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We demonstrate that multiple copies of a bipartite entangled pure state may serve as a catalyst for certain
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observed. These results can be generalized to probabilistic entanglement transformations directly.
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I. INTRODUCTION

In recent years, more and more applications of quantum
information processing, such as quantum cryptographyf1g,
quantum superdense codingf2g, and quantum teleportation
f3g, have led us to view quantum entanglement as a new kind
of physical resourcef4g. One of the central problems about
quantum entanglement is to find the conditions under which
an entangled state could be converted into another one by
using local quantum operations and classical communication
sLOCCd only. Bennett and his collaboratorsf5–7g made sig-
nificant progress in attacking this challenging problem for
the asymptotic setting, while for the deterministic transfor-
mations, the first important step was made by Nielsen in Ref.
f8g, where he found a necessary and sufficient condition for a
bipartite entangled pure state to be transformed to another
pure one deterministically, under the constraint of LOCC.
More precisely, suppose that Alice and Bob share an en-
tangled stateucl, and they want to transform it into another
state uwl by using only local quantum operations on their
own subsystems and classical communication between them.
Nielsen proved that the two parties can finish this task
successfully—i.e., transformingucl to uwl with certainty un-
der LOCC—if and only ifcaw, wherec andw denote the
Schmidt coefficient vectors ofucl anduwl, respectively. Here
the symbol “a” stands for “majorization relation,” which is
a vast topic in linear algebra. For details about majorization,
see Refs.f9,10g.

Nielsen’s result implies that there can be two entangled
pure states—say,ucl and uwl—such that they are incompa-
rable in the sense that neither the transformation ofucl to uwl
nor the transformation ofuwl to ucl can be realized with
certainty. For transformations between incomparable states,
Vidal f11g generalized Nielsen’s result to a probabilistic ver-
sion and established an explicit expression to calculate the
maximal conversion probability.

Shortly after Nielsen’s work, a startling phenomenon of
entanglement—namely, entanglement catalysis, or

ELOCC—was discovered by Jonathan and Pleniof12g. This
phenomenon can be understood as follows. Letucl and uwl
be two bipartite entangled pure states such that the transfor-
mation of ucl to uwl cannot be realized with certainty under
LOCC. Then Jonathan and Plenio demonstrated that some-
times one may use an auxiliary entangled stateufl, known as
a catalyst, to make the above transformation possible without
being consuming at all. In fact, the transformation in the
presence ofufl is of the form ucl ^ ufl→ uwl ^ ufl, from
which one can easily see that the catalyst stateufl is not
modified during the process. A concrete example is as fol-
lows. Takeucl=Î0.4u00l+Î0.4u11l+Î0.1u22l+Î0.1u33l and
uwl=Î0.5u00l+Î0.25u11l+Î0.25u22l. We know thatucl can-
not be transformed touwl with certainty under LOCC, but if
another entangled stateufl=Î0.6u44l+Î0.4u55l is intro-
duced, then the transformation ofucl ^ ufl to uwl ^ ufl can
be realized with certainty becausec ^ faw ^ f. The role of
the stateufl in this transformation is similar to a catalyst in
a chemical process since it can help the entanglement trans-
formation process without being consumed. In the same pa-
per, Jonathan and Plenio also showed that the use of a cata-
lyst can improve the maximal conversion probability when
the transformation cannot be realized with certainty even
with the help of a catalyst. The mathematical structure of
entanglement catalysis was thoroughly studied in Ref.f13g.

Bandyopadhyayet al. found another interesting phenom-
enonf14g: sometimes multiple copies of the source state may
be transformed into the same number of copies of the target
state although the transformation cannot happen for a single
copy. Such a phenomenon is called “nonasymptotic bipartite
pure-state entanglement transformation” in Ref.f14g. More
intuitively, this phenomenon can also be called “multiple-
copy entanglement transformation,” or MLOCC for short.
Take the above statesucl and uwl as an example. It is not
difficult to check that the transformation ofucl^3 to uwl^3

