Two Player Games (Lemke-Howson)

Today: computing Nash in 2-player games
- Exponential time but still interesting!
- Nash are "essentially combinatorial"
- Cool structural corollaries!

Recall: Bimatrix game
- 2 players - \(S_1 = \mathbb{C}^N \) - \(S_2 = \mathbb{C}^N \)
- \(A, B \in \mathbb{R}^{N \times N} \)
- \(u_i(i,j) = A_{ij} \) - \(u_2(i,j) = B_{ij} \)

\(\Rightarrow \) if \(x \in \Delta_n, y \in \Delta_m \) \(x^T Ay = \max_{i \in \Delta_n} \min_{j \in \Delta_m} (i^T A j) \)
\(x^T By = \max_{i \in \Delta_n} \min_{j \in \Delta_m} (i^T B j) \)

Definition: \(x \in \Delta_n \) is a best response to \(y \in \Delta_m \) if
\(x^T Ay = \max_{i \in \Delta_n} x^T Ay \),
\(y \in \Delta_m \) is a best response to \(x \in \Delta_n \) if
\(x^T By = \max_{i \in \Delta_n} x^T By \).
(x,y) is a Nash if and only if x and y are best responses to each other.

Lemma: Let $x \in \Delta_n$, $y \in \Delta_n$. Then x is a best response to y if and only if $orall i \in [n]$:

$$x_i > 0 \iff (Ay)_i = \max_{k \in [n]} (Ay)_k$$

y a BR to x iff $\forall j \in [n]$:

$$y_j > 0 \iff (B^T x)_j = \max_{k \in [n]} (B^T x)_k$$

Proof sketch:

convex combinations

Simple algorithm: Support enumeration.

- If know support of Nash (x,y), can find probabilities by solving system of linear equations (Gaussian elimination).
- Try all possible supports.

Skipping in lecture; details in lecture notes, NRTV 3.2
Lemma-Howson Algorithm:

Pseudo-fundamental in graph theory, convex geometry, linear algebra.

Def.: For $x \in \mathbb{R}^k$, let $S(x) = \{ i : x_i \neq 0 \}$ be support of x.

Def.: A bi-matrix game is non-degenerate iff:

1. $\forall x \in D_n : |S(x)| \geq \# \text{pure best responses to } x$

 $$= \left\{|i \in E(M) : (x^T B)_i = \max_{k \in E(M)} (x^T B)_k\right\}$$

2. $\forall y \in D_m : |S(y)| \geq \# \text{pure best responses to } y$

 $$= \left\{|i \in E(N) : (A y)_i = \max_{k \in E(N)} (A y)_k\right\}$$

Intuition: if x a pure strategy, ≤ 1 best response

- Each row of B has unique max

- If y a pure strategy, each column of A has unique max.

Notes:
- Assume all games non-degenerate.
- Slightly perturbing (A, B) guarantees this.
- See NRTV 3.6 for dealing with degeneracy.

Use even more linear algebra: think geometrically/algebraically.
Define two polyhedra:

\[\bar{p} = \{ (x, u) : x \in \Delta, \ \sum_{i=1}^n x_i B_{ij} \leq u \ \forall i \in \mathcal{M} \} \]

\[\bar{Q} = \{ (y, u) : y \in \Delta, \ \sum_{j=1}^m A_{ij} y_j \leq u \ \forall i \in \mathcal{N} \} \]

Internal: \(\bar{p} \) is mixed strategies for row player + upper bound on utility for col player

\(\bar{Q} \) is mixed strategies for col player + upper bound on utility for row player

Define related polytopes: make bounded by “dividing through” by upper bound

\[p = \{ x \in \mathbb{R}^n : x_i \geq 0 \ \forall i \in \mathcal{N}, \ \sum_{i=1}^n x_i B_{ij} \leq 1 \ \forall i \in \mathcal{M} \} \]

\[q = \{ y \in \mathbb{R}^m : y_j \geq 0 \ \forall j \in \mathcal{M}, \ \sum_{j=1}^m A_{ij} y_j \leq 1 \ \forall i \in \mathcal{N} \} \]
Basic Facts:

- A vertex of a polyhedron/polytope is an extreme point: a point x s.t. no direction z where $x+z, x-z$ both in polyhedron/polytope.

