Revenue - Maximizing Auctions

Note: start thinking about course projects!

Still want incentive compatibility, but want to maximize revenue rather than social surplus.

Trivial example: single-item, single-bidder

"posted price mechanism"

Need to make some extra assumptions!
Setup:
- Single-parameter environment: bidders \(C_n \), feasible set \(X \subseteq \mathbb{R}^{\geq 0} \)
- For each \(i \in C_n \) distribution \(F_i \):
 - support of \(F_i \) \(\subseteq [0, v_{\text{max}}] \)
 - Also use \(F_i \) to denote CDF (cumulative distribution function):
 \[
 F_i(2) = \Pr_{x \sim F_i}(x \leq 2) \quad F_i(v_{\text{max}}) = 1
 \]
 - \(F_i \) is probability density function:
 \[
 \int_0^2 F_i(x) \, dx = F_i(2)
 \]
- Private \(v_i \sim F_i \)
- Goal: IC mechanism maximizing expected revenue

Examples:

Single-item, single-bidder:

Set price \(r \Rightarrow \mathbb{E}[\text{Revenue}] = r(1 - F(r)) \)

\(F_i \sim \text{Uniform}(a_i, 1) \); set \(r = \frac{1}{2}, \mathbb{E}[\text{Revenue}] = \frac{1}{4} \)

\(F(x) = x \)
Single-item Two bidders:

\[S \in \{ F_1, F_2 \text{ uniform } (0, 1) \]

Second-price (Vickrey) auction:

\[E[C_{\text{revenue}}] = E[C_{\text{second-highest valuation}}] = \frac{1}{3} \]

"Reserve price r" auction: Give item to highest bidder if highest bid \(\geq r \).
Otherwise, no one gets item.

Price from Myerson:

\[\max (r, \text{second-highest}) \]

\[r = \frac{1}{2} \]

\[E[C_{\text{revenue}}] = \Pr[\text{both above } \frac{1}{2}] \cdot E[C_{\text{second-highest} | \text{both above } \frac{1}{2}}] \]

\[+ \Pr[\text{highest } \geq \frac{3}{2}, \text{second } < \frac{1}{2}] \cdot \frac{1}{2} \]

\[= \frac{1}{4} \cdot \frac{5}{3} + \frac{1}{2} \cdot \frac{1}{2} = \frac{5}{12} > \frac{1}{3} \]
Back to main setting:

Single-parameter environment \(\Rightarrow \) Myerson applies
\[\Rightarrow \text{for allocation function } x : \{0, \ldots, \text{num}\}^n \rightarrow X, \] price \(p \) from Myerson
\[\Rightarrow \text{Revenue maximizing auction is monotone } x, p \] from Myerson maximizing
\[\mathbb{E} \sum_{i=1}^{n} \mathbb{E} \left[\Pi_i (v) \right] \]

Def: The *virtual valuation of hidden* \(i \) with valuation \(v_i \) is:
\[\varphi_i (v_i) = v_i - \frac{1 - F_i (v_i)}{F_i^* (v_i)} \]

Ex: \(F: \text{uniform}\{0, 1\} : F_i (v_i) = v_i, \; F_i^* (v_i) = 1 \)
\[\Rightarrow \varphi_i (v_i) = v_i - \frac{1-v_i}{1} = 2v_i - 1 \]
uniform \(u_i^* \) : \(F_i(u_i) = 2u_i \) \(F_i(u_i) = 2 \)
\(\Rightarrow \) \(\varphi_i(u_i) = u_i - \frac{(u_i - u_i^*)}{2} = 2u_i - \frac{1}{2} \)

Note: unlike true valuations, could be negative!

Then: let \(x \) monotone allocation rule, \(p \) from Myerson

Then
\[
\mathbb{E} \left[\sum_{i=1}^{n} \varphi_i(u_i) x_i(u_i) \right] = \mathbb{E} \left[\sum_{i=1}^{n} \varphi_i(u_i) x_i(u_i) \right]
\]

Expected revenue virtual welfare

So obvious mechanism: maximize expected virtual welfare (surplus)!

\[
x(u) = \arg\max_{x \in X} \left(\sum_{i=1}^{n} \varphi_i(u_i) x_i(u) \right)
\]

Def: A distribution \(F \) is regular if \(v = \frac{1 - F(u)}{F(u)} \) is nondecreasing in \(u \)
Thm: If \(F_i \) regular \(\forall i \in [n] \), then virtual welfare maximizing allocation rule is monotone.