occurs with certainty by Nielsen’s theorem. That is, when
Alice and Bob prepare three copies ofucl instead of just a
single one, they can transform these three copies all together
into the same number of copies ofuwl by LOCC. This simple
example means that the effect of catalyst can, at least in the
above situation, be implemented by preparing a sufficiently
large number of copies of the original state and transforming
these copies together. Some important aspects of MLOCC
were investigated in Ref.f14g.
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In this paper we examine the catalysis power when mul-
tiple copies of a catalyst state are available. What was dis-
covered by Bandyopadhyayet al. is that sometimes the effect
of catalysis can be implemented by increasing the number of
copies of the source state, whereas we present some ex-
amples to show another interesting phenomenon: a large
enough number of copies of an entangled pure state may act
as a catalyst although a single copy cannot. Such an en-
tangled pure state can be called amultiple-copy catalyst.
More formally, if ufl is not a catalyst for the transformation
of ucl to uwl, but there is an integerm.1 such thatufl^m is
a catalyst for the same transformation, thenufl is called a
multiple-copy catalyst for the transformation ofucl to uwl. A
necessary condition for a given entangled pure state to be a
multiple-copy catalyst for a specific transformation is ob-
tained.

It is worth noting that both ways of enabling entangle-
ment transformations in Ref.f14g and in the present paper
are increasing the number of copies of states. The essential
difference is that in Ref.f14g the number of copies of the
source state is increased while in this paper we consider in-
creasing the number of catalysts. A lot of heuristic examples
lead us to find a trade-off between the number of copies of
the original entangled state and that of the catalyst. As is
expected, the more original-state copies are provided, the
fewer catalyst copies are needed and vice versa.

A similar phenomenon also exists in the case of probabi-
listic entanglement transformations. We show by examples
that sometimes the combination of MLOCC and ELOCC can
increase the maximal conversion probability efficiently. We
also present a necessary condition for when the combination
of multiple-copy transformations and entanglement-assisted
transformations has advantages over pure LOCC transforma-
tions.

The rest of the paper is organized as follows. In Sec. II,
we study the combination of MLOCC and ELOCC in deter-
ministic transformations. These results are generalized to
probabilistic ones in Sec. III. The paper is concluded in Sec.
IV with some open problems that may be of interest for
further study.

II. COMBINING MLOCC WITH ELOCC:
DETERMINISTIC CASE

The main purpose of this section is to demonstrate the
effect of multiple-copy catalysis. We accomplish this goal by
giving an explicit example, which confirms the existence of a
multiple-copy catalyst. Then we further combine multiple-
copy transformation and entanglement catalysis together and
show that a trade-off exists between the number of copies of
a multiple-copy catalyst and that of the source state in the
entanglement transformation. A necessary condition for an
auxiliary state being a multiple-copy catalyst for the given
transformation is also presented.

For the sake of convenience, we present here Nielsen’s
theorem f8g as a lemma since it will be used frequently
to analyze the possibility of entanglement transformations
latter.

Lemma 1. Let ucl=oi=1
n Îaiuiluil and uwl=oi=1

n Îbiuiluil be

pure bipartite states with the Schmidt coefficient vectorsc
=sa1, . . . ,and and w=sb1, . . . ,bnd, where a1ù ¯ ùanù0
andb1ù ¯ ùbnù0. Then there exists a transformation that
convertsucl into uwl with certainty under LOCC if and only
if caw—i.e.,

o
i=1

l

ai ø o
i=1

l

bi, 1 ø l ø n, s1d

with equality whenl =n.
Nielsen’s theorem establishes a connection between the

transformation ofucl to uwl and the mathematical relation
caw. Intuitively, we often writeucla uwl instead ofcaw.
From that one can immediately deduce that the transforma-
tion of ucl to uwl can be achieved with certainty under
LOCC.

As a useful application of Nielsen’s theorem, we present a
technical lemma as follows.

Lemma 2. Let ucl and uwl be two bipartite entangled pure
states. If ucl^pa uwl^p for each p=k,k+1, . . . ,2k−1, then
ucl^pa uwl^p for all pùk.

In other words, to check whetherucl^pa uwl^p holds for
every pùk, one only needs to checkk values ofp—i.e., p
=k, . . . ,2k−1.

