This talk is about *spanners*

Given graph \(G = (V, E) \), subgraph \(H \) of \(G \) is a *\(t \)-spanner* of \(G \) if

\[
d_H(u, v) \leq t \cdot d_G(u, v) \quad \text{for all } u, v \in V
\]

- \(t \) is the *stretch* of the spanner.
- In this paper: \(G \) undirected, unweighted, connected
- Sufficient for stretch condition to hold for all edges \(\{u, v\} \in E \)
Graph Spanners: Basics

This talk is about spanners

Given graph $G = (V, E)$, subgraph H of G is a t-spanner of G if

$$d_H(u, v) \leq t \cdot d_G(u, v) \quad \text{for all } u, v \in V$$

- t is the stretch of the spanner.
- In this paper: G undirected, unweighted, connected
- Sufficient for stretch condition to hold for all edges $\{u, v\} \in E$
Classical Objectives

Want to have small stretch, and small “cost”.
Two natural cost measures: total # edges, maximum degree.
Classical Objectives

Want to have small stretch, and small “cost”.
Two natural cost measures: total \# edges, maximum degree.

\# edges: [Althöfer et al ’93]:
- For any positive integer \(k \), all graphs have a \((2k - 1)\)-spanner with \(O(n^{1+1/k}) \) edges, and
Classical Objectives

Want to have small stretch, and small "cost".
Two natural cost measures: total \# edges, maximum degree.

\# edges: [Althöfer et al '93]:
- For any positive integer k, all graphs have a $(2k - 1)$-spanner with $O(n^{1+1/k})$ edges, and
- There exist graphs in which all $(2k - 1)$-spanners have $\Omega(n^{1+1/k})$ edges (assuming Erdős Girth Conjecture).
Classical Objectives

Want to have small stretch, and small “cost”.
Two natural cost measures: total \# edges, maximum degree.

\# edges: [Althöfer et al ’93]:
- For any positive integer k, all graphs have a $(2k - 1)$-spanner with $O(n^{1+1/k})$ edges, and
- There exist graphs in which all $(2k - 1)$-spanners have $\Omega(n^{1+1/k})$ edges (assuming Erdös Girth Conjecture).

No such theorem possible for max degree! Star graph. Removing any edge cases infinite stretch
Switch our point of view from tradeoffs to optimization.

Given G, k, efficient algorithm for finding best t-spanner of G?
Switch our point of view from tradeoffs to optimization.

Given G, k, efficient algorithm for finding best t-spanner of G?

- **Basic t-Spanner**: “best” = fewest edges
 - Lots known – come chat with me!
 - High-level view: can’t really beat trivial $O(n^{1/k})$-approximation for $t = 2k - 1$.
 - Can slightly in some special cases: $t = 3$ [BBMRY ’13] and $t = 4$ [D-Zhang ’16]

- **Lowest Degree t-Spanner (LDtS)**: “best” = min max degree
 - Chlamtác-D ’16: $O(\Delta^{(1-\frac{1}{t})^2})$-approximation, $\Omega(\Delta^{1/t})$ lower bound
 - Chlamtác-D-Krauthgamer ’12: $\tilde{O}(\Delta^{3-2\sqrt{2}})$-approx when $t = 2$ (Sherali-Adams)
Classical Objectives: Motivation and Issues

- **Number of Edges:**
 - **Pros:** natural objective, very nice tradeoff theorems. Well-studied. Often what’s needed in applications.
 - **Cons:** Do we really not care if one node has huge degree, as long as others small? Load in distributed settings?

- **Maximum Degree:**
 - **Pros:** Encourages low loads in distributed settings. Natural objective.
 - **Cons:** If some node forced to have large degree, do we really want to allow all other nodes to have large degree?
Classical Objectives: Motivation and Issues

- **Number of Edges:**
 - Pros: natural objective, very nice tradeoff theorems. Well-studied. Often what’s needed in applications.
 - Cons: Do we really not care if one node has huge degree, as long as others small? Load in distributed settings?

