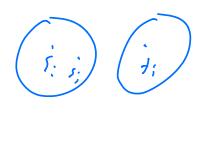
Steiner Forest (Generalized Steiner Tree)

Input:
$$-G = (U, E)$$

 $-G : E \to IR^{+}$
 $-K$ pairs of ades $(s_{i}, t_{i}), (s_{e}, t_{e}), ..., (s_{k}, t_{k})$
Featible Solution: $F \subseteq E$ s.t. $\exists s_{i} - t_{i}$ path in (U, F) for all inclided Objective: min $(F) = \sum_{e \in F} (e)$



LP Relaxation:

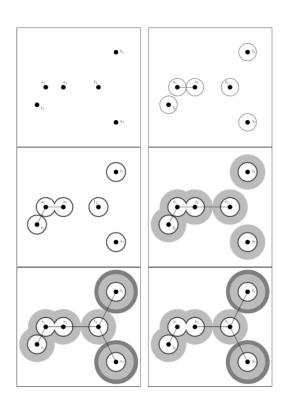
min
$$\underset{e \in \mathcal{E}}{\text{Z}} (e) \times_{e}$$

s.t. $\underset{e \in \mathcal{S}(S)}{\text{Z}} \times_{e} \ge 1$
 $\times_{e} \ge 0$
 $\times_{e} \ge 0$
 $\times_{e} \ge 0$
 $\times_{e} \ge 0$
 $\times_{e} \ge 0$

Duali

```
Algorithm: Primal-Dual, with interesting features:
    -Raise multiple dual variables simultaneously
    - "Reverse Cleany" stop
In: +: Fi=ø, y=0, ;=1
 while F; not feerible ?
    - Let C; = { Sed: Sa connected component of (U, F; )}
          "active components"
    - Increase all ys: SEC; uniformly until I some
      e; e s(s), se e; where constraint for e; becomes tight:
           - Let D; be anomt raised each ys
     -F; +1 - F; V {e;}
    -525+1
  for (k= j-1 down to 1)
     if (F) {ek} feasible)
     Remove ex from F
```

return F



 $Y_{\{s_i\}} + Y_{\{t_i\}} = c(\{s_i, s_i\})$ $Y_{\{s_i, s_i\}}$

Easy Observations:

Lemma: y is always dual fersible

PF: Consider some e. Initially & ys=0 \(\xi\) (e)

Once confraint tight for e, added to F

=) inside a connected component, no 5 s.t. eff(5)
ever increased again

Lenna: Alg is polytine

P. F :

∠ | El iterations, ≤ n active components each iteration

> 5 [Ela nonzero due | vers total =) each iteration takes polytime

Main Thm: Alg is a 2-approximation

Lemma: For all iterations i, & IFAS(S) | < 2/e; |

Assume lemma for now. Start trying to prove than

((F)= 2 ((e)

(Duch constraint light HeEF)

= Z Z ys eeF sed:ees(s) = Z Z ys sed (s) NFl ys sed

\(\frac{2}{5} \)
 \(\frac{2} \)

 \(\frac{2}{5} \)

 \(\frac{2}{5} \)

 \(\frac{2} \)

(Need to prove)

< 2 · OPT

(weak duality)

Claim: 2 18(1) NF1 ys <22 2 ys

PE: Induction on iterations of alg (alg invariant)

In some iteration;

LHS increases by

\$\{\text{216} \(\) \(

So just need to prove lemma:

Lemma: For all iterations i, & IFNS(S) | < 2/e; |

SEC; |

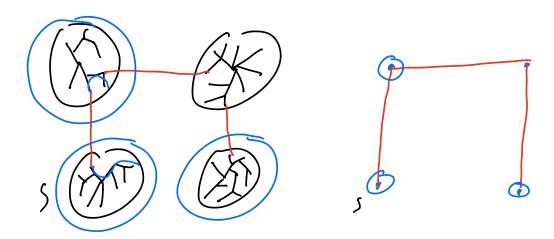
Final F

Claim: F; a forest U;

Pt: Induction. True in: 1: all y, each iteration add

1 edge between components.

Fix some j. Define new graph G;=(U;, E;):
-U;: vortex for each connected component of (U, F;)
-E;={{S,T}: }{n,v}eF with nes, veT}



Notesi

- Every edge of E; corresponds to exactly one edge in F

- h; a forest

- P; & V; (some components are active)

So IFAS(S) | = degree of S in G; (S component
of (U, F;))

≥ 2 |FAS(S)| = 2 deg. (S) ≤ 2|€;|

⇒ 2 (F16(5)) = 2 deg_a (5) ≤ 21€;1 see; See;

In other words: InTS average degree in his of components in e; is £2

Claimi Let SeV; have begree 1 in G;. Then Sel;

Pf: Sps S&P; => S&S -> S does not separate any

S;-t; pair

Since e only edge in f leaving S, au

S;-t; both onlyide S connected through S

t;

Final reverse cleans would have removed e

(14:m; Let T be a free. If $S \in V(T)$ contains all leaves of T, then $Z = deg(v) \le 2151$ Pt: Z = deg(v) = Z = deg(v) - Z = deg(v)= 2(|V(T)|(-1) - Z = deg(v) = (|V(T)|(-1 - 2 + 25cs - 7))\$\leq 2(|V(T)|(-1) - 2 (|V(T)|(-|5|)) (|V(E)| \leq 22)

= 2(|V(T)|(-1) - 2 = 2151

Dore!

Extensions / Thoughts:

- -Open Question: is it possible to do better than 2?
 -Is SF as easy as ST?
- Steiner K-Forest: Given K<# demands, connect
 k of them
 - Mach harder! Best approx O(Na) Chapter, Hajinghayi,
 Nagarajan, Ravi '10]
 - If c(e)= 1 Ve: O(n0.44772) [D, Kertser, Nuter 14]
- Directed Steiner Foresti
 - -O(n3/5+E) [(hlamtax, D, Kertsarz, Lackhannkit '17]
- Survivable Network Design: connectivities 21 - 2-apprex [Jain 'OI]