House Allocation:
- Players \([n] \), each has a house
- Each player has private total ordering (preferences) over all houses
- Can we (re)allocate houses to make players happier?
- "Bid" is an ordering

Top Trading Cycle:
- Let \(A = [n] \)
- While \(A \neq \emptyset \):
 - For each \(i \in A \), let \(f(i) \) be favorite house belonging to agent in \(A \)
 - Directed graph \(G = (A, \{ (i, f(j)) \mid i \in A \}) \)
Every vertex has outdegree 1
\[\Rightarrow \geq 1 \] directed cycle,
every vertex in \(\leq 1 \) directed cycle

- For each directed cycle, reallocate: every vertex gives house to predecessor
- Remove all agents who were reallocated from A

Easy properties: will terminate with feasible allocation, in polynomial time

Incentive compatibility:

Truthful bidding \(\Rightarrow \) no worse off (get house at least as good as starting)

Allocated along cycle, could have loops
Truthful bidding is dominant:

Fix agent $i \in [n]$, all other bids.

If i bids truth: $N_i = \{\text{agents allocated in iteration } i\}$

Let $i^* \text{ s.t. } i \in N_{i^*}$

Claim 1: i gets favorite house not in $N_i \cup \ldots \cup N_{i^* - 1}$

Claim 2: If K has path to i in some iteration, then that path in all graphs until i allocated (iteration i^*)

\Rightarrow if i lies, creates a cycle with nodes P that have path to i

\Rightarrow $P \land (N_i \cup N_{i^* \ldots \cup N_{i^* - 1}) = \emptyset$

\Rightarrow lying doesn't help!
Quality: No utilities or money: how can we even define quality of an allocation?

Def: Blocking coalition of an allocation: set of agents who can pull out from allocation and reallocate among themselves so no one worse off, ≥ 2 better off

Def: A core allocation is an allocation with no blocking coalitions

Thm: TTC returns a core allocation

Pr: Let S ⊆ A be some coalition, and suppose they reallocate among themselves.

∃ graph of disjoint directed cycles:

(ux) means u gives house to x

[Diagram: A graph with directed edges and a triangle, indicating a cycle.]

If cycle all in same Ni:
All in cycle would get favorite act in Ni \cup - UNi+1 from TTC
If cycle has nodes from different N_i: $j > i$

\[u \in N_i \Rightarrow u \in N_j \]

\implies u worse off!

Thm: TTC returns only core allocation

PF: Induction.

TTC: every agent in N_i gets favorite home

\implies Every core allocation agrees with TTC on N_i

or else N_i would be blocking coalition

Suppose some core allocation agrees with TTC on $N_i \cup \ldots \cup N_{i-1}$

\implies must agree with TTC on N_i, or else N_i
a blocking coalition
Stable Matching:
- Two sets of agents U, V $|U| = |V| = n$
- Each agent has total ordering over other set

Def: A **stable matching** is a perfect bipartite matching (bijection $\pi: U \rightarrow V$) s.t. if u, v not matched then either:
- u prefers $\pi(u)$ to v, or
- v prefers $\pi^{-1}(v)$ to u

Q: - Do stable matchings always exist?
- If yes, can we compute them?
- Incentive-compatible?
Proposed Deferred Acceptance Algorithm:

while there is an unmatched \(u \in U \):
- \(u \) sends a proposal to favorite \(u \in V \) that has not yet rejected \(u \)
- If \(v \) unmatched, match \(u \) and \(v \)
- If \(v \) matched to \(u \in U \), \(v \) chooses to match to favorite of \(u \in U \), rejects the other

Lemma: At most \(n^2 \) iterations

PF:

Every iteration is a new proposal
At most \(n^2 \) different proposals
\(\Rightarrow \leq n^2 \) iterations

Lemma: Terminates with a perfect matching

PF: Always matching, why perfect?
Sps not matched
\(\Rightarrow \) rejected by all \(u \in V \)
Every cell gets at least one proposal

Every cell matched at end

Every cell matched \(\geq \)

Lemma: The perfect matching is stable

Proof: Suppose \(u \in U, v \in V \) not matched.

If \(u \) never proposed to \(v \):

\(u \) matched to someone it prefers over \(v \)

If \(u \) did propose to \(v \):

\(v \) matched to someone it prefers over \(u \)

Is this a "good" stable matching?

Definition: For \(u \in U \), let \(h(u) \) favorite node in \(V \) that \(u \) is matched to in any stable matching
Thm: In matching from algorithm, every u \in U is matched to h(u)

PF: Let R = \{ (u,v) : u rejects v in algorithm \}

WTS: If (u,v) \in R \implies no stable matching matches u and v

Induction (algorithm invariant):
At beginning, R = \emptyset

Consider iteration where u rejected by v in favor of u' (add (u,v) to R)
\exists v prefers u' to u
By def of algorithm (u',v') \in R \implies that u' prefers to u
\implies by induction, no stable matching where u'
 does better than u.
So ses \exists stable matching with (u,v)
\implies u' is doing worse than v and u is doing worse than u',
\implies not stable!