Proof. By Nielsen’s theorem and the assumptions, to
prove that ucl^pa uwl^p for every pùk, we only need to
show that the transformation ofucl^p to uwl^p can be real-
ized with certainty for anypù2k. For this purpose, we
uniquely decompose the positive integerp such thatpù2k
as

p = sr − 1dk + sk + sd, r ù 2 and 0ø sø k − 1. s2d

Now an explicit protocol implementing the transformation of
ucl^p to uwl^p with certainty under LOCC consists of the
following two steps.

sid Performsr −1d times of the transformation ofucl^k to
uwl^k.

sii d Perform one time of the transformation ofucl^k+s to
uwl^k+s.

By Nielsen’s theorem and the assumptions again, we
know that both the transformations insid and sii d can be
realized with certainty by LOCC. That completes the proof
of lemma 2. h

It is worth noting that the conditions in lemma 2 are also
necessary in general. In fact, as pointed out by Leung and
Smolin in Ref.f15g, the majorization relation is not mono-
tonic in general in the sense thatucl^ka uwl^k does not al-
ways imply ucl^k+1a uwl^k+1. Thus, to guarantee thatucl^p

a uwl^p holds for everypùk, one needs to check allk con-
ditions.

Now we begin to examine the catalysis power when mul-
tiple copies of the catalyst state are available. In particular,
the following example indicates the existence of a multiple-
copy catalyst.

Example 1. Suppose that the original entangled state
owned by Alice and Bob is

ucl = Î0.4u00l + Î0.4u11l + Î0.1u22l + Î0.1u33l, s3d

and the final state they want to transformucl into is
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uwl = Î0.5u00l + Î0.25u11l + Î0.22u22l + Î0.03u33l. s4d

This example is very close to the original one used by
Jonathan and Pleniof12g to demonstrate the effect of cataly-
sis. One may think that Alice and Bob could realize the
transformation ofucl to uwl with a 232 catalyst, as in the
original example in Ref.f12g. Unfortunately, it is not the
case since the small deviation violates the condition of the
existence of a 232 catalystf16g. However, we can find a
333 state

uf1l =Î 50

103
u44l +Î 30

103
u55l +Î 23

103
u66l s5d

such thatucl ^ uf1la uwl ^ uf1l.
Moreover, by a routine calculation, we may observe that

ucl^ka” uwl^k, 1 ø k ø 4, s6d

but

ucl^k a uwl^k, 5 ø k ø 9 s7d

holds. Thus Eq.s7d is true for anykù5 by lemma 2. Again,
this shows that the effect of a catalyst can be implemented by
increasing the number of copies of the source state in a trans-
formation. We now further put

uf2l = Î0.6u44l + Î0.4u55l, s8d

which is certainly not a catalyst for the transformation men-
tioned above. An interesting thing here is thatuf2l^5 does
serve as a catalyst for the transformation ofucl to uwl be-
cause an easy calculation shows thatucl ^ uf2l^5a uwl
^ uf2l^5. Of course,uf2l^5 is not the optimal one in the
sense that its dimension is not the minimum among all cata-
lysts. This phenomenon indicates that increasing the number
of an entangled pure state may strictly broaden the power of
its catalysis. h

In the next example, we combine MLOCC with ELOCC,
and show that a trade-off exists between the number of cop-
ies of source state and that of the catalyst.

Example 2. Suppose that Alice and Bob share some copies
of source stateucl as in Eq.s3d, and they want to transform
it to the same number of copies of

uwl = Î0.5u00l + Î0.25u11l + Î0.2u22l + Î0.05u33l s9d

by LOCC. Suppose that the only states they can borrow from
a catalyst banker are some copies ofuf2l in Eq. s8d. Can
Alice and Bob realize their task? Notice that

ucl^5a” uwl^5 but ucl^k a uwl^k, 6 ø k ø 11. s10d

Applying lemma 2 yields that if the number of available
copies ofucl is larger than or equal to 6, then Alice and Bob
always can realize their task by themselves without borrow-
ing any catalyst. But if they only own 5 copies ofucl, they
cannot realize the transformation even if joint operations on
the 5 copies are performed. It is easy to check that borrowing
one copy ofuf2l is enough for Alice and Bob’s task because
ucl^5 ^ uf2la uwl^5 ^ uf2l. Similarly, when they only own 4
copies ofucl, it is sufficient to finish the task successfully by
borrowing 2 copies ofuf2l. For the case that 3 copies ofucl