Proof sketch:

- \(F_i \)’s regular \(\Rightarrow \) higher bids result in higher virtual values
- \(\Rightarrow \) same logic as for surplus maximization

Ex: Single item, \(n \) bidders each with \(F_i = F \) (regular)

What is virtual welfare-maximizing allocation rule?

\[
\max_{x \in \{0,1\}^n} \sum_{i=1}^n q(v_i) x_i(v_i) \quad \text{s.t.} \quad \sum_{i=1}^n x_i \leq 1
\]

Give to bidder with highest virtual valuation

\(\Rightarrow \) bidder with highest valuation

\(\Rightarrow \) price is second-highest, by Myerson

Virtual values can be negative!

If all negative, best not to give item to anyone!
virtual welfare maximizing allocation:
Let \(i^* \) be the highest bidder.
If \(\varphi_{i^*}(v_{i^*}) > 0 \), give item to \(i^* \)
Else keep item.

Price from Myerson:
\[
\max \left(\text{second highest bid}, \varphi^{-1}(0) \right)
\]

Vickrey auction with reserve price \(\varphi^{-1}(0) \).

\(f = \text{Uniform} (0,1) \), \(\varphi^{-1}(0) = \frac{1}{2} \)
\(\varphi(v_i) = 2v_i - 1 \)
\(\Rightarrow \) reserve price = \(\frac{1}{2} \)
Then, Let x monotonically allocation only p from Myerson

$$ E \left[\sum_{i=1}^{n} p_i(u) \right] = E \left[\sum_{i=1}^{n} \phi_i(u) x_i(u) \right] $$

PF:

Myerson: $p_i(u) = \int_0^{u_i} z \cdot x_i(u, z) \, dz$

$F; x \, i \in \mathcal{W}, \, u_-$

$$ E \left[p_i(u) \right] = \int_0^{u_{\mathcal{W}}} p_i(u, v_i) \, f_i(v_i) \, dv_i \quad \text{(law of expectation)} $$

$$ = \int_0^{u_{\mathcal{W}}} \left(\int_0^{u_i} z \cdot x_i(u, z) \, dz \right) \, f_i(v_i) \, dv_i \quad \text{(Myerson)} $$

$$ = \int_0^{u_{\mathcal{W}}} \left(\int_0^{u_i} f_i(v_i) \, dv_i \right) \cdot z \cdot x_i(u, z) \, dz \quad \text{reverse order of integration} $$

$$ = \int_0^{u_{\mathcal{W}}} \left(1 - F_i(z) \right) \cdot z \cdot x_i(u, z) \, dz \quad \text{Integration by parts: } \int f g' \, dx = fg - \int g f' \, dx $$
\[g(z) = x_i(v_{-i}, z) \rightarrow g(z) = x_i(v_{-i}, z) \]
\[f(z) = (1 - F_i(z)) \cdot z \]
\[\Rightarrow f'(z) = 1 - F_i(z) - z F_i(z) \]

\[
= \left[(1 - F_i(z))z \ x_i(v_{-i}, z) \right]_{0}^{u_{max}} \\
- \int_{0}^{u_{max}} x_i(v_{-i}, z) \ (1 - F_i(z) - z F_i(z)) \ dz \\
= -\int_{0}^{u_{max}} x_i(v_{-i}, z) \ (1 - F_i(z) - z F_i(z)) \ dz \\
= \int_{0}^{u_{max}} x_i(v_{-i}, z) \ (z - \frac{1 - F_i(z)}{F_i(z)}) \ F_i(z) \ dz \\
= \int_{0}^{u_{max}} x_i(v_{-i}, z) \ q_i(z) \ F_i(z) \ dz \\
= \mathbb{E}_{\exists z \sim F_i} \left[q_i(z) x_i(v_{-i}, z) \right] \\
= \mathbb{E}_{v_i \sim F_i} \left[q_i(v_i) x_i(v) \right]
\[E \left(\prod_{i=1}^{n} p_i(u) \right) = \prod_{i=1}^{n} E \left[p_i(u) \right] \]

\[= \prod_{i=1}^{n} \mathbb{E} \left[q_i(u_i) x_i(u) \right] \]

\[= \mathbb{E} \left[\prod_{i=1}^{n} q_i(u_i) x_i(u) \right] \]