601.436/636 Algorithmic Game Theory

Topic: General Mechanism Design

Date: 4/16/20

Lecturer: Michael Dinitz

Scribe: Michael Dinitz

21.1 Introduction

Today we're finally going to go beyond single-parameter environments. We will define and analyze the main result from classical mechanism design, known as the VCG mechanism.

21.2 Setup & Examples

21.2.1 General Setup

- Bidders/agents/players [n]
- Finite set Ω of outcomes (think allocations)
- Each player i has a valuation function $v_i: \Omega \to \mathbb{R}_{>0}$
- The social welfare of some outcome $w \in \Omega$ is $\sum_{i=1}^{n} v_i(w)$.

21.2.2 Examples

Single Item: Ω is the n+1 possible allocations (n different winners or no winner), and $v_i(w)$ is equal to v_i if i wins the item in w and 0 otherwise. Note that in the more general setting, we can have more interesting valuation functions even for a single item. Maybe player i would like to get the item, but if they don't then they would still prefer player j to get the item over player k. We can model that now by an appropriate valuation function v_i !

Single-Parameter Environments: $\Omega = X$ (the outcomes are the feasible allocations), and $v_i(w) = v_i w_i$ (here w is an n-dimensional vector since $\Omega = X$).

Combinatorial Auctions: We'll talk a lot more about these next lecture. But they're intuitive and good to keep in mind for general auctions, so I'll give the definition here.

- Players [n].
- m items M.
- Each player i has a valuation for each "bundle" $S \subseteq M$, so $v_i : 2^M \to \mathbb{R}$ (note that there are 2^m private parameters now instead of just one!)
- The outcomes are allocations $f: M \to [n]$, so $v_i(f) = v_i(\{j: f(j) = i\})$.

21.3 Main Result

Today we're going to try to prove the following result:

Theorem 21.3.1 (Vickrey-Clarke-Groves). In every general mechanism design environment, there is an incentive-compatible mechanism which maximizes social welfare.

Clearly this is a very powerful theorem! But there are a few subtleties and caveats that we should mention before we actually prove it. First, this is not an "awesome" auction: we cannot compute it in polynomial time. This should not be surprising, since we cannot efficiently compute the welfare-maximizing allocation even in single-parameter environments like knapsack auctions.

Second, for the first time in a couple weeks we are not able to use Myerson to get prices once we've decided how to choose an outcome (since we're no longer in a single-parameter environment). So we'll have to argue incentive compatibility directly.

Third, we have to be a bit careful about what we mean by a "bid" in this context. The obvious thing, which is what we're going to do, is to let a "bid" consist of all the private information, i.e., bidder i sends a bid function $b_i: \Omega \to \mathbb{R}_{\geq 0}$. Then a mechanism is incentive compatible if truthfully sending $b_i = v_i$ is a dominant strategy for player i. This clearly has some issues in practice, since in general v_i can be huge, and there's a lot of interesting work on preference elicitation, bidding languages, and other extensions of the setting to enable bids to be a little more reasonable. But that's what we'll use for today.

21.3.1 The VCG Mechanism

To define the mechanism we need to define the allocation/outcome rule and the prices to charge. Like always, we'll assume that the utility of a player is its valuation minus the price it pays. Like in the single-parameter environment, we'll try to use a two-stage design process: first figure out the outcome rule, and then figure out a pricing rule to make this incentive compatible.

Outcome rule: We don't really have much choice here. We need to maximize social welfare, so we're basically forced to use the outcome rule which does this. Formally, given bids b (where $b_i: \Omega \to \mathbb{R}_{\geq 0}$), we'll choose the outcome

$$\mathbf{x}(b) = \underset{w \in \Omega}{\operatorname{arg\,max}} \sum_{i=1}^{n} b_i(w)$$

Pricing rule: Now comes the tricky part: how should we design prices to make this incentive compatible (and is that even possible)?

• In the single-parameter setting, we proved (Myerson's Lemma) that such a pricing function exists if the allocation rule is monotone, and then proved that the welfare-maximizing allocation rule is monotone. But what does monotone even mean here? What if there's one parameter where we over bid and one parameter where we underbid – should we get more or less value from this?

• In the single-item setting, we showed that the right price was the "critical bid". But now even for a single-item, players are allowed to have pretty complicated valuations. What does the "critical bid" mean here?

