1 Multiway Cut (50 points)

Consider the following two permutations \(\pi_1 \) and \(\pi_2 \) of \([k] \), where \(\pi_1(1) = 1, \pi_1(2) = 2, \ldots, \pi_1(k) = k \) and \(\pi_2(1) = k, \pi_2(2) = k - 1, \ldots, \pi_2(k) = 1 \).

(a) (25 points) Consider a modification of the 3/2 approximation for Multiway Cut from Lecture 17: instead of choosing \(\pi \) uniformly at random from all permutations of \([k] \), we choose \(\pi = \pi_1 \) with probability \(1/2 \) and choose \(\pi = \pi_2 \) with probability \(1/2 \). Prove that this modified algorithm is still a 3/2-approximation for Multiway Cut.

(b) (25 points) Using the previous part, design a deterministic 3/2-approximation for Multiway Cut. As always, prove the approximation ratio and polynomial running time.

2 Multicut in Trees (50 points)

Consider the multicut problem in trees. In this problem, we are given a tree \(T = (V, E) \), \(k \) pairs \((s_i, t_i) \) of vertices, and edge costs \(c : E \to \mathbb{R}^+ \). A feasible solution is a set \(F \subseteq E \) such that for all \(i \in [k] \), \(s_i \) and \(t_i \) are in different connected components of \(T - F \). The objective is to minimize the total edge cost \(\sum_{e \in F} c(e) \).

Let \(P_i \) be the unique path between \(s_i \) and \(t_i \) in \(T \). Then we can write an integer linear programming formulation of this problem:

\[
\begin{align*}
\min & \quad \sum_{e \in E} c(e)x_e \\
\text{subject to} & \quad \sum_{e \in P_i} x_e \geq 1 \quad \forall i \in [k] \\
& \quad x_e \in \{0, 1\} \quad \forall e \in E
\end{align*}
\]

(a) (25 points) Write the dual of the LP relaxation of the above ILP (note: we did this in class for multicut!)

Suppose that we root the tree at an arbitrary vertex \(r \). Let \(\text{depth}(v) \) be the number of edges on the path from \(v \) to \(r \). Let \(\text{lca}(s_i, t_i) \) be the vertex \(v \) on the path from \(s_i \) to \(t_i \) whose depth is minimum. Suppose that we use the primal-dual method to solve this problem, where the dual
variable that we increase in each iteration corresponds to the violated (primal) constraint that maximized $\text{depth}(\text{lca}(s_i, t_i))$. After all primal constraints are satisfied, we do a “reverse cleanup” stage like in Steiner Forest, where we look at the edges we added in reverse order and remove them if we can do so while still having a feasible solution.

(b) (25 points) Prove that this is a 2-approximation. Hint: consider a path P_i where the dual variable is nonzero. How many edges in the final solution can be on the path from s_i to $\text{lca}(s_i, t_i)$, and how many can be on the path from t_i to $\text{lca}(s_i, t_i)$?