- **Maximum Degree:**
 - Pros: Encourages low loads in distributed settings. Natural objective.
 - Cons: If some node forced to have large degree, do we really want to allow all other nodes to have large degree?

- Want something new: encourages max degree to be small, but also encourages other nodes to have small degree even if max forced to be large.
New Objective

- Observation: consider vector \(d_G \in \mathbb{Z}_{\geq 0}^n \) of vertex degrees in \(G \).
 - Number of edges is \(\frac{1}{2} \|d_G\|_1 \)
 - Maximum degree is \(\|d_G\|_\infty \)
- Interpolate between the two!
New Objective

- Observation: consider vector $d_G \in \mathbb{Z}_{\geq 0}^n$ of vertex degrees in G.
 - Number of edges is $\frac{1}{2} \|d_G\|_1$
 - Maximum degree is $\|d_G\|_\infty$
- Interpolate between the two!

The ℓ_p-norm objective is to minimize

$$\|H\|_p = \|d_H\|_p = \left(\sum_{u \in V} d_H(u)^p \right)^{1/p}$$

- For $1 < p < \infty$, encourages both sparsity and low maximum degree!
 - Standard objective in clustering, scheduling, etc.
\(\ell_p\)-Objective: Tradeoffs

Introduced this objective in [Chlamtáč-D-Robinson ICALP ’19]

Theorem: For every \(k, p \geq 1\), every graph admits a \((2k - 1)\)-spanner with \(\ell_p\)-norm max(\(O(n)\), \(O(n^{\frac{k+p}{kp}})\)). This bound is also tight.
\(\ell_p\)-Objective: Tradeoffs

Introduced this objective in [Chlamtáč-D-Robinson ICALP ’19]

Theorem: For every \(k, p \geq 1\), every graph admits a \((2k - 1)\)-spanner with \(\ell_p\)-norm
\[
\max(O(n), O(n^{\frac{k+p}{kp}})).
\]
This bound is also tight.

Solved the tradeoff question, but what about optimization?

Definition: In the **Minimum \(\ell_p\)-Norm t-Spanner** problem, we are given \(p, t, G\), and our goal is to find the \(t\)-spanner \(H\) of \(G\) minimizing \(\|H\|_p\)

Focus of this paper, with \(p = 2, t = 3\) (some results generalizable)
Results

First, study greedy algorithm (used to prove tradeoffs).

Greedy is an $\tilde{O}(n^{3/7})$-approximation for \textsc{Minimum ℓ_2-Norm 3-Spanner} (and this is tight).

New algorithm based on rounding convex relaxation.

There is an $\tilde{O}(n^{5/13})$-approximation for \textsc{Minimum ℓ_2-Norm 3-Spanner}.

Hardness result (more careful analysis of max-degree hardness).

Unless $\textbf{NP} \subseteq \textbf{BPTIME}(2^{\text{polylog}(n)})$, for any $\epsilon > 0$ there is no polynomial-time algorithm for \textsc{Minimum ℓ_2-Norm 3-Spanner} with approximation ratio better than $2^{\log^{1-\epsilon} n}$.
Why greedy?

Since we have a better algorithm, why study greedy?

\[\ell_2 \text{ norm for stretch } 3 \text{ is fundamentally different from } \ell_1 \text{ or } \ell_\infty \text{ in terms of greedy approximation.} \]

\(\ell_1 \): Greedy always has at most \(O \left(\frac{n^3}{2} \right) \) edges, so trivially an \(O \left(\frac{n^1}{2} \right) \)-approximation. Tight.

\(\ell_\infty \): Greedy has max degree at most \(\Delta \), and \(\text{OPT} \geq \frac{\Delta^1}{3} \). So \(O \left(\frac{\Delta^2}{3} \right) = O \left(\frac{n^2}{3} \right) \)-approximation. Tight.

\(\ell_2 \): Greedy has at most \(O(n) \) edges (tight), \(\text{OPT} \geq \Omega \left(\frac{n^1}{2} \right) \) (tight). But greedy is \(\tilde{O} \left(\frac{n^3}{7} \right) \)-approximation!

