Load Balancing with Bounded Convergence in Dynamic Networks

Michael Dinitz Jeremy Fineman Seth Gilbert Calvin Newport
Load Balancing in Graphs
Load Balancing in Graphs

- Work x_u for each vertex u
- $T = \sum u x_u$
- Goal: redistribute work so that every node has approximately T/n load
Load Balancing in Graphs

- Work x_u for each vertex u
 - $T = \sum_u x_u$
- Goal: redistribute work so that every node has approximately T/n load
- Can only send work along edges of graph, no global knowledge (Local Load Balancing)
- Synchronous rounds: transfer work along edges in each round
Desirable Properties
Desirable Properties

• In each round, edges used form a matching
 • Each node sends/receives work from at most one other node in each round
 • Important for some applications/models [Cybenko '89]
 • Dimension Exchange

• Works in dynamic graphs
 • Sequence of graphs $H = (G_1 = (V, E_1), G_2 = (V, E_2), ...)$, each connected
 • Distributed: each node sees only load of neighbors in current graph

• Converges *quickly*
Desirable Properties

• In each round, edges used form a matching
 • Each node sends/receives work from at most one other node in each round
 • Important for some applications/models [Cybenko '89]
 • Dimension Exchange

• Works in dynamic graphs
 • Sequence of graphs $H = (G_1 = (V, E_1), G_2 = (V, E_2), \ldots)$, each connected
 • Distributed: each node sees only load of neighbors in current graph

• Converges quickly

• Many results getting 2/3 — can we get all three?
Model
Model

• Beginning of round r:
 • Graph $G_r = (V, E_r)$
 • $x_u(r-1)$ work at node u
 • Each node u knows work at neighbors (not total work or n)
Model

- **Beginning of round** \(r \):
 - Graph \(G_r = (V, E_r) \)
 - \(x_u(r-1) \) work at node \(u \)
 - Each node \(u \) knows work at neighbors (not total work or \(n \))

- **In round** \(r \):
 - Local computation to determine matching \(M_r \)
 - If \(\{u,v\} \in M_r \), distribute \(x_u(r-1) + x_v(r-1) \) between \(u \) and \(v \) to get
 \(x_u(r) \) and \(x_v(r) \)
Model

• Beginning of round \(r \):
 • Graph \(G_r = (V, E_r) \)
 • \(x_u(r-1) \) work at node \(u \)
 • Each node \(u \) knows work at neighbors (not total work or \(n \))

• In round \(r \):
 • Local computation to determine matching \(M_r \)
 • If \(\{u,v\} \in M_r \), distribute \(x_u(r-1) + x_v(r-1) \) between \(u \) and \(v \) to get \(x_u(r) \) and \(x_v(r) \)

• Goal: \(\tau \)-convergence
 • \(|x_u(u) - x_v(r)| \leq \tau \) for all \(u, v \in V \)
Example
Example
Example
Example
Example
Example

5-Converged
Results: Upper Bound

Theorem: There is an algorithm which achieve \(\tau \)-convergence after

\[
O \left(\min \left(n^2 \log \left(\frac{Tn}{\tau} \right) , \frac{Tn \log n}{\tau} \right) \right)
\]

rounds with high probability
Theorem: There is an algorithm which achieve τ-convergence after

$$O \left(\min \left(n^2 \log \left(\frac{Tn}{\tau} \right) , \frac{Tn \log n}{\tau} \right) \right)$$

rounds with high probability

- Match if $\tau = \Theta(T/n)$
 - $O(n^2 \log n)$ rounds
 - If small enough constant, loads within multiplicative factor

- Easy, simple algorithm (Max-Neighbor)
Results: Lower Bound

Theorem: No randomized algorithm can achieve $O(T/n)$-convergence in $o(n^2)$ rounds against an online adaptive adversary.
Results: Lower Bound

Theorem: No randomized algorithm can achieve $O(T/n)$-convergence in $o(n^2)$ rounds against an online adaptive adversary.

