Online Auctions

Ex: Selling two identical items with time windows, unit demands

<table>
<thead>
<tr>
<th>bidder</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>arrival</td>
<td>12pm</td>
<td>12pm</td>
<td>1pm</td>
</tr>
<tr>
<td>departure</td>
<td>2pm</td>
<td>2pm</td>
<td>2pm</td>
</tr>
</tbody>
</table>

with no time windows:

Allocation: bidder 1 and 2
- charged 60

How to sell online?

Natural idea: sell 1 item at 12:59 pm, 1 item at 1:59 pm

⇒ at 12:59, bidder 1 gets item for 80
 1:59, bidder 2 gets item for 60

Incentive Compatible?
- So bidder 1 lies, bids 65
 → loses first auction but wins second, pays 60!
- So bidder 1 lies about arrival, shows up at 1 pm
 → wins second auction, pays 60!

Setup:
- Each agent i (e.g., has private:
 - arrival time $a_i \in \mathbb{R}_{20}$
 - departure time $d_i \in \mathbb{R}_{20}$
 - valuation $v_i \in \mathbb{R}_{20}$
- Selling 1 item
- Bid: triple (a_i, d_i, b_i)
 - Revealed to auctioneer at time a_i
 - $a_i > 0$
- Mechanism: online allocation rule + price (collected when item sold)
- Utility of i: $v_i - \text{price paid (if gets item in } [a_i, d_i])$
- Incentive compatibility: bidding truth is dominant
Goals:
- Welfare maximization: Close to \(\max V_i \)?
- Revenue maximization:
 - All valuations drawn from same unknown \(F \) (prior-free)
 - Close to second-largest valuation?

Warmup:
- All \([c_i, d_i] \) intervals disjoint
- No incentives

Almost like prophet inequality!
- In \(P_2 \), distributions different but known
 - Here distributions same but unknown

Instead, use secretary problem:
- Interview \(n \) job applicants in random order
- When interview applicant, find their value
- Irrevocable decision whether to hire
- Good enough for our setting: draw \(n \) valuations from \(F \), randomly permute = draw one at a time from \(F \).
There is an algorithm which gets max value with probability \(\frac{1}{2} \)

Today: \(p = \frac{1}{4} \)

Algorithm:
- Let \(\frac{n}{2} \) applicants go by, \(p = \text{max value} \)
- Hire next applicant with value \(\geq p \)

If best in last \(\frac{n}{2} \), second best in first \(\frac{n}{2} \):

\[p \left[\text{best in second half, second best in first half} \right] \geq \frac{1}{4} \]

Back to real setting (incentives, overlapping intervals)

Attempt 2:
- Wait until receive \(\frac{n}{2} \) bids (time \(t \))
- Set \(p = \text{largest} x \)
- Sell to next bidder above \(p \)

Not IC!
Fix.
- Let t be time receive 2nd bid
- $p = q$ two largest bids so far
- If I active bidder w/bid b sell at price q
- Sell to next agent above p at price p

Incentive Compatibility:

Departures:
Leaving early can't help, leaving late makes difference only if set item after t: \Rightarrow no value

Values:
- Critical bid: conditioned on getting item, bid does not affect price
 \Rightarrow If v_i would win overbidding does not affect price, underbidding either makes no difference or doesn't win
- If v_i would lose, underbidding makes no difference, overbidding either makes no difference or \Rightarrow negative utility
Arrival: Fit all other bids.

\[r = \frac{n-1}{2} \text{ arrival time} \]
\[s = \frac{n}{2} \text{ arrival time} \]

Item win with \(a_i \) (or else \(a_i \) at least as good):
\[a_i > s \]
- \(a_i \) pushes \(i \) even later \(\Rightarrow \) since \(a_i \) wins at \(a_i \), \(a_i \) wins at \(a_i \)

same price

\[r < q < s; \quad a_i < s \]
- No difference btw \(a_i, a_i' \)
- \(a_i' > s \)
- Item is better, but price \(p \) at \(a_i \) instead of \(q \) at \(a_i \)

\[a_i < r \]
- No difference

\[r < a_i < s \]
- \(t = a_i \) instead of \(t = r \), but \(i \) wins at price \(q \) in both
- \(a_i > s \)
- \(i \) wins at price \(p \), but \(a_i \) wins at price \(q \)
Quality:

Thm (Social Welfare): Agent with max value wins the
item with probability $\geq \frac{1}{2}$

PE: Case 1: item sold at time t

\Rightarrow item sold to highest bid in first $\frac{1}{2}$
\Rightarrow highest overall with probability $\frac{1}{2} > \frac{1}{4}$

Case 2: item sold after time t

\Rightarrow Secretary analysis!

Thm (Revenue): $E[\text{Revenue}] = \frac{1}{2} \cdot E[\text{Revenue of Vickrey}]$

\Rightarrow $E[\text{Revenue of Vickrey}] = E[2 \text{nd highest valuation}]$

Case 1: item sold at time t

\Rightarrow sold to highest bidder in first $\frac{1}{2}$

\Rightarrow with prob. $\frac{1}{4}$, highest and second highest bidders

overall win in first $\frac{1}{2}$

\Rightarrow get same revenue as Vickrey
Case 2: Item sold after time t just like secretary!

Generalization to k items:

Technically difficult, conceptually easy

1) "Learning": do nothing until time t arrives
 at $\frac{k}{2}$ agent

2) "Transition": Sell up to $\lceil \frac{k}{2} \rceil$ items at time
 t to active agents with bids above $(\lceil \frac{k}{2} \rceil + 1)^{st}$
 highest so far

3) "Accepting": Set p to $\lceil \frac{k}{2} \rceil$ highest bid in first half.
 Sell to any bidder above p at price p while supply lasts.