are owned by Alice and Bob, it is easy to see that 3 copies of
uf2l are not enough for their purpose and the minimal num-
ber of uf2l is 4. Finally, when Alice and Bob own only one
copy of ucl, using 6–10 copies ofuf2l cannot achieve the
task. We conclude that they must borrow at leat 11 copies of
uf2l from the catalyst banker since the relationucl ^ uf2l^k

a uwl ^ uf2l^k holds only for kù11. Here we have used
Nielsen’s theorem and the fact that ifufl^k is a catalyst for
the transformation ofucl to uwl then ufl^p is also a catalyst
for the same transformation for anypùk. Alice and Bob
must borrow a large number of catalysts to complete the
transformation in this extreme case. This example illustrates
a trade-off between the number of copies of original state
and that of catalyst. h

The above two examples show that it will be very useful
to know when a given entangled pure state can serve as a
multiple-copy catalyst for a specific entanglement transfor-
mation. Unfortunately, such a characterization is not known
at present. Nevertheless, we can give a necessary condition
for the existence of a multiple-copy catalyst.

Before presenting this necessary condition, we introduce
some useful notations. We definex↓ as the vector which is
obtained by rearranging the components ofx into nonin-
creasing order. A useful fact about this notation is thatx↓
=y↓ if and only if the components ofx are exactly the same
as those ofy. In other words, they are equivalent up to a
permutation. For any bipartite entangled pure statesucl and
uwl with the ordered Schmidt coefficient vectorsc↓
=sa1, . . . ,and andw↓=sb1, . . . ,bnd, we define a set of indices
as

Lc,w =Hl:1 ø l , n and o
j=1

l

a j . o
j=1

l

b jJ . s11d

Intuitively, for any l PLc,w, the sum of thel largest compo-
nents ofc is strictly larger than that ofw. So ucl and uwl are
incomparable if and only ifLc,wÞ0” andLw,cÞ0” .

The following lemma is interesting in its own right. It
gives us a necessary condition for a bipartite entangled pure
stateufl with Schmidt coefficientsg1ùg2ù ¯ ùgk.0 to
be a catalyst for a given transformation.

Lemma 3. Let ucl and uwl be two incomparable states. If
ufl is a catalyst for the transformation ofucl to uwl, then for
any l PLc,w, it holds thatg1/gk.bl /bl+1 and

g1

gi
.

bl

bl+1
or

gi

gi+1
,

b1

bl
s12d

and

gi+1

gk
.

bl

bl+1
or

gi

gi+1
,

bl+1

bn
s13d

for i =1, . . . ,k−1.
Proof. By contradiction, suppose that one of the following

holds.
Casesad: there existl0PLc,w and 1ø i0øk−1 such that

either Eq.s12d or Eq. s13d does not hold.
Case sbd: there exists l0PLc,w such that g1/gk

øbl0
/bl0+1.
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We only need to prove that both casessad andsbd contra-
dict the assumptionucl ^ ufla uwl ^ fl.

First, we deal with casesad. Let us decomposec into two
shorter vectorsc8 and c9—that is, c=sc8 ,c9d—such that
c8=sa1, . . . ,al0

d and c9=sal0+1, . . . ,and. w is similarly de-
composed asw=sw8 ,w9d. We also decomposef=sf8 ,f9d,
wheref8=sg1, . . . ,gi0

d andf9=sgi0+1, . . . ,gkd.
Since w ^ f=sw8 ,w9d ^ sf8 ,f9d, one can easily check

that the components ofw ^ f are exactly the same as those
of sw8 ^ f8 ,w8 ^ f9 ,w9 ^ f8 ,w9 ^ f9d by a simple algebraic
calculation. By our notations introduced above, we always
have

sw ^ fd↓ = sw8 ^ f8,w8 ^ f9,w9 ^ f8,w9 ^ f9d↓.

s14d

Notice that the minimal component ofw8 ^ f8 is bl0
gi0

,
while the maximal components ofw8 ^ f9, w9 ^ f8, and
w9 ^ c9 areb1gi0+1, bl0+1g1, andbl0+1gi0+1, respectively.