Approximation ratio of greedy cannot be determined by "absolute" guarantees for \(p = 2 \), unlike \(p = 1, \infty \)!

Interesting analysis: write a constant-size LP, argue it characterizes approximation ratio, give tight bound on LP.
Why greedy?

Since we have a better algorithm, why study greedy?

- Natural and important algorithm – should understand its performance!
- Demonstrates that ℓ_2 norm for stretch 3 is fundamentally different from ℓ_1 or ℓ_∞ in terms of greedy approximation.
Why greedy?

Since we have a better algorithm, why study greedy?

- Natural and important algorithm – should understand its performance!
- Demonstrates that ℓ_2 norm for stretch 3 is fundamentally different from ℓ_1 or ℓ_∞ in terms of greedy approximation.
 - ℓ_1: Greedy always has at most $O(n^{3/2})$ edges, so trivially an $O(n^{1/2})$-approximation. Tight.
 - ℓ_∞: Greedy has max degree at most Δ, and $OPT \geq \Delta^{1/3}$. So $O(\Delta^{2/3}) = O(n^{2/3})$-approximation. Tight.
Why greedy?

Since we have a better algorithm, why study greedy?

- Natural and important algorithm – should understand its performance!
- Demonstrates that ℓ_2 norm for stretch 3 is **fundamentally different** from ℓ_1 or ℓ_∞ in terms of greedy approximation.
 - ℓ_1: Greedy always has at most $O(n^{3/2})$ edges, so trivially an $O(n^{1/2})$-approximation. Tight.
 - ℓ_∞: Greedy has max degree at most Δ, and $\text{OPT} \geq \Delta^{1/3}$. So $O(\Delta^{2/3}) = O(n^{2/3})$-approximation. Tight.
 - ℓ_2: Greedy has at most $O(n)$ edges (tight), $\text{OPT} \geq \Omega(n^{1/2})$ (tight). But greedy is $\tilde{O}(n^{3/7})$-approximation!
Why greedy?

Since we have a better algorithm, why study greedy?

- Natural and important algorithm – should understand its performance!
- Demonstrates that ℓ_2 norm for stretch 3 is fundamentally different from ℓ_1 or ℓ_∞ in terms of greedy approximation.
 - ℓ_1: Greedy always has at most $O(n^{3/2})$ edges, so trivially an $O(n^{1/2})$-approximation. Tight.
 - ℓ_∞: Greedy has max degree at most Δ, and $OPT \geq \Delta^{1/3}$. So $O(\Delta^{2/3}) = O(n^{2/3})$-approximation. Tight.
 - ℓ_2: Greedy has at most $O(n)$ edges (tight), $OPT \geq \Omega(n^{1/2})$ (tight). But greedy is $\tilde{O}(n^{3/7})$-approximation!
- Approximation ratio of greedy cannot be determined by “absolute” guarantees for $p = 2$, unlike $p = 1, \infty$!
Why greedy?

Since we have a better algorithm, why study greedy?

- Natural and important algorithm – should understand its performance!
- Demonstrates that ℓ_2 norm for stretch 3 is fundamentally different from ℓ_1 or ℓ_∞ in terms of greedy approximation.
 - ℓ_1: Greedy always has at most $O(n^{3/2})$ edges, so trivially an $O(n^{1/2})$-approximation. Tight.
 - ℓ_∞: Greedy has max degree at most Δ, and $\text{OPT} \geq \Delta^{1/3}$. So $O(\Delta^{2/3}) = O(n^{2/3})$-approximation. Tight.
 - ℓ_2: Greedy has at most $O(n)$ edges (tight), $\text{OPT} \geq \Omega(n^{1/2})$ (tight). But greedy is $\tilde{O}(n^{3/7})$-approximation!

