let M be a matching and let S be a vertex cover. Then |S| > |M]|.

Proof: Every e € M must have at least one endpoint in S. Since no two edges in M share an
endpoint, |S| > |M].]

Theorem 1.3.5 The algorithm is a 2-approximation for VERTEX COVER

Proof: Lemmal[l.3.T]implies that the algorithm runs in polynomial time, and Lemma|[T.3.2]implies
that it always returns a feasible solution. So we just need to prove that it has approximation ratio
of at most 2.

Let S* denote the optimal vertex cover, and let M be the set of all edges selected in the first line
of the while loop. Then by construction, |S| = 2|M], since for every edge in M we include both
endpoints in S. Moreover, M is a matching, since after we choose an edge we delete both of its
endpoints, so no future edges we choose can share an endpoint with it. So by Lemma we
know that |S*| > |M|. Hence |S| < 2|M| < 2|57 []

So we have our first approximation algorithm!

One more note about this: what was the key step? If you think about it, the key step in the analysis
was Lemma which let us claim that |S*| > |M|. We wanted to show that |S| < 2|S*|, and
since we designed the algorithm we can usually say something about |S|. But relating that to [S*|
is the tricky bit. This step, of lower bounding the optimal solution (or for a maximization problem
of upper bounding it), is often the trickiest part of designing approximation algorithms. Later in
the semester we’ll talk about techniques that make this step a little easier / more automatic.

Whenever we design an approximation algorithm, we should keep two questions in mind.

1. Question: Is the analysis tight? That is, is 2 the best possible approximation ratio we could
prove for this algorithm?

Answer: Yes. Many easy examples, such as K, ,, where the algorithm picks exactly twice as
many vertices as is necessary.

2. Question: Is the algorithm tight? That is, is there a different algorithm with a better ap-
proximation ratio? This is usually a much tougher question.

1
Viogn
Karakostas [Kar09]. Assuming P # NP, there is no polynomial-time algorithm which gives

better than a 10v/5 — 21 a 1.3606 approximation [DS05] (in other words, it is NP-hard
not just to solve VERTEX COVER, but to give a better than 101/5 — 21 approximation). If
we make an assumption stronger than P # NP known as the Unique Games Conjecture,
then for any constant € > 0 there is no polynomial-time algorithm which is better than a
(2 — €)-approximation [KROS].

Answer: Yes and no. The best known algorithm is a (2 —

)-approximation due to

References

[DS05] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.
Ann. of Math. (2), 162(1):439-485, 2005.

[Kar09] George Karakostas. A better approximation ratio for the vertex cover problem. ACM
Trans. Algorithms, 5(4):41:1-41:8, November 2009.

[KRO8] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within
2 —e. Journal of Computer and System Sciences, 74(3):335 — 349, 2008. Computational
Complexity 2003.

	Introduction, Course Info
	Approximation Algorithms: What and Why
	Approximating Vertex Cover