To finish the proof of casesad, it suffices to consider the
following two subcases.

Subcasesa.1d: Equations12d is not satisfied, that is,

g1/gi0
ø bl0

/bl0+1 and gi0
/gi0+1 ù b1/bl0

, s15d

then

bl0
gi0

ù maxhb1gi0+1,bl0+1g1,bl0+1gi0+1j, s16d

which implies that the minimal component ofw8 ^ f8 is not
less than the maximal components ofw8 ^ f9, w9 ^ f8 and
w9 ^ f9. By Eqs.s14d and s16d, the largesti0l0 components
of w ^ f are just the components ofw8 ^ f8. So

o
j=1

i0l0

sw ^ fd j
↓ = o

j=1

i0l0

sw8 ^ f8d j
↓

= So
j=1

l0

b jDSo
j=1

i0

g jD , So
j=1

l0

a jDSo
j=1

i0

g jD
= o

j=1

i0l0

sc8 ^ f8d j
↓ ø o

j=1

i0l0

sc ^ fd j
↓, s17d

where the strict inequality follows froml0PLc,w, while the
last inequality is by the definition ofo j=1

i0l0sc ^ fd j
↓. It follows

that ucl ^ ufla” uwl ^ ufl, a contradiction.
Subcasesa.2d: Equation s13d is not satisfied. Then by

similar arguments we can verify that the leastsk− i0dsn− l0d
components ofw ^ f are just the components ofw9 ^ f9, and
thus ucl ^ ufla” uwl ^ ufl, by considering the sum of the least
sk− i0dsn− l0d components ofw ^ f. This is also a contradic-
tion.

Now we deal with casesbd. In this case,f8=f and f9
disappears. With almost the same arguments as in casesa.1d,
we have thatucl ^ ufla” uwl ^ ufl, again a contradiction. That
completes the proof of lemma 3. h

In the above lemma, if we takei =1, then from Eq.s12d
we haveg1/g2,b1/bl. Similarly, takingi =k−1 leads us to
gk−1/gk,bl+1/bn from Eq. s13d. Consequently, we have the
following corollary.

Corollary 1. Let ucl and uwl be two incomparable states.
If ufl is a catalyst for the transformation ofucl to uwl, then,
for any l PLc,w,

g1

g2
,

b1

bl
and

gk−1

gk
,

bl+1

bn
. s18d

The following theorem indicates that the condition in Eq.
s18d is also necessary forufl to be a multiple-copy catalyst
for the transformation ofucl to uwl.

Theorem 1. Let ucl anduwl be two incomparable states. If
ufl is a multiple-copy catalyst for the transformation ofucl
to uwl, then for anyl PLc,w, Eq. s18d holds.

Proof. If ufl is a multiple-copy catalyst for the transfor-
mation of ucl to uwl, then there exists a positive integerm
such thatufl^m is a catalyst for the same transformation. By
corollary 1, it follows that

sf^md1
↓

sf^md2
↓ ,

b1

bl
s19d

and

sf^mdkm−1
↓

sf^mdkm
↓ ,

bl+1

bn
s20d

for any l PLc,w.
It is easy to check that

sf^md1
↓

sf^md2
↓ =

g1
m

g2g1
m−1 =

g1

g2
s21d

and

sf^mdkm−1
↓

sf^mdkm
↓ =

gk
m−1gk−1

gk
m =

gk−1

gk
. s22d

Combining Eqs.s19d–s22d, we have the validity of Eq.s18d.
This completes the proof of theorem 1. h

With the help of theorem 1, we are able to find a stateufl
such that it is a multiple-copy catalyst for the transformation
of ucl^k to uwl^k with somek.1, but not for the transfor-
mation of ucl to uwl. Intuitively, a multiple-copy transforma-
tion can be catalyzed more easily than a single-copy trans-
formation.

