18.1 Introduction

Today we’re going to talk about a cut problem known as Multicut which is even more general than Multiway Cut. We very briefly discussed this at the end of last lecture, where I described how to use techniques that we already know to design an $O(\log n)$-approximation. While I did this very quickly, all the details are in the lecture notes from last time. Today we’re going to improve this slightly to give an $O(\log k)$-approximation.

18.2 Definition and Relaxation

Definition 18.2.1 In the Multicut problem, we are given a graph $G = (V, E)$ with costs $c : E \to \mathbb{R}^+$, and k pairs $(s_1, t_1), \ldots, (s_k, t_k)$ of nodes. A feasible solution is a set $F \subseteq E$ such that s_i and t_i are not connected in $G \setminus F$ for all $i \in [k]$. The objective is to minimize $\sum_{e \in F} c(e)$.

For the remainder of the day, we’re going to prove the following theorem:

Theorem 18.2.2 There is an $O(\log k)$-approximation algorithm for Multicut.

We will use \mathcal{P}_i to denote the set of all s_i-t_i paths. The problem admits the following LP relaxation:

\[
\text{minimize: } \sum_{e \in E} c(e) \cdot x_e \quad \text{(MULTICUT-LP)}
\]

subject to:

\[
\sum_{e \in P} x_e \geq 1 \quad \forall i \in [k], \forall P \in \mathcal{P}_i \quad (18.2.1)
\]

\[
0 \leq x_e \leq 1 \quad \text{for each edge } e \in E \quad (18.2.2)
\]

Note: As with multiway cut, we can solve this LP in polytime via ellipsoid, using shortest path (for each \mathcal{P}_i) to separate. For the remainder, we will use x to refer to the solution of the LP, and set $V^* = \sum_{e \in E} c(e)x_e$ as the value of the solution.

Definition 18.2.3 Let $d : V \times V \to \mathbb{R}^+$ be the shortest path metric using the LP solution \bar{x} for the edge lengths.

Definition 18.2.4 For all $S \subseteq V$, let $\delta(S) = E(S, \bar{S})$ denote all edges that have exactly one endpoint in S.

Definition 18.2.5 For all sets of edges $E' \subseteq E$, let $c(E') = \sum_{e \in E'} c(e)$.

18.3 Rounding

To move forward, we’re going to take inspiration from a physical metaphor. This of each edge as a “pipe”. We’re thinking of \(x_e \) as the length of \(e \), so if we think of \(c(e) \) as the “cross-sectional area”, then the “volume” of an edge would be \(c(e)x_e \). This motivates the following definition.

Definition 18.3.1 (Volume)

\[
V(s_i, r) = \frac{V^*}{k} + \sum_{\{u,v\} \in E, \quad u,v \in B(s_i, r)} c(e)x_e + \sum_{\{u,v\} \in E, \quad u \in B(s_i, r), \quad v \notin B(s_i, r)} c(e)(r - d(s_i, u))
\]

The second term above should be thought of as the volume of all edge-pipes fully inside the ball around \(s_i \), and the third as (a lower bound for) the volume contained in \(B_G(s_i, r) \) of edge-pipes leaving the ball. The first term is included to make later calculations easier.

The next lemma is the main technical piece.

Lemma 18.3.2 (Region-Growing Lemma) For all \(i \in [k] \), we can find in polytime a value \(0 \leq r < \frac{1}{2} \) such that:

\[
c(\delta(B(s_i, r))) \leq 2 \ln(k + 1) \cdot V(s_i, r)
\]

Before we prove this lemma, let’s show how to approximate MULTICUT if we assume that it is true.

Algorithm 1 Constructing an integer solution

```plaintext
Init: \( F = \emptyset \)
for \( i = 1 \) to \( k \) do
    if \( s_i, t_i \) connected in \( G \) then
        Let \( r_i \in [0, \frac{1}{2}] \) be the \( r \) value from the region-growing lemma.
        \( F \leftarrow F \cup \delta(B(s_i, r_i)) \)
        Remove \( B(s_i, r_i) \) and all incident edges from the graph.
    end if
end for
return \( F \)
```

One important note to clarify this, since we’re changing the graph throughout this algorithm: distances, balls and volumes are with respect to the *current* graph, not the original.

Theorem 18.3.3 The output \(F \) from Algorithm 1 is feasible.

Proof: The only way this might not be feasible is if some \(s_i - t_i \) pair are both in \(B(s_j, r) \) for some \(j \). But this cannot happen since \(r < 1/2 \) and \(d(s_i, t_i) \geq 1 \) throughout the algorithm.

Theorem 18.3.4 \(c(F) \leq 4 \ln(k + 1)V^* \leq 4 \ln(k + 1) \cdot OPT \).

Proof: Let’s do some definitions.