- Adversary in each round r:
 - Sees current work distribution $\{x_u(r-1)\}_{u \in V}$
 - Chooses graph $G_r = (V, E_r)$
 - Does not see random coins used by algorithm in round r

- Max-Neighbor upper bound holds
Max Neighbor (round r)

- Node u flips fair coin to decide whether to send or receive
 - If send, then u sends proposal to $\text{argmax}_{v \in N(u)}(|x_v(r-1) - x_u(r-1)|)$
 - If receive, accept proposal from $\text{argmax}_{v \in S}(|x_v(r-1) - x_u(r-1)|)$ (where S is neighbors of u who sent a proposal to u)

- If u accepts proposal from v, they are connected in round r
 - Set $x_u(r) = x_v(r) = \frac{1}{2}(x_u(r-1) + x_v(r-1))$
Example

= send
Example

- send
Example

= send
Example

= send
Example

- = send
Analysis Outline
Analysis Outline

• Potential function $\varphi(r) = \sum_{u,v \in V} |x_u(r) - x_v(r)|$

 • Initially: $\varphi(0) \leq Tn^2$

 • τ-converged if $\varphi(r) \leq \tau$
Analysis Outline

• Potential function $\varphi(r) = \sum_{u,v \in V} |x_u(r) - x_v(r)|$
 - Initially: $\varphi(0) \leq Tn^2$
 - τ-converged if $\varphi(r) \leq \tau$

• Want to show potential drops “quickly”
 - Step 1: lower bound potential drop by other function D_r
 - Step 2: with constant probability D_r at least “maximum gap” (good round)
 - Step 3: with high probability, after $O\left(n^2 \log \left(\frac{Tn}{\tau}\right)\right)$ rounds, enough good rounds to drop potential below τ
Step I
Step I

- **Lemma**: \(\varphi(r-1) - \varphi(r) \geq D_r \)
 - \(d_{u,v}(r) = |x_u(r) - x_v(r)| \)
 - \(M_r = \{\{u,v\} : u,v \text{ connected in round } r\} \)
 - \(D_r = \sum_{\{u,v\} \in M_r} d_{u,v}(r-1) \)
Step I

- **Lemma:** $\varphi(r-1) - \varphi(r) \geq D_r$
 - $d_{u,v}(r) = |x_u(r) - x_v(r)|$
 - $M_r = \{\{u,v\} : u,v \text{ connected in round } r\}$
 - $D_r = \sum_{\{u,v\} \in M_r} d_{u,v}(r-1)$

- Get D_r drop directly from pairs in M_r, just need to show other gaps don’t increase in total
Step 1

- **Lemma:** $\varphi(r-1) - \varphi(r) \geq D_r$
 - $d_{u,v}(r) = |x_u(r) - x_v(r)|$
 - $M_r = \{\{u,v\} : u,v \text{ connected in round } r\}$
 - $D_r = \sum_{\{u,v\} \in M_r} d_{u,v}(r-1)$

- Get D_r drop directly from pairs in M_r, just need to show other gaps don’t increase in total

- Intuition: M_r is one edge

![Diagram showing edge connections](image)
Step I

- **Lemma:** $\varphi(r-1) - \varphi(r) \geq D_r$
 - $d_{u,v}(r) = |x_u(r) - x_v(r)|$
 - $M_r = \{\{u,v\} : u,v$ connected in round $r\}$
 - $D_r = \sum_{\{u,v\} \in M_r} d_{u,v}(r-1)$

- Get D_r drop directly from pairs in M_r, just need to show other gaps don’t increase in total

- Intuition: M_r is one edge
Bounding D_r

- **Lemma:** $D_r \geq t_{\max}(r-1) / O(\log n)$ with constant probability
 - $d_{u,v}(r) = |x_u(r) - x_v(r)|$
 - $t_{\max}(r) = \max_{u,v \in V} d_{u,v}(r)$
Bounding D_r

- **Lemma:** $D_r \geq t_{\text{max}}(r-1) / O(\log n)$ with constant probability
 - $d_{u,v}(r) = |x_u(r) - x_v(r)|$
 - $t_{\text{max}}(r) = \max_{u,v \in V} d_{u,v}(r)$
Bounding D_r

- **Lemma**: $D_r \geq t_{\max}(r-1) / O(\log n)$ with constant probability
 - $d_{u,v}(r) = |x_u(r) - x_v(r)|$
 - $t_{\max}(r) = \max_{u,v \in V} d_{u,v}(r)$

\[
\sum_{i} d_{u_i, u_{i+1}}(r - 1) \geq d_{u_{\max}, v_{\max}}(r - 1) = t_{\max}(r - 1)
\]
Bounding D_r