Example 3. Take the source state as

uc8l =
1

Î1.01
sucl + Î0.01u44ld, s23d

while the target as

uw8l =
1

Î1.01
suwl + Î0.01u44ld, s24d

whereucl and uwl are defined as Eq.s3d and Eq.s9d, respec-
tively. We choose

uf3l = Î0.7u55l + Î0.3u66l. s25d

A simple calculation shows thatuf3l is a catalyst for a
5-copy transformationsi.e., the transformation ofuc8l^5 to
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uw8l^5d, and uf3l^2 is a catalyst both for a 4-copy transfor-
mation and for a 3-copy transformation. It is obvious that
Lc8,w8=h2j, w8=1/1.01s0.5,0.25,0.2,0.05,0.01d and f3

=s0.7,0.3d. So

g1

g2
=

0.7

0.3
.

0.5

0.25
=

b1

a2
,

which yields that the condition in Eq.s18d is violated. Thus,
by theorem 1, it follows thatuf3l is not a multiple-copy
catalyst for the transformation ofuc8l to uw8l. In other words,
for arbitrarily largeq, the transformation ofuc8l ^ uf3l^q to
uw8l ^ uf3l^q cannot be achieved with certainty. h

III. COMBINING MLOCC WITH ELOCC:
PROBABILISTIC CASE

We considered deterministic transformations in the last
section. In this section, let us turn to examine entanglement
transformations with probability strictly less than 1.

Recall Vidal’s theorem from Ref.f11g that the maximal
conversion probability of transformingucl to uwl under
LOCC is given by

Pmaxsucl → uwld = min1øløn

Elsucld
Elsuwld

, s26d

whereElsucld=oi=l
n ai anda1ùa2ù ¯ ùan are the Schmidt

coefficients ofucl.
Let lP s0,1d. We call ufl a l catalystfor the transforma-

tion of ucl to uwl if

Pmaxsucl ^ ufl → uwl ^ ufld ù l. s27d

Furthermore, ifufl^k serves as al catayst for some integer
k.1, then we say thatufl is a multiple-copyl catalystfor
this transformation.

We say that a transformationucl of uwl can attain prob-
ability l by MLOCC if there exists a positive integerk such
that

Pmaxsucl^k → uwl^kd ù lk. s28d

Notice that if the maximal conversion probability fromucl to
uwl by LOCC is l, then the right-hand side of the above
equation is just the maximal conversion probability of trans-
forming ucl^k into uwl^k separately—that is, in a way where
no collective operations on thek copies are performed. Thus
the intuition behind the above definition is that with the help
of MLOCC, the average probability of a single-copy trans-
formation is not less thanl.

With the above preliminaries, the results obtained in Sec.
II can be directly extended to the probabilistic case. The
following example, first considered by Jonathan and Plenio
in f12g, demonstrates the existence of multiple-copyl cata-
lysts. It also shows that the presence of a multiple-copyl
catalyst and multiple copies of the source state can increase
the maximal conversion probability efficiently.

Example 4. Let ucl=Î0.6u00l+Î0.2u11l+Î0.2u22l and
uwl=Î0.5u00l+Î0.4u11l+Î0.1u22l. By Vidal’s theorem, we
have thatPmaxsucl→ uwld=0.80. However, with the aid of an

entangled stateufl=Î0.65u33l+Î0.35u44l, the maximal con-
version probability becomesPmaxsucl ^ ufl→ uwl ^ ufld
=0.904, which means thatufl is a 0.904 catalyst for the
transformation ofucl to uwl. Can Alice and Bob increase
their conversion probability to 0.985? A careful analysis
shows that the transformation ofucl to uwl does not have any
232 0.985 catalystf17g. Fortunately,ufl is a multiple-copy
0.985 catalyst since

Pmaxsucl ^ ufl^19→ uwl ^ ufl^19d ù 0.985. s29d

Suppose now that Alice and Bob share two copies ofucl.
According to our definition, the transformation ofucl to uwl
can attain a probabilitys0.8533d1/2=0.9237 under MLOCC
since

Pmaxsucl^2 → uwl^2d = 0.8533. s30d

If we combine a catalyst-assisted transformation and
multiple-copy one together, the maximal conversion prob-
ability can increase efficiently. For example,