- In non-degenerate polyhedra/polytopes in \mathbb{R}^d, each vertex defined by exactly d tight constraints.

Lemma: There is a bijection between vertices of \bar{P} and vertices of P other than 0. Same for \bar{Q} and Q.

Proof sketch: Let (x, w) vertex in \bar{P}

$\Rightarrow (\frac{x}{w})$ vertex in P

Let $x \neq 0$ vertex in P

$\Rightarrow (\frac{x}{\bar{x}}, \frac{1}{\bar{w}})$ vertex in \bar{P}

Same for Q.

Intuition: Suppose \(x \neq 0 \) vertex of \(P \)

\[\Rightarrow N \] tight constants at \(x \):
- \(k \) tight nonnegativity constants \(x_i = 0 \)
- \(N-k \) others: values of \(j \) s.t. \(\sum_{i=1}^{k} x_i \beta_{ij} = 1 \)

\(\Rightarrow \) these values of \(j \) are pure best responses to \(x \).

\[\text{Def: The label set } L = C \cup \{ M \} \quad \text{Is disjoint union} \]

Label for every pure strategy (row or column)

Let \(x \in P \). \(L(x) = \) labels of tight constraints
\[= \{ i : x_i = 0 \} \cup \{ i : \sum_{i=1}^{k} x_i \beta_{ij} = 1 \} \]

Let \(y \in Q \). \(L(y) = \) labels of tight constraints
\[= \{ j : y_j = 0 \} \cup \{ i : \sum_{j=1}^{m} A_{ij} y_j = 1 \} \]

\(\Rightarrow \) \(|L(x)| \leq N \quad (= N \text{ if vertex}) \)

\(|L(y)| \leq M \quad (= M \text{ if vertex}) \)
Thm: \((\overline{x}, \overline{y}) \in \Delta_n \times \Delta_m\) is a Nash equilibrium iff

\[L(x) \cup L(y) = \Lambda, \text{ where } x \in P \text{ corresponds to } \overline{x} \text{ and } y \in Q \text{ corresponds to } \overline{y} \]

Pr: \(\overline{x} \in P \) s.t. \(L(x) \cup L(y) = \Lambda \)

\[\Rightarrow |L(x)| = N, \quad |L(y)| = M \quad (\text{w/d.}(\overline{x})) \]

Every label appears exactly once, either in \(L(x)\) or \(L(y)\)

\text{Partition } [CN]:

\[N_1 = \{ i \in CN : x_i = 0 \} \quad (i \in L(x)) \]
\[N_2 = \{ i \in CN : \sum_{j=1}^{k} A_{ij} y_j = 1 \} \quad (i \in L(y)) \]

\[\exists \{x\} = N_2 \]

\[\Rightarrow \overline{x} \text{ BR to } \overline{y} \]

\text{Partition } [CM]:

\[M_1 = \{ i \in CM : y_i = 0 \} \quad (i \in L(y)) \]
\[M_2 = \{ i \in CM : \sum_{j=1}^{k} B_{ij} x_j = 1 \} \quad (i \in L(x)) \]

\[\exists \{y\} = M_2 \]

\[\Rightarrow \overline{y} \text{ BR to } \overline{x} \]
\[\exists (x, y) \text{ Nash} \]

\[\text{Only if:} \ \exists (x, y) \text{ Nash} \]

want to show: every label appears at least once in \(L(x) \cup L(y) \)

\[(\Rightarrow L(x) \cup L(y) = \mathcal{L}) \]

Let \(i \in \mathcal{L}(x) \):