- Approximation ratio of greedy cannot be determined by “absolute” guarantees for $p = 2$, unlike $p = 1, \infty$!
- Interesting analysis: write a constant-size LP, argue it characterizes approximation ratio, give tight bound on LP.
Approximation Algorithm: Convex Relaxation

Let $\mathcal{P}(u, v)$ be all $u \sim v$ paths of length at most 3

$$\min \left(\sum_{v \in V} \left(\sum_{e \sim v} x_e \right)^2 \right)^{1/2}$$

s.t. $\sum_{p \in \mathcal{P}(u, v)} y_p = 1 \quad \forall (u, v) \in E$

$x_e \geq \sum_{p \in \mathcal{P}(u, v) : e \in p} y_p \quad \forall (u, v), e \in E$

$x_e, y_p \geq 0 \quad \forall e, p$

- Standard network design LP relaxation, except non-linear objective
 - Easily solved with (e.g.) Ellipsoid
- Use two different rounding algorithms, trade them both off with greedy
Rounding Algorithm 1

Super simple rounding algorithm:

- Add each $e \in E$ to H_1 independently with probability $x_e^{3/7}$
Super simple rounding algorithm:

- Add each $e \in E$ to H_1 independently with probability $x_e^{3/7}$

Problem: might not result in a spanner.

If add with probability $x_e^{1/3}$, would be a spanner, would exactly be algorithm for ℓ_∞ objective from [Chlamtáč-D ’16]
Rounding Algorithm 2 (Simplified)

- For each \(u \in V \), draw \(z_u \in \mathbb{R} [0, 1] \) u.a.r.
- For each \(e \in E \), draw \(z_e \in \mathbb{R} [0, 1] \) u.a.r.
- Add \(e = \{u, v\} \) to \(H_2 \) if at least one of the following conditions holds:
 - \(z_u \leq x_e^{1/4} \) and \(z_v \leq x_e^{1/4} \), or
 - \(z_u \leq x_e^{1/4} \) and \(z_e \leq x_e^{1/4} \), or
 - \(z_v \leq x_e^{1/4} \) and \(z_e \leq x_e^{1/4} \).
Rounding Algorithm 2 (Simplified)

- For each $u \in V$, draw $z_u \in \mathbb{R} [0, 1]$ u.a.r.
- For each $e \in E$, draw $z_e \in \mathbb{R} [0, 1]$ u.a.r.
- Add $e = \{u, v\}$ to H_2 if at least one of the following conditions holds:
 - $z_u \leq x_{e}^{1/4}$ and $z_v \leq x_{e}^{1/4}$, or
 - $z_u \leq x_{e}^{1/4}$ and $z_e \leq x_{e}^{1/4}$, or
 - $z_v \leq x_{e}^{1/4}$ and $z_e \leq x_{e}^{1/4}$.

New aspect: rounds based on randomness at both vertices and edges

- Sampling at edges: [D-Krauthgamer '11, BBMRY '13, Chlamták-D '16]
- Sampling at vertices [D-Krauthgamer '11, D-Zhang '16].
- First algorithm that does both (?)
Correctness: Regularization

Use [Chlamtác-D ’16]:

- Bucket and prune $u \sim v$ paths
- Get that WLOG, LP solution very regular:
- Loses some polylogs
Fix \(\{u, v\} \in E \).

Lemma: If \(\max(d_L, d_R) \geq \tilde{\Omega}(y_0^{-2/3}) \), then Rounding Algorithm 1 will include some \(p \in \mathcal{P}(u, v) \) with probability \(\tilde{\Omega}(1) \).

Lemma: If \(d_L, d_R \leq \tilde{O}(y_0^{-2/3}) \), then Rounding Algorithm 2 will include some \(p \in \mathcal{P}(u, v) \) with probability \(\tilde{\Omega}(1) \).

