600.469 / 600.669 Approximation Algorithms

Lecturer: Michael Dinitz **Topic:** Steiner Forest **Date:** 4/16/15

Scribe: Runze Tang

Steiner Forest Problem 20.1

- Input
 - a graph G = (V, E)
 - cost function $c: E \to \mathbb{R}$
 - pairs $(s_1, t_1), \cdots, (s_k, t_k)$ of nodes
- Feasible solution

 $F \subseteq E$ such that (V, F) contains an s_i - t_i path $\forall i \in [k]$.

• Objective

 $\min \sum_{e \in F} c(e)$

Linear Program 20.2

Definition 20.2.1 Let $S_i = \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}$. And let $S = \bigcup_{i=1}^k S_i$.

minimize:
$$\sum_{e \in E} c(e)x_e \tag{20.2.1}$$

minimize:
$$\sum_{e \in E} c(e)x_e$$
 (20.2.1) subject to:
$$\sum_{e \in \delta(S)} x_e \ge 1 \quad \forall S \in \mathcal{S}$$
 (20.2.2)

$$x_e \ge 0 \quad \forall e \in E \tag{20.2.3}$$

20.3 Dual

maximize:
$$\sum_{S \in \mathcal{S}} y_S$$
 (20.3.4) subject to:
$$\sum_{S \in \mathcal{S}, e \in \delta(S)} y_S \leq c(e) \quad \forall e \in E$$
 (20.3.5)
$$y_S \geq 0 \quad \forall S \in \mathcal{S}$$
 (20.3.6)

subject to:
$$\sum_{S \in \mathcal{S}} y_S \le c(e) \quad \forall e \in E$$
 (20.3.5)

$$y_S \ge 0 \qquad \forall S \in \mathcal{S} \tag{20.3.6}$$

Algorithm 20.4

Algorithm 1

```
F_1 = \emptyset, \ \vec{y} = \vec{0}, \ j = 1.

while F_j not feasible do

Let \mathcal{C}_j = \{S \in \mathcal{S} : S \text{ component of } (V, F_j)\} be the components of (V, F_j) that are also sets in \mathcal{S}.

Increase all y_S : S \in \mathcal{C}_j uniformly until \exists e_j \in \delta(S), \ S \in \mathcal{C}_j such that constraint for e_j is tight, i.e. \sum_{S \in \mathcal{S}: e_j \in \delta(S)} y_S = c(e_j).

Let \delta_j be amount of dual variables increased.

F_{j+1} = F_j \cup \{e_j\}.

j = j+1.

end while

F = F_j.

while \exists e \in F such that F - \{e\} is feasible do

Remove e from F.

end while

return F.
```

20.5 Properties

Note: \vec{y} is always dual feasible.

Proof: $\vec{y} = \vec{0}$ is feasible at the beginning. At each iteration, we will increase y_S until some constraint is tight for $e \in E$. And such e will be inside the component in the following iterations so its dual constraint will remain tight (not violated).

Note: This algorithm is polytime.

Proof: There are at most |E| iterations and at most n active components. So there are at most n|E| nonzero dual variables.

Note: Final pruning is necessary.

Proof: Consider the star graph where s_1 is in the center connected to v_1, \dots, v_{n-2} with costs all 1 and connected to t_1 with cost 3. Then without the final pruning, the algorithm would buy the entire star rather than just the $\{s_1, t_1\}$ edge.

Lemma 20.5.1 Let T be a tree. If $S \subseteq V(T)$ such that all leaves are in S, then

$$\sum_{v \in S} deg_T(v) \le 2|S|.$$

Proof:

$$\begin{split} & \sum_{v \in S} deg_T(v) \\ &= \sum_{v \in T} deg_T(v) - \sum_{v \notin S} deg_T(v) \\ &= 2(n-1) - \sum_{v \notin S} deg_T(v) \\ &\leq 2(n-1) - 2(n-|S|) \\ &= 2|S| - 2. \end{split}$$

Lemma 20.5.2 At all iterations j, $\sum_{S \in C_i} |F \cap \delta(S)| \leq 2|C_j|$.

Proof: Note that by construction, F_j is a forest for all j (we only ever add edges that leave a component).

Consider time j the new graph $G_j = (V_j, E_j)$. Here V_j is the components of (V, F_j) , and $E_j = \{\{S_1, S_2\}, S_1, S_2 \in V_j \text{ and } \exists e \in F_j \text{ with 1 endpoint in } S_1, \text{ other in } S_2\}$.

Equivalently, start with (V, F_{j^*}) , where j^* is the final iteration before pruning,

- Contract edges in F_j ;
- Remove edges in $F_{j^*} F$.

Claim 20.5.3 If $S \in V_j$ has degree 1 in G_j , then $S \in C_j$.

Proof: Suppose $S \notin \mathcal{C}_j$. Let $e \in F$ be edge incident on S in G (such an edge must exist since S has degree 1 in G_j). Then $S \notin S$ indicates that S does not separate any s_i and t_i . So pruning would have removed e from F.

By Lemma 20.5.1, we finish the proof.

Claim 20.5.4 $\sum_{S \in \mathcal{S}} |\delta(S) \cap F| y_S \leq 2 \sum_{S \in \mathcal{S}} y_S$.

Proof: Incudtion on iterations.

At j = 0, $y_S = 0$ so it is true.

At iteration j, LHS increases by $\sum_{S \in \mathcal{C}_j} \Delta_j |\delta(S) \cap F| \leq 2\Delta_j |\mathcal{C}_j|$ by Lemma 20.5.2.

RHS increases by $2\sum_{S\in\mathcal{C}_i} \Delta_j = 2\Delta_j |\mathcal{C}_j|$.

So induction holds.

Theorem 20.5.5 Primal-dual algorithm is a 2-approximation.

Proof: By the Claim 20.5.4 above,

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S \in \mathcal{S}, e \in \delta(S)} y_S$$
$$= \sum_{S \in \mathcal{S}} |\delta(S) \cap F| y_S$$
$$\leq 2 \sum_{S \in \mathcal{S}} y_S$$
$$\leq 2 OPT.$$

The last inequality is by weak duality.

20.6 Open Question

Is there a less than 2-approximation algorithm for Steiner Forest?

Definition 20.6.1 *l-Steiner Forest is the case to choose l of the k pairs to connect.*

Theorem 20.6.2 *l-Steiner Forest has* $O(\sqrt{n})$ *-approximation.*

Theorem 20.6.3 If c(e) = 1 for all $e \in E$, then l-Steiner Forest has $O(n^{\frac{1}{3}(7-4\sqrt{2})})$ -approximation.