- \(\text{If } x_i = 0, \ i \in L(x) \)
- \(\text{Else } x_i > 0 \Rightarrow \text{since Nash, } x_i \text{ must be pure BR} \)
 \[\Rightarrow \sum_{j=1}^{m} A_{i,j} y_j = 1 \]
 \[\Rightarrow i \in L(y) \]

Let \(j \in \mathcal{L}(y) \):

- \(\text{If } y_j = 0, \ j \in L(y) \)
- \(\text{Else } y_j > 0 \Rightarrow \text{since Nash, } j \text{ must be pure BR} \)
 \[\Rightarrow \sum_{i=1}^{n} x_i \tau_{i,j} = 1 \]
 \[\Rightarrow j \in L(x) \quad \checkmark \]

So to find Nash, just need to find vertices that contain all the labels!
Now switch to graph theory!

Given polytope, can create graph of vertices: two vertices adjacent in graph if "adjacent" (connected by 1-dim face) in polytope

For \(m \geq 2 \) vertices \(x, y \) adjacent if \(|L(x) \cap L(y)| = N - 1 \):

"drop" label from \(x \), "add" label to get \(x' \)

Same for \(\Omega \) : \(|L(x) \cap L(x')| = M - 1 \)

Let \(V_1 \) vertices of \(P \)

\(V_2 \) vertices of \(\Omega \)
Create graph G:
- $V = V_1 \times V_2$
- Edge between (x,y) and (x',y') if
 - x adjacent to x' in P and $y = y'$, or
 - y adjacent to y' in Q and $x = x'$

Let $l \in L$ be arbitrary label

Let $U_k = \{(x,y) \in V : L(x) \cup L(y) \geq L \setminus \{k\}\}$

H_k is subgraph of G induced by U_k

Then:
1) $(0,0)$ and all Nash are in U_k, degree in H_k is 2
2) Every other vertex in U_k has degree 2 in H_k

Proof:
1) $(0,0)$ has all labels \rightarrow in U_k

(x,y) Nash \rightarrow $L(x) \cup L(y) = L \rightarrow$ in U_k

Degree: Let (x,y) either Nash or $(0,0)$
Sps (k ∈ L(x)). (k ∈ L(y) will be symmetric)

⇒ “drop” k, move along edge in P to see x′

⇒ (x′, y) ∈ Uk

⇒ (x, y) has degree ≥ 1

If (x, y) had some other edge, would correspond to dropping some other label

⇒ other endpoint not in Uk

⇒ (x, y) has deg. 1 in Hk

2) Let (x, y) some other vertex in Uk

⇒ k ≠ L(x) ∪ L(y), or else (x, y) would have all labels ⇒ (0, 0) or Nash

⇒ ∃ l ∈ L(x) ∩ L(y), since |L(x)| = N, |L(y)| = N, |L \ {k}| = N + M - 1

⇒ can “drop” l from x in P ⇒ x′

⇒ (x′, y) adjacent to (x, y) in Hk

(can “drop” l from y in P ⇒ y′

⇒ (x, y′) adjacent to (x, y) in Hk

⇒ (x, y) has degree ≥ 2 in Hk
Only 1 duplicated label \(l \) (since in \(U_k \))
\(\Rightarrow \) cannot drop any other label
\(\Rightarrow (x, y) \) has degree \(\leq 2 \) in \(H_k \)
\(\Rightarrow (x, y) \) has degree \(= 2 \) in \(H_k \)

what does this imply about structure of \(H_k \)?

\(H_k \) a collection of paths and cycles!

Lenke-Howson:
- choose \(k \in L \) arbitrarily
- Start at \((0,0)\) (degree 1 in \(H_k \)), walk along path in \(H_k \) until reach a node \((x, y)\) of degree 1
- Return \((x, y)\)

Corollary: In any non-degenerate bimatrix game, there are an odd number of Nash equilibria