So repeat \(\tilde{O}(1) \) times, get high probability bounds. Union bound over all \(\{u, v\} \in E \).
Correctness: Intuition

Modified Algorithm 1: choose each edge e independently w.p. $x_e^{1/3}$ (instead of $x_e^{3/7}$)

- Get path $p = (e_1, e_2, e_3)$ with probability

$$\left(x_{e_1}x_{e_2}x_{e_3}\right)^{1/3} \geq \left(\min(x_{e_1}x_{e_2}x_{e_3})\right)^{1} \geq y_p$$

- So get each path with the “right” probability, so in expectation get at least one path since $\sum_{p \in P(u,v)} y_p = 1$
 - Issue: Paths not disjoint! Concentration?
Correctness: Intuition

Modified Algorithm 1: choose each edge e independently w.p. $x_e^{1/3}$ (instead of $x_e^{3/7}$)

- Get path $p = (e_1, e_2, e_3)$ with probability

$$\left(x_{e_1} x_{e_2} x_{e_3}\right)^{1/3} \geq \left(\min(x_{e_1} x_{e_2} x_{e_3})\right)^{1} \geq y_p$$

- So get each path with the “right” probability, so in expectation get at least one path since $\sum_{p \in \mathcal{P}(u,v)} y_p = 1$
 - Issue: Paths not disjoint! Concentration?

- Intuition of [Chlamtátě-D ’16]: if paths not disjoint, actually doing much better!
 - Get $n(1/n)^{1/3} = n^{2/3}$ left edges, $n^{2/3}$ right edges
 - $n^{4/3}$ ways to complete a path, get each w.p. $1/n^{2/3}$
 - So get about $n^{2/3}$ paths!
Correctness: Intuition

Decrease sampling probability to $x_e^{3/7}$.

- If paths overlap a lot ($\max(d_L, d_R) \geq \tilde{\Omega}(y_0^{-2/3})$), Rounding Alg 1 still works.
- If not, do something else: correlate at nodes!
- Can’t do this for ℓ_∞-metric, but (in this case) can do this for ℓ_2-metric.
Correctness: Intuition

Decrease sampling probability to $x_e^{3/7}$.

- If paths overlap a lot ($\max(d_L, d_R) \geq \tilde{\Omega}(y_0^{-2/3})$), Rounding Alg 1 still works.
- If not, do something else: correlate at nodes!
- Can’t do this for ℓ_∞-metric, but (in this case) can do this for ℓ_2-metric.
 - Having edges bought only by nodes has too much correlation, ends up with large degrees.
 - Need to mix edges paying for themselves (randomness at edges) with being bought by endpoints (randomness at nodes)
 - Argue that if paths “mostly disjoint”, works well in expectation, and can prove concentration.
Conclusion & Open Questions

- For stretch 3, ℓ_2-norm: analyzed greedy (tight), hardness of approximation, complicated algorithm to beat greedy.

- What about other p, other stretch?
 - Some things generalize.
 - Hardness Analysis of greedy should (some really annoying technicalities)
 - Algorithm 2 should generalize to other p
 - Some don’t
 - Better than greedy for stretch > 3?
 - Even for $p = 2$, $k = 3$, gap between upper bound and hardness. Better algorithms?

- What about ℓ_p-norm of degree vector for other network design problems?

Thanks!
Conclusion & Open Questions

- For stretch 3, ℓ_2-norm: analyzed greedy (tight), hardness of approximation, complicated algorithm to beat greedy.
- What about other p, other stretch?
 - Some things generalize.
 - Hardness
 - Analysis of greedy should (some really annoying technicalities)
 - Algorithm 2 should generalize to other p
 - Some don't
 - Better than greedy for stretch >3?
- Even for $p=2$, $k=3$, gap between upper bound and hardness. Better algorithms?
- What about ℓ_p-norm of degree vector for other network design problems?
Conclusion & Open Questions

- For stretch 3, ℓ_2-norm: analyzed greedy (tight), hardness of approximation, complicated algorithm to beat greedy.
- What about other p, other stretch?
 - Some things generalize.
 - Hardness
 - Analysis of greedy should (some really annoying technicalities)
 - Algorithm 2 should generalize to other p
 - Some don't
 - Better than greedy for stretch > 3?
- Even for $p = 2, k = 3$, gap between upper bound and hardness. Better algorithms?
- What about ℓ_p-norm of degree vector for other network design problems?

Thanks!