Topic: Tree Embedding II Date: 3/31/15

Lecturer: Michael Dinitz

Scribe: Kuan Cheng

15.1 Tree Embedding II

15.1.1 The Algorithm

```
Algorithm 1 FRT
```

```
Input: A vertex set V and the metric d
Output: The tree T for tree embedding
  Sample r_0 uniformly in [1/2, 1)
  r_i = 2^i r_0, 1 \le i \le \log_2 \Delta
  Let \pi be a random permutation of V
  Set \Delta to be the smallest power of 2 s.t. \Delta > \max_{u,v} d(u,v)
  L(\log \Delta) = \{V\}
  for i = \log \Delta down to 1 do
     L(i-1) = \emptyset
     for all C \in L(i) do
       S \leftarrow C
       for j = 1 to n do
          if B(\pi(j), r_{i-1}) \cap S \neq \emptyset then
             Add B(\pi(j), r_{i-1}) \cap S to L(i-1)
             Remove B(\pi(j), r_{i-1}) \cap S from S
          end if
       end for
       Create tree nodes corresponding to all sets in L(i-1) that are subsets of C
       Join these nodes to the node corresponding to C by edge of length 2^i
     end for
  end for
```

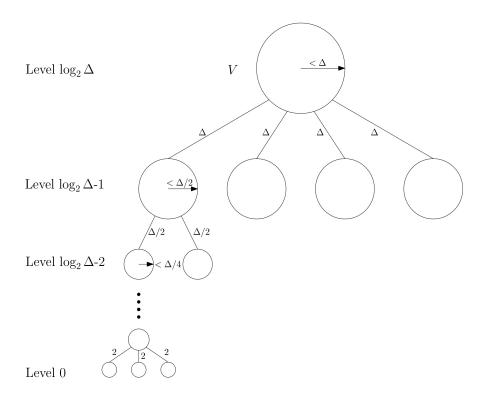


Figure 15.1.1: The tree structure (This picture is directly taken from our textbook [WS11])

15.1.2 Analysis

Theorem 15.1.1 $\forall u, v \in V, E[d_T(u, v)] \leq O(\log n)d(u, v).$

Definition 15.1.2 $w \in V$ settles u, v at level i, if w is the first vertex in π s.t. $B(w, r_{i-1}) \cap \{u, v\} \neq \emptyset$.

Here B(w,r) denotes the ball with center w and radius r.

Definition 15.1.3 $w \in V$ cuts u, v at level i, if $|B(w, r_{i-1}) \cap \{u, v\}| = 1$.

Observation 15.1.4 LCA(u, v) is at level i if i is the largest value s.t. the vertex w which settles u, v at level i also cuts u, v at level i.

Here LCA(u, v) is the least common ancestor of u, v.

Definition 15.1.5 Define the following random variables.

 $S_{iw} = \begin{cases} 1, & if w \ settles \ u, v \ at \ level \ i, \\ 0, & otherwise. \end{cases}$ (15.1.1)

$$X_{iw} = \begin{cases} 1, & \text{if } w \text{ } cuts \text{ } u, v \text{ } at \text{ } level \text{ } i, \\ 0, & \text{ } otherwise. \end{cases}$$
 (15.1.2)

Proof of Theorem 15.1.1:

$$d_{T}(u,v) \leq \sum_{i=1}^{\log \Delta} \sum_{w \in V} 2^{i+2} S_{iw} X_{iw}$$

$$E[d_{T}(u,v)] \leq \sum_{i=1}^{\log \Delta} \sum_{w \in V} 2^{i+2} Pr[S_{iw} = 1, X_{iw} = 1]$$

$$\leq \sum_{i=1}^{\log \Delta} \sum_{w \in V} 2^{i+2} Pr[S_{iw} = 1 | X_{iw} = 1] Pr[X_{iw} = 1]$$

$$(15.1.3)$$

Lemma 15.1.6 Two inequalities hold:

- (1) $Pr[S_{iw} = 1|X_{iw} = 1] \leq b_w$. Here b is a function on w. b_w is independent of levels.
- (2) $\sum_{w \in V} b_w \le O(\log n)$

Lemma 15.1.7 $\forall w \in V, \sum_{i=1}^{\log \Delta} 2^{i+2} Pr[X_{iw} = 1] \leq 16d(u, v).$ By lemma 15.1.6 (1),

$$\sum_{i=1}^{\log \Delta} \sum_{u \in V} 2^{i+2} Pr[S_{iw} = 1 | X_{iw} = 1] Pr[X_{iw} = 1]$$

$$\leq \sum_{i=1}^{\log \Delta} \sum_{w \in V} b_w 2^{i+2} Pr[X_{iw} = 1]$$

$$= \sum_{w \in V} b_w \sum_{i=1}^{\log \Delta} 2^{i+2} Pr[X_{iw} = 1]$$

$$\leq \sum_{w \in V} b_w 16d(u, v) \qquad \text{(by Lemma 15.1.7)}$$

$$\leq O(\log n) d(u, v) \qquad \text{(by Lemma 15.1.6 (2))}$$

Proof of Lemma 15.1.6:

