
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Rounding and DP: Min-Makespan Scheduling Date: 2/15/24
Scribe: Michael Dinitz

8.1 Makespan Scheduling

Consider the Makespan Scheduling Problem

Input: Jobs J = {1, 2, . . . , n}
Processing times p : J → N
Machines M

Feasable: Φ : J →M

Objective: Minimize makespan (max load): minmax
i∈M

∑
j∈J :Φ(j)=i

p(j)

8.1.1 Greedy

Like with knapsack, there’s a pretty easy greedy 2-approximation.

Algorithm 1 Greedy Min-Makespan Algorithm

Input: J,M, p
Output: Φ : J →M

Φ← ∅
for j ∈ J do
m← least loaded machine in Φ
Set Φ to assign job j to machine m.

end for
return Φ

Theorem 8.1.1 This algorithm is a 2-approximation.

Proof: Consider the following two simple observations:

1. ∀j ∈ J, p(j) ≤ OPT (since every job needs to be scheduled on some machine)

2.
∑

j∈J p(j)

|M | ≤ OPT

Let m be the machine whose load equals the makespan of the greedy algorithm (i.e. the most
heavily loaded machine after the algorithm completes). Let j be the last job assigned to m by the
algorithm. Then just before j was assigned to m, by the second observation we know that the load
of m was at most OPT. By the first observation the processing time for j is at most OPT, and
since j was the last job assigned to m we get that the total load on m is at most 2×OPT.

1

8.1.2 Dynamic Programming Algorithm

Now we’re going to try to find a (1 + ϵ)-approximation.

Let us suppose we have an algorithm which, given some guess T , will either

1. if T ≥ OPT , return a solution with makespan at most (1 + ϵ)T

2. if T < OPT , either return false or return a solution with makespan at most (1 + ϵ)OPT

Such an algorithm is sometimes called a (1 + ϵ)-relaxed decision procedure.

Definition 8.1.2 Let P =
∑

i∈J p(i). Clearly 1 ≤ OPT ≤ P .

Since 1 ≤ OPT ≤ P , if we have access to a (1 + ϵ)-relaxed decision procedure we can use it
O(logP) times to do a binary search on different values of T (between 1 and P) to find a (1 + ϵ)-
approximation. Since logP is polynomial in the input size, if the relaxed decision procedure runs
in polynomial time then we have a (1 + ϵ)-approximation for Makespan Scheduling that runs
in polynomial time.

Hence we will now only be concerned with designing a (1+ ϵ)-relaxed decision procedure. Since we
are now given a guess T , we can define small and large jobs with respect to T .

Definition 8.1.3 Let Jsmall = {j ∈ J : p(j) ≤ ϵT} and Jlarge = {j ∈ J : p(j) > ϵT}
Theorem 8.1.4 Given a schedule for Jlarge with makespan at most (1+ϵ)T , we can find a schedule
for all of J with makespan at most (1 + ϵ)max(T,OPT)

Proof: We greedily place small jobs. More specifically, we start with the schedule for large jobs
guaranteed by the theorem. We then consider the small jobs in arbitrary order, and for each job
we consider we place it on the least-loaded machine.

Consider a machine i. We break into two cases, depending on whether i was assigned any small
jobs.

Case 1: i has no small jobs. Then the jobs on i are exactly the large jobs which were originally
scheduled on it. Hence its makespan is at most (1 + ϵ)T because its load is bounded by the
given solution to Jlarge.

Case 2: i has one or more small jobs. Then we can repeat the analysis of the greedy algorithm
from earlier, but now using the fact that the jobs added are all small. In particular, the load
on i before the last job was added to it was smaller than the load on any other machine (by
the definition of the greedy algorithm), and hence just before the last job was added to i is
has load at most P

M ≤ OPT . The last job added has processing time at most ϵT since it is
small, and therefore the final load on i is at most OPT + ϵT ≤ (1 + ϵ)max(T,OPT).

Since the above analysis holds for an arbitrary machine i, it holds for every machine and thus the
makespan is at most (1 + ϵ)max(T,OPT).

Given the above theorem, from this point forward we will only consider methods for solving
Makespan Scheduling for Jlarge

2

Definition 8.1.5 Let b = ⌈1ϵ ⌉, so
1
b ≤ ϵ.