- **Lemma:** $D_r \geq t_{\max}(r-1) / O(\log n)$ with constant probability
 - $d_{u,v}(r) = |x_u(r) - x_v(r)|$
 - $t_{\max}(r) = \max_{u,v \in V} d_{u,v}(r)$

\[
\sum_i d_{u_i,u_{i+1}}(r-1) \geq d_{u_{\max},v_{\max}}(r-1) = t_{\max}(r-1)
\]

- Would be great if each edge was in matching independently with constant probability, but not true
Bounding D_r

- Fix edge $\{u_i, u_{i+1}\}$. With constant probability there is edge $\{v, w\} \in M_r$ s.t.
 - v, w at distance at most 3 from u, v, and
 - $d_{v, w}(r - 1) \geq d_{u_i, u_{i+1}}(r - 1)$

\[
\begin{array}{cccccccc}
12 & 16 & 14 & 30 & 45 & 36 & 15 & 50 \\
\end{array}
\]

$u_{\text{max}} = u_0$ u_1 u_2 u_3 u_4 u_5 u_6 $v_{\text{max}} = u_7$
Bounding D_r

• Fix edge $\{u_i, u_{i+1}\}$. With constant probability there is edge $\{v, w\} \in M_r$ s.t.

 • v, w at distance at most 3 from $u, v,$ and

 • $d_{v,w}(r - 1) \geq d_{u_i,u_{i+1}}(r - 1)$
Bounding D_r

- Fix edge $\{u_i, u_{i+1}\}$. With constant probability there is edge $\{v, w\} \in M_r$ s.t.
 - v, w at distance at most 3 from u, v, and
 - $d_{v, w}(r - 1) \geq d_{u_i, u_{i+1}}(r - 1)$

- Independent for i, i' with $|i' - i| > 6$ (distance bound)
- Constant prob. of logarithmic fraction of full path
Putting it Together

• Potential drop at least D_r

• With constant probability, $D_r \geq t_{\text{max}}(r-1) / O(\log n)$

• Potential at round r at most $n^2 t_{\text{max}}(r-1)$

• So after about n^2 rounds, potential small enough to guarantee τ-convergence
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence
Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence.
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs \(\Omega(n^2) \) rounds to get \((T/n)\)-convergence.

\[
\begin{align*}
n & \quad 0 \\
\end{align*}
\]

• If ALG used \(\{i, i+1\} \) in round r-1, swap (if necessary) so one with smaller work is on the right.
Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence.

- If ALG used \(\{i, i+1\} \) in round \(r-1 \), swap (if necessary) so one with smaller work is on the right.
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence

• If ALG used \(\{i, i+1\} \) in round \(r-1 \), swap (if necessary) so one with smaller work is on the right
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence

• If ALG used $\{i, i+1\}$ in round r-1, swap (if necessary) so one with smaller work is on the right
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence

• If ALG used \{i, i+1\} in round r-1, swap (if necessary) so one with smaller work is on the right
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence

• If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence

• If ALG used $\{i, i+1\}$ in round r-1, swap (if necessary) so one with smaller work is on the right
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence.

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right.
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence

• If ALG used \{i, i+1\} in round r-1, swap (if necessary) so one with smaller work is on the right
Lower Bound

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (T/n)-convergence

\[
\begin{align*}
3n/4 & \quad 3n/16 & \quad n/32 & \quad n/32 & \quad 0 & \quad 0 & \quad 0 & \quad 0
\end{align*}
\]

• If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right
 • Lemma: best strategy for ALG is to split work equally across each edge it uses (EQUAL)
 • EQUAL takes $\Omega(n^2)$ rounds before significant weight on node n
Conclusion

• Load balancing upper and lower bounds:
 • Local (no global coordination)
 • At most one connections / node / round (matching)
 • Dynamic networks
 • Provably converges quickly (w.h.p.)

• Lots of interesting questions left!
 • Theory of dynamic graphs
 • Connection to smoothed analysis
 • Logarithmic gap between upper and lower bounds
 • Practice…
Thanks!