
601.435 / 601.635 Approximation Algorithms Spring 2026
Homework #1 Due: February 12, 2026, 9:00am

Reminder: you may work in groups of up to three people, but must write up solutions entirely
on your own. Collaboration is limited to discussing the problems – you may not look at, compare,
reuse, etc. any text from anyone else in the class. Please include your list of collaborators on the
first page of your submission. Many of these problems have solutions which can be found on the
internet – please don’t look. You can of course use the internet (including the links provided on
the course webpage) as a learning tool, but don’t go looking for solutions.

Please include proofs with all of your answers, unless stated otherwise.

1 k-suppliers (33 points)

The k-suppliers problem is similar to k-center. We are given a metric space (V, d) and a natural
number k. However, in k-suppliers the set of points V is partitioned into two sets: the suppliers
F and the customers D = V \ F . The goal is to find a set of suppliers S ⊆ F with |S| = k that
minimizes maxu∈D d(u, S). Give a 3-approximation algorithm for this problem. Hint: think about
the greedy 2-approximation for k-center from class

2 Hardness of Minimum Degree Spanning Tree (33 points)

In the minimum degree spanning tree (MDST) problem we are given a graph G = (V,E), and are
asked to find the spanning tree which minimizes the maximum degree. Prove that unless P = NP,
there is no α-approximation for this problem with α < 3/2.

Hint: consider the Hamiltonian Path problem, which is known to be NP-hard. If there is a
Hamiltonian path, what does that imply about the MDST? If there is no Hamiltonian path, what
does that imply aout the MDST?

3 Edge-Disjoint Paths (34 points)

In the edge-disjoint paths problem (EDP), the input is an undirected graph G = (V,E) and a set
T = {(s1, t2), (s2, t2), . . . , (sk, tk)}, such that si, ti ∈ V for all i ∈ [k]. A feasible solution is a set
I ⊆ [k] and for all i ∈ I a path Pi between si and ti, with the additional constraint that Pi∩Pj = ∅
for i, j ∈ I with i ̸= j (where we view paths as edge sets). In other words, a feasible solution is
a set of edge-disjoint paths between a subset of the pairs in T . The objective is to maximize |I|,
i.e. the number of edge-disjoint paths that we can find.

Consider the following greedy algorithm, where initially I ← ∅:

1. Repeat until all pairs (si, ti), i ̸∈ I are disconnected in G:

(a) Let i∗ ∈ [k] \ I be the index which minimizes the distance between si and ti in G, i.e. i∗

is the index of the closest pair in G.

(b) Let Pi∗ be a shortest path between si and ti in G.

(c) Add i∗ to I and choose path Pi∗ for i∗, and remove all edges of Pi∗ from G.

1

2. Return I

Informally, this algorithm just always picks the shortest possible path remaining, then deletes
this path from the graph and continues. Prove that this is an O(

√
m)-approximation (where

m = |E|).
Hint: divide paths up into short paths (length at most

√
m) and long paths (length larger than√

m).

2

	k-suppliers (33 points)
	Hardness of Minimum Degree Spanning Tree (33 points)
	Edge-Disjoint Paths (34 points)