Pmaxsucl^2
^ ufl^3 → uwl^2

^ ufl^3d = 0.9535. s31d

This implies that the transformation ofucl to uwl can attain
the probability 0.95351/2=0.9765 under the combination of
MLOCC and ELOCC. In contrast to that, a pure MLOCC
needs at least 7 copies ofucl to attain the probability
0.985. h

Next, let us turn to another interesting question: is it al-
ways useful to combine a catalyst-assisted transformation
with a multiple-copy transformation? The above two ex-
amples give some hints at a positive answer to the question.
However, the next theorem indicates that such an improve-
ment does not always happen. This theorem is a generaliza-
tion of lemma 4 inf12g which says that the presence of
catalysts cannot always increase the conversion probability.
We should point out that a similar result has also been ob-
tained inf14g.

For any bipartite entangled pure statesucl and uwl, we
define

Pmax
E sucl → uwld = supufl Pmaxsucl ^ ufl → uwl ^ ufld.

s32d

Intuitively, Pmax
E sucl→ uwld denotes the optimal conversion

probability of transformingucl to uwl by using some catalyst.
Theorem 2. Let ucl and uwl be two n3n states with the

least Schmidt coefficientsan and bn, respectively. Then we
have that

fPmaxsucl → uwldgp ø Pmax
E sucl^p → uwl^pd ø San

bn
Dp

s33d

for any positive integerp.
Proof. The first inequality in Eq.s33d is obtained by per-

forming the transformation ofucl^p to uwl^p under LOCC
separately. The second inequality in Eq.s33d can be proven
as follows. Suppose thatufl is any entangled pure state with
the least Schmidt coefficientgk.0. By Vidal’s theorem, we
obtain that
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Pmaxsucl^p
^ ufl → uwl^p

^ ufld

= min1ølønpk

Elsucl^p
^ ufld

Elsuwl^p
^ ufld

ø
Enpksucl^p

^ ufld

Enpksuwl^p
^ ufld

=
an

pgk

bn
pgk

= San

bn
Dp

,

s34d

where we have used the fact thatEnpksucl^p ^ ufld=an
pgk.

The second inequality of Eq.s33d follows from Eqs.s32d and
s34d. This completes the proof of the theorem. h

Corollary 2. With the same assumption as in theorem 2, if
Pmaxsucl→ uwld=an/bn, thenPmax

E sucl^p→ uwl^pd=san/bndp.
In other words, even the combination of a multiple-copy

transformation and catalyst-assisted transformation cannot
increase the conversion probability. In fact, collective opera-
tions in this case have no advantages over individual opera-
tions.

An interesting application of corollary 2 is to deal with
the case whenuwl is a maximally entangled state—that is,
uwl=s1/Îndoi=1

n uiluil. The maximal conversion probability
Pmaxsucl→ uwld=nan cannot be increased by any combina-
tion of multiple-copy transformations and entanglement-
assisted ones. Example 4 gives another application of the
corollary. In fact, for anys333d-dimensionalucl and uwl, if
a3,b3, then it follows from Vidal’s theorem thatPmaxsucl
→ uwld=a3/b3. Hence, by the above corollary,Pmax

E sucl^p

→ uwl^pd=sa3/b3dp, which is exponentially decreasing when
p increases, as pointed out in Ref.f14g.

IV. CONCLUSION

To summarize, we have demonstrated that in some cases
multiple copies of an entangled state can serve as a catalyst

although a single copy cannot. Such a state is called a
multiple-copy catalyst. We have analyzed the power of com-
bining MLOCC with ELOCC. Moreover, a trade-off between
the number of copies of a source state and that of a catalyst
is observed. We also show that the combination of MLOCC
and ELOCC can increase the maximal conversion probabil-
ity efficiently. Note that there are no analytical ways to find
catalysts for a given transformation except for some special
casesf16,18g. The notion of a multiple-copy catalyst some-
times may lead us to a possible way to seek an intended
catalyst.

There are many open problems that may be of relevance.
The most interesting one is, of course, what is the precise
relation between MLOCC and ELOCC? Furthermore, is the
combination of MLOCC and ELOCC always more powerful
than MLOCC or ELOCCf18g? Another interesting one is to
give a sufficient condition for a given entangled state to be a
multiple-copy catalyst for a certain transformation.
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