Definition 8.1.6 Let p′(j) = ⌊p(j)b
2

T ⌋ · T
b2

We can think of p′(j) as rounding p(j) down to the nearest multiple of T/b2. In particular, we
get that p′(j) ≤ p(j) ≤ p′(j) + T

b2
. Also, since j ∈ Jlarge we know that ϵT ≤ p(j) ≤ T , so

T/b ≤ p′(j) ≤ T and hence p′(j) = k · T
b2

for some k ∈ {b, b + 1, . . . , b2}. We will call this new
instance the rounded instance.

Lemma 8.1.7 If there is a schedule with makespan at most T in the original instance, then there
is a schedule with makespan at most T in the rounded instance.

Proof: Consider the schedule with makespan at most T in the original instance. Since p′(j) ≤ p(j)
for all j, this schedule has makespan at most T under the rounded processing times.

Theorem 8.1.8 Any schedule with makespan at most T in the rounded instance has makespan at
most (1 + ϵ)T under the original processing times.

Proof: Since p′(j) ≥ T
b , there are at most b jobs on each machine. Thus under the original

processing times, for any machine i the load is at most∑
j assigned to i

p(j) ≤
∑

j assigned to i

(
p′(j) +

T

b2

)
=

∑
j assigned to i

p′(j) +
∑

j assigned to i

T

b2
≤ T +

∑
j assigned to i

T

b2

≤ T + b · T
b2

=

(
1 +

1

b

)
T ≤ (1 + ϵ)T,

proving the theorem.

Thus in order to find a solution with makespan at most (1+ ϵ)T to the original instance (assuming
a schedule of makespan at most T exists), we just need an algorithm that computes a solution to
the rounded instance with makespan at most T . Fortunately, since we have bounded the number
of possible job lengths, this is reasonably straightforward using dynamic programming.

Definition 8.1.9 Let a configuration be a tuple (ab, ab+1, . . . , ab2) with each ai ∈ {0, 1, 2, . . . , b},
such that

∑b2

i=b(ai · i ·
T
b2
) ≤ T . Let C(T) be a set of all configurations. Note that |C(T)| ≤

(b+ 1)b
2−b ≈ bb

2

The point of this definition is that in any schedule with makespan at most T in the rounded
instance, the jobs assigned to each machine are described by a configuration. In other words, for
each machine i, there is some configuration (ab, . . . , ab2) such that there are exactly ak jobs of length
k · T

b2
assigned to it for each k ∈ {b, b+ 1, . . . , b2}. Thus in order to find a schedule with makespan

at most T in the rounded instance we just need to find a configuration for each machine so that
every job is assigned to some machine.

Definition 8.1.10 Let f(nb, nb+1, . . . , nb2) be the minimum number of machines needed to schedule
ni jobs of length i · T

b2
, (for all i ∈ {b, b+ 1, . . . , b2}) with makespan at most T .

3

Clearly f(0, 0, ..., 0) = 0. Now we can write a recurrence relation for other inputs:

f(nb, nb+1, . . . , nb2) = 1 + min
a⃗∈C(T),ai≤ni

f(nb − ab, nb+1 − ab+1, . . . , nb2 − ab2)

This is a correct relation because it essentially tries all possible configurations for one machine,
recursing on the rest. Consider a dynamic program for this function. Since each ni ≤ n, clearly the
number of table entries of the dynamic program is at most nb2 . Since the number of configurations
is at most bb

2
, computing each table entry given the previous ones takes at most O(bb

2
) time. Hence

the total running time of this dynamic program is at most O(nO(b2)).

With this function f in hand, we are finished. Suppose the rounded instance has ni jobs of length
i · T

b2
. Then we can just check whether f(nb, nb+1, . . . , nb2) is at most m (the number of machines

we have available). If no, then we return false – there is no schedule of makespan at most T in
the rounded instance and thus by Lemma 8.1.7 no schedule of makespan at most T in the original
instance. If yes, then by Theorem 8.1.8 this schedule has makespan at most (1 + ϵ) on the original
instance.

4

	Makespan Scheduling
	Greedy
	Dynamic Programming Algorithm