- Let \(B_i \) be \(B(s_i, r_i) \) in iteration \(i \) (if we did not create such a ball in iteration \(i \) because \(s_i \) and \(t_i \) were already separated, let \(B_i = \emptyset \)). Note that since the algorithm changes the
graph throughout the algorithm, this might not have been $B(s_i, r_i)$ at the beginning of the algorithm.

- Similarly, let $F_i = \delta(B(s_i, r_i))$ be the edges removed by the algorithm in iteration i. Then clearly $F = \cup_{i=1}^k F_i$, and $F_i \cap F_j = \emptyset$ for all $i \neq j$.

- Let $V_i = \sum_{e=\{u,v\}:u,v \in B_i} c(e)x_e + \sum_{e \in E} c(e)x_e$ be the total volume of edges removed in iteration i. Note that $V_i \geq V(s_i, r_i) - \frac{V^*}{k}$, since V_i contains the full volume of edges in F_i while $V(s_i, r_i)$ contains only part of their volume (but with an additional V^*/k).

Moreover, every edge contributes to V_i for at most one value of i, since the first time at least one of the endpoints is in B_i, the edge is removed from the graph. Thus $\sum_{i=1}^k V_i \leq V^*$

Now note that every edge in F is in exactly one F_i by our definition of the F_i’s, and moreover the value r_i was chosen from the region growing lemma. Thus we get that

$$c(F) = \sum_{i=1}^k c(F_i) \leq (2\ln(k+1))\sum_{i=1}^k V(s_i, r_i)$$

$$\leq (2\ln(k+1))\sum_{i=1}^k \left(V_i + \frac{V^*}{k}\right)$$

$$\leq 4\ln(k+1) \cdot V^*,$$

as claimed.

So now it only remains to prove the Region Growing Lemma (Lemma 18.3.2). For the rest of today, let $c(r) = c(\delta(B(s_i, r)))$ and let $V(r) = V(s_i, r)$.

Proof of Lemma 18.3.2. We’re eventually going to get a deterministic algorithm, but let’s start with a randomized algorithm: choose r uniformly at random from $[0, 1/2]$. We want to show that if we do this, then $E\left[\frac{c(r)}{V(r)}\right] \leq 2\ln(k+1)$.

Order $B(s_i, \frac{1}{2})$ as $\{v_1, \ldots, v_m\}$, where $r_j = d(s_i, v_j)$, and $0 \leq r_1 \leq r_2 \leq \cdots \leq r_m < \frac{1}{2}$. We also define $r_0 = 0$ for later calculations.

Surprisingly, we’re going to do a bunch of calculus to prove this. I’m going to abuse calculus a bit here – see the book for the more formally correct way of doing this. Consider the function $V(r)$, which (just to recall) is

$$V(r) = \frac{V^*}{k} + \sum_{e=\{u,v\} \in E \atop u,v \in B(s_i, r)} c(e)x_e + \sum_{e=\{u,v\} \in E \atop u \in B(s_i, r) \atop v \notin B(s_i, r)} c(e)(r - d(s_i, u)).$$

Unfortunately, $V(r)$ is not continuous or differentiable, since there can be discontinuities at the values $\{r_j\}$. But let’s pretend like it’s differentiable. Note that for $r \in (r_j, r_{j+1})$, for any j, it is in fact differentiable with derivative $\frac{d}{dr}V(r) = c(r)$. This is because the first and second terms are constant in this range of r, so we just need to care about the third term, which gives exactly $c(r)$.
Now we can use calculus to figure out the “average” value of \(\frac{c(r)}{V(r)} \) over \([0, \frac{1}{2}]\):

\[
\frac{1}{2} \int_0^{1/2} \frac{c(r)}{V(r)} \, dr = 2 \int_0^{1/2} \frac{1}{V(r)} \cdot \frac{dV(r)}{dr} \, dr
\]

\[
= 2 \int_0^{1/2} \frac{1}{V(r)} \, dV(r)
\]

\[
= 2(\ln(V(1/2)) - \ln(V(0)))
\]

\[
= 2 \ln \left(\frac{V(1/2)}{V(0)} \right)
\]

\[
\leq 2 \ln \left(\frac{V^*/k + V^*/k}{V^*/k} \right) = 2 \ln(k + 1)
\]

It then would follow from the mean value theorem that there exists some \(r \in [0, \frac{1}{2}] \) achieving the average value. For this \(r \) we would then have

\[c(r) \leq 2 \ln(k + 1) \]

\[V(r) \]

Before, we concluded by saying that the MVT allowed us to find an \(r \) achieving the average value. Here, because \(V(r) \) is increasing and \(c(r) \) is constant over each \([r_j, r_{j+1}]\) interval, we can say that the smallest value of \(\frac{c(r)}{V(r)} \) will occur at some \(r_j^- \). By the above, for \(r = r_j^- \) we will then have that

\[c(r) \leq 2 \ln(k + 1) V(r), \text{ as desired.} \]

And note that there are only \(m \leq n \) different values of \(r_j \), so we can just check each one and deterministically find the best.