Order the set $V = \{w_1, \dots, w_n\}$ by distance to the pair u, v.

$$d(w_i, \{u, v\}) \le d(w_{i+1}, \{u, v\})$$

If w_j cuts u, v at level $i, |B(w_j, r_{i-1}) \cap \{u, v\}| = 1 \Longrightarrow |B(w_k, r_{i-1}) \cap \{u, v\}| > 0, \forall k \leq j$.

Question 15.1.8 If w_j settles at i, can w_k be before w_j in π for $k \leq j$?

The answer is no, since if w_k were before w_j in π then w_k would settles u, v before w_j . Hence if $S_{iw} = 1$, then w_j is before w_k in $\pi, \forall k \leq j$. Thus we get that

$$Pr[\pi(w_j) < \pi(w_k) \quad \forall k < j] = \frac{1}{j}$$

$$\Longrightarrow Pr[S_{iw} = 1 | X_{iw} = 1] \le \frac{1}{j} = b_{w_j}$$

$$\Longrightarrow \sum_{j=1}^{n} b_{w_j} = \sum_{j=1}^{n} \frac{1}{j} = O(\log n)$$

$$(15.1.5)$$

Proof of Lemma 15.1.7:

W.L.O.G, $d(w, u) \leq d(w, v)$. In order for $X_{iw} = 1$, need $r_{i-1} \in [d(w, u), d(w, v)]$.

Observation 15.1.9 r_{i-1} is uniform in $[2^{i-2}, 2^{i-1}]$. $Pr[X_{iw} = 1] = \frac{|[2^{i-2}, 2^{i-1}) \cap [d(w, u), d(w, v)]|}{|[2^{i-2}, 2^{i-1}]|}$. Here $|[2^{i-2}, 2^{i-1}]| = 2^{i-2}$.

So we have that

$$15.1.9 \Longrightarrow 2^{i+2} Pr[X_{iw} = 1] = \frac{2^{i+2}}{2^{i-2}} |[2^{i-2}, 2^{i-1}) \cap [d(w, u), d(w, v)]|$$

$$= 16|[2^{i-2}, 2^{i-1}) \cap [d(w, u), d(w, v)]|$$
(15.1.6)

Hence

$$\sum_{i=1}^{\log \Delta} 2^{i+2} Pr[X_{iw} = 1] \le \sum_{i=1}^{\log \Delta} 16 |[2^{i-2}, 2^{i-1}) \cap [d(w, u), d(w, v)]|$$

$$= 16 |[d(w, u), d(w, v)]| = 16 (d(w, v) - d(w, u)) \le 16 d(u, v)$$

Question 15.1.10 If (V', T') is a tree metric for V, is there a tree metric (V, T) s.t. $d_{T'}(u, v) \leq d_{T}(u, v) \leq \alpha d_{T'}(u, v), \forall u, v \in V$? Here α is in O(1).

This question asks that whether we could find a tree metric without steiner nodes, i.e., so that the nodes on the tree are all in V which is the vertex set of the original graph.

Theorem 15.1.11 [Gupta01] The answer to 15.1.10 is yes, and $\alpha = 8$.

Here we just prove the result for the tree metric which is constructed using our tree embedding method.

Theorem 15.1.12 If (V', T') is a tree embedding for T which is a hierarchical cut decomposition, then can find some other T s.t. $d_{T'}(u, v) \le d_T(u, v) \le 4d_{T'}(u, v), \forall u, v \in V$.

Proof:

Use the following algorithm to contruct T.

- (1) While \exists a node $x \in V$, s.t. $p(x) \notin V$, contract (x, p(x)).
- (2) Multiply all edge weights by 4.

Here contracting edge (x, p(x)) means we just merge the subtree at x into p(x) and identify the newly merged node as x. Contracting makes distance go down, and hence $d_T(u, v) \leq 4d_{T'}(u, v)$. Suppose the least common ancestor of u, v is w at level i. $d_{T'}(u, v) \leq 2^{i+2}$. After contractions, their distance in T is at least 2^i (consider w and it's child). So $d_T(u, v) \geq 2^{i+2}$ as we multiply each edge weights by 4. So $d_{T'}(u, v) \leq d_T(u, v) \leq 4d_{T'}(u, v)$.

References

Gupta01 Gupta, Anupam. "Steiner points in tree metrics don't (really) help." Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 2001.

WS11 Williamson, David P., and David B. Shmoys. The design of approximation algorithms. Cambridge University Press, 2011.