
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Set Cover and Max k-Cover Date: 1/30/24
Scribe: Michael Dinitz

Today we’re going to talk about perhaps the most fundamental covering problem: Set Cover. We’ll
also talk about a very related problem known as Max k-Cover, or sometimes as Maximum Coverage.
Our real goal, though, is going to be understanding the use of greedy algorithms in approximation
algorithms. Greedy algorithms are used extensively in approximation algorithms, so we’re just
going to see some examples, but the type of analysis that we’re going to do is very common, and
Set Cover is most famous example of it. So it’s a good first problem to start with.

3.1 Set Cover

Definition 3.1.1 The input in the Set Cover problem is a universe U , with |U | = n, and a family
of sets S1, S2, . . . , Sm with Si ⊆ U for each i. Feasible solutions are index sets I ⊆ [m] such that⋃

i∈I Si = U , and the objective is to minimize |I|.
There’s an obvious greedy algorithm for Set Cover.

Algorithm 1 A greedy algorithm for Set Cover

Input: Universe U of n elements, family {Si}mi=1 of subsets of U .
Output: A minimum-size index set I ⊆ [m] satisfying

⋃
i∈I Si = U .

I ← ∅, X ← U
while X ̸= ∅ do
Let i be the index maximizing |X ∩ Si|
I ← i,X ← X \ Si

end while
return I

Theorem 3.1.2 If OPT contains k sets, the greedy algorithm uses at most k(1 + ln n
k) sets.

Proof: Let It be the sets selected by the greedy algorithm in the first t iterations. Let nt be the
number of uncovered elements after iteration t. Then nt = n− |

⋃
i∈It Si|, n0 = n, I0 = ∅.

To prove this we will first prove the following claim.

Claim 3.1.3 nt ≤ (1− 1
k)nt−1

Proof: Let Jt = U\(
⋃

i∈It Si), then OPT covers Jt−1 with ≤ k sets.

Because |Jt−1| = nt−1, we know that OPT covers nt−1 uncovered elements with ≤ k sets. Therefore
there exists a set in OPT which covers at least nt−1

k uncovered elements.

Because the greedy algorithm always chooses the set which covers most uncovered elements, the
greedy algorithm covers at least nt−1

k uncovered elements at iteration t.

Therefore nt ≤ nt−1 − nt−1

k = (1− 1
k)nt−1

1

Now, by induction, nt ≤ (1− 1
k)

tn. Consider t = k ln n
k ,

nt ≤
(
1− 1

k

)k ln n
k

n ≤ e− ln n
k · n ≤ k

n
· n = k

Note that this uses the inequality 1 + x ≤ ex for all x ∈ R, which is an incredibly useful inequality
that we will use regularly.

The greedy algorithm covers the remaining k elements using at most k sets, so the greedy algorithm
uses at most k + k ln n

k = k(1 + ln n
k) sets overall.

Corollary 3.1.4 The greedy algorithm is an O(log n)-approximation for Set Cover

Proof: By Theorem 3.1.2 we know that ALG/OPT ≤ 1 + ln n
OPT ≤ O(log n).

Corollary 3.1.5 If |Si| ≤ α for all i ∈ [m], then the greedy algorithm is an O(logα) approximation.

Proof: Clearly in this case we have that k = OPT ≥ n/α, since every set covers at most α
elements and there are n elements to cover in total. Thus Theorem 3.1.2 implies that ALG/OPT ≤
1 + ln n

n/α = O(logα).

Is the analysis tight? Yes. Consider the following example.

U = {a1, . . . , an, b1, . . . , bn, c1, . . . , cn}, S1 = {a1, . . . , an}, S2 = {b1, . . . , bn}, S3 = {c1, . . . , cn},
S′
i = {aj , bj , cj | n

2i
< j ≤ n

2i−1 }, i = 1, . . . , log n+ 1.

The greedy algorithm will choose all the set S′
i, i = 1, . . . , log n + 1, since each one covers exactly

half of the remaining elements. But the optimal solution is S1, S2, S3.

Is there any better algorithm? No, due to a recent result of Dinur and Steurer [DS14]:

Theorem 3.1.6 Unless P = NP , there is no C · lnn-approx for set cover problem with constant
C < 1.

Feige [Fei98] showed a weaker result: Unless NP ⊆ DTIME(npoly logn), there is no C · lnn-approx
for set cover problem with constant C < 1.

3.2 Weighted Set Cover

Consider the following generalization, in which we assign weights to sets and try to minimize the
total weight of the sets chosen.

• Valid instances : Universe U , |U | = n. Family of sets F = {S1, . . . , Sm}, Si ⊆ U for all i.
Each set Si has a cost ci.

• Feasible solutions : A set I ⊆ [m] such that
⋃

i∈I Si = U .