Let's go back to the Vickrey (second-price) auction for a single-item to get some inspiration. We're just going to have to look at it in a slightly different way. Consider some player i. How much does player i hurt everyone else by participating in the auction?

- If i does not get the item, then it doesn't hurt anyone the only difference between it participating and not participating is that the winner might be charged a higher price, but the social welfare is unchanged. So the social welfare of everyone else is also unchanged.
- If i does get the item, then it was the highest bid. So everyone else has social welfare 0, i.e., $\sum_{j\neq i} v_j x_j = 0$. But if i did not participate, then the item would have gone to the bidder with the highest valuation other than i, i.e., the second-highest bid. So in that case, we would have that $\sum_{j\neq i} v_j x_j = \arg\max_{j\neq i} v_j$. So player i, by participating in the auction, made the combined social welfare of all other players go from $\arg\max_{j\neq i} v_j$ to 0. So the "total harm" caused by player i is the second highest bid, which is the price that player i was charged!

We're going to generalize this idea to the general mechanism design setting: we'll charge player i the *eternality* they cause. Formally, given bids b, let w^* be the welfare-maximizing outcome. Then the price we'll charge player i is

$$p_i(b) = \max_{w \in \Omega} \sum_{j \neq i} b_j(w) - \sum_{j \neq i} b_j(w^*).$$

Note that this is precisely the outcome maximizing social welfare without player i minus the social welfare of the other players when player i participates, so it is the harm that player i causes the other players.

This pricing rule, combined with the social welfare-maximizing outcome rule, is the VCG Mechanism.

21.3.2 Analysis

Clearly VCG maximizes social welfare (by definition), so we just need to prove that it is incentive compatible, i.e., bidding $b_i = v_i$ is a dominant strategy for all players i. So fix some player $i \in [n]$ and other bids b_{-i} .

The utility of player i under bids b is $v_i(w^*) - p_i(b)$, where $w^* = \arg\max_{w \in \Omega} \sum_{j=1}^n b_j(w)$. Plugging in the payment rule from the mechanism, we get that the utility of player i is

$$v_{i}(w^{*}) - p_{i}(b) = v_{i}(w^{*}) - \max_{w \in \Omega} \sum_{j \neq i} b_{j}(w) + \sum_{j \neq i} b_{j}(w^{*})$$
$$= \left(v_{i}(w^{*}) + \sum_{j \neq i} b_{j}(w^{*})\right) - \max_{w \in \Omega} \sum_{j \neq i} b_{j}(w)$$

The last term here is independent of player i's bid b_i : nothing i does can affect this term. So player i is trying to maximize $v_i(w^*) + \sum_{j \neq i} b_j(w^*)$, which it can affect since b_i will affect w^* . What is this sum? If $b_i = v_i$ then it is $\sum_{j \in [n]} b_j(w^*)$, which is exactly what the outcome rule is trying to maximize! So if player i bids v_i , then the outcome rule is choosing the outcome that is best for player i. If player i bids some $b_i \neq v_i$, then the outcome rule chooses some w^* that maximizes social welfare for b_i rather than for v_i , which is clearly worse for player i. Thus bidding b_i is a dominant strategy.

To see this intuitively, note that what the VCG mechanism is doing is "aligning incentives": because of the price chosen, in order to maximize their own utility player i wants to maximize total social welfare. Since that's what the mechanism is trying to do, the best thing for player i to do is be truthful and let the mechanism do this.

So we're almost done. We just need to prove that utilities are never negative for a truthful bidder and that prices are never negative. Clearly $p_i(b)$ is never negative, since the w^* is one particular instantiation of the max. To prove nonnegative utilities, let $w' = \arg\max_{w \in \Omega} \sum_{j \neq i} b_j(w)$. Then the price is

$$p_{i}(b) = \sum_{j \neq i} b_{j}(w') - \sum_{j \neq i} b_{j}(w^{*})$$
$$= b_{i}(w^{*}) - \left(\sum_{j=1}^{n} b_{j}(w^{*}) - \sum_{j \neq i} b_{j}(w')\right).$$

The first term here is what player i bid, so for a truthful bidder this will be $v_i(w^*)$. Thus if i is truthful, it will have utility

$$v_i(w^*) - p_i(b) = \sum_{j=1}^n b_j(w^*) - \sum_{j\neq i} b_j(w') \ge \sum_{j=1}^n b_j(w') - \sum_{j\neq i} b_j(w') = b_i(w') \ge 0$$