• Objective function : Minimize
∑

i∈I ci.

2

In this context, the natural greedy algorithm is the following: In each iteration, pick a set which
maximizes number of uncovered elements in the set

cost of the set (this is called the density of the set), until all the ele-
ments are covered.

Theorem 3.2.1 The greedy algorithm is an Hn = Θ(log n)-approximation algorithm. Here Hn =
1 + 1

2 + 1
3 + . . .+ 1

n .

Proof: Let It be the sets selected by the greedy algorithm up to t iterations. Let nt be the number
of uncovered elements at iteration t. Let C∗ =

∑
i∈OPT ci. Then nt = n−|

⋃
i∈It Si|, n0 = n, I0 = ∅.

We first prove that in iteration t there is a set of reasonably large density remaining.

Claim 3.2.2 In iteration t, there exists a set in OPT with cost of the set
number of uncovered elements ≤

c∗

nt−1
.

Proof: Let Jt = U \ (
⋃

i∈It Si), then OPT covers Jt−1 with cost ≤ c∗.

Suppose the claim is false. We have:

c∗ =
∑

i∈OPT

ci =
∑

i∈OPT

ci
|Si ∩ Jt−1|

|Si ∩ Jt−1| >
∑

i∈OPT

c∗

nt−1
|Si ∩ Jt−1| ≥

c∗

nt−1
|Jt−1| = c∗

This is a contradiction, and hence the claim is true.

Thus the greedy algorithm picks a set with density = number of uncovered elements
cost of the set ≥ nt−1

c∗ in iteration
t, since some such set exists and the greedy algorithm chooses the set with highest density.

Now, assume the greedy algorithm picks S′
1, . . . , S

′
k, then

c(S′
t)

|S′
t∩Jt−1| ≤

c∗

nt−1
. Let xt = |S′

t ∩ Jt−1| be
the number of elements that greedy covers in iteration t. Then c(S′

t) ≤ xt
c∗

nt−1

c(Greedy) =
k∑

i=1
c(S′

i) ≤
k∑

i=1
xi

c∗

ni−1

= x1
c∗

n + x2
c∗

n−x1
+ x3

c∗

n−x1−x2
+ . . .+ xk

c∗

n−x1−x2−...−xk−1

= c∗(

1

n
+ . . .+

1

n︸ ︷︷ ︸
x1

+

1

n− x1
+ . . .+

1

n− x1︸ ︷︷ ︸
x2

+ . . .

+

1

n− x1 − . . .− xk−1
+ . . .+

1

n− x1 − . . .− xk−1︸ ︷︷ ︸
xk

)

≤ c∗(1n + 1
n−1 + . . .+ 1) = c∗Hn

Remark: In some scenarios it is natural to consider problem instances where n is small, but
m (the number of sets in the family) is extremely large (exponential in n). It is worth noting
that in order to function, the greedy algorithm just needs to be able to pick the set of maximum
density. Even when m is exponential, sometimes it is reasonable to assume that we can do this,
i.e. we can find the set of maximum density in polynomial time despite an exponential number of

3

sets. This is known as a “density oracle”, and if one exists then the greedy algorithm still gives an
Hn-approximation in polynomial time.

In fact, it suffices to simply be able to approximate the density:

Theorem 3.2.3 If there exists an α-approximation for the max density problem, then there exists
an αHn-approximation for the original problem.

3.3 Small Frequencies

We can see the vertex cover problem as a special set cover problem: the universe U is the edge
set E, and the family of sets is {Su | u ∈ V } where Su = {{u, v} | {u, v} ∈ E}. But this view
naturally leads to the following question: why does vertex cover have a 2-approximation, when the
best possible for set cover is lnn?

Definition 3.3.1 The frequency of e ∈ U is fe = |{i ∈ [m] | e ∈ Si}|, the number of sets in F that
contain e.

Theorem 3.3.2 If fe ≤ f for all e ∈ U , then there is an f -approximation algorithm for set cover
problem.

Algorithm: In each iteration, arbitrarily choose an uncovered element and select all the sets that
contain this element. Repeat until all elements covered.

This is an f -approximation for the same reason that our algorithm for vertex cover was a 2-
approximation. Informally, for every two elements e, e′ ∈ U considered by this algorithm, there are
no sets which cover both e and e′ (or else whichever was covered first would have caused this set
to be included, so the algorithm would not consider the second element). Then OPT has to be at
least as large as the number of iterations of this algorithm. On the other hand, in each iteration
this algorithm only picks f sets. Hence it includes at most f ·OPT sets.

References

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings
of the Forty-sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages
624–633, 2014.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.

4

	Set Cover
	Weighted Set Cover
	Small Frequencies

