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Xin Li, Ph.D.
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Supervisor: David Zuckerman

The use of randomness in computer science is ubiquitous and important. Randomized

protocols have turned out to be much more efficient than their deterministic counterparts. In

addition, many problems in distributed computing and cryptography are impossible to solve without

randomness. However, these applications typically require uniform random bits, while in practice

it is not clear how to obtain random sources with such high quality. In fact, almost all natural

random phenomena are biased. Moreover, even originally uniform random bits can be damaged if

an adversary learns some partial information about these bits.

In this thesis, we study how to run randomized protocols in distributed computing and

cryptography with imperfect randomness. We model imperfect randomness by the most general

model where the weak random source is only required to have a certain amount of min-entropy.

One important tool here is the randomness extractor. A randomness extractor is a function

that takes as input one or more weak random sources, and outputs a distribution that is close

to uniform in statistical distance. Randomness extractors are interesting in their own right and

are closely related to many other problems in computer science. Giving efficient constructions of
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randomness extractors with optimal parameters is one of the major open problems in the area of

pseudorandomness.

The main results of this thesis are:

Distributed Computing with Imperfect Randomness We construct network extractor

protocols that extract private random bits for parties in a communication network, assuming that

they each start with an independent weak random source, and some parties are corrupted by an

adversary with unlimited computational power who sees all communication in the network. These

protocols imply fault-tolerant distributed computing protocols where only imperfect randomness is

available.

Cryptography with Imperfect Randomness This is the analogous problem in the

computational setting. Here we construct computational network extractor protocols where the

adversary is computationally bounded and the parties extract computationally private random bits.

These protocols imply secure multi-party computation protocols with only imperfect randomness,

under some computational assumptions.

Extractors for Independent Sources We study the problem of constructing efficient

extractors for independent weak random sources. The probabilistic method shows that there exists

an extractor for two independent sources with each having only logarithmic min-entropy, while

known constructions are far from achieving these parameters. In this thesis we make progress on

this problem. We construct extractors for two independent sources with each having any linear

min-entropy, based on a computational assumption. We also construct the best known extractor

for three independent sources.

Extractors for Affine Sources over F2 Here the weak random source is modeled by
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the uniform distribution over some unknown affine subspace of a vector space. Again known con-

structions are far from achieving the parameters given by the probabilistic method. We also make

progress on this problem and construct the best affine extractor to date.

Non-malleable Extractors and Privacy Amplification with an Active Adversary

In this model, two parties share a private weak random source in the beginning, and they wish

to achieve a shared uniform random string through communications in a channel controlled by an

adversary. The adversary has unlimited computational power and can change the messages sent

through the channel in arbitrary ways. All previous results assume that the two parties have access

to local uniform random bits. We show that this problem can be solved even if the two parties only

have access to local weak random sources. We also improve previous results in various ways by

constructing the first explicit non-malleable extractor and giving protocols for privacy amplification

based on this extractor.
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Chapter 1

Introduction

This thesis is about the study of using imperfect randomness in distributed computing and

cryptography. The motivation comes from the following two aspects.

First, randomness is a very useful and valuable resource in computer science. It has found

applications in algorithm design, distributed computing, cryptography and many other areas. These

applications generally either lead to much more efficient solutions than their deterministic coun-

terparts (e.g., in the algorithm case), or solve problems that would otherwise be impossible in

the deterministic case (e.g., in distributed computing and cryptography). We refer the reader to

[MR95] for many of these examples.

Unfortunately, these applications typically require many uniform random bits, while in

practice it is not clear how to obtain such high quality resources. Thus it is natural to ask what

is the minimum requirement of the randomness used in these applications. In some cases, for

example algorithm design, a combinatorial object called a pseudorandom generator can be used to

reduce the number of random bits required, or even completely remove the need of randomness and

obtain a deterministic algorithm. However, in many other areas such as distributed computing and

cryptography, true randomness is provably necessary, in the sense that there are tasks that cannot

be done without randomness (for example asynchronous Byzantine Agreement and encryption).

Given the fact that almost all physical sources of randomness are biased (e.g., coin flips, white

noise), it is important to study how imperfect randomness can be used in these applications.

Second, imperfect randomness often arises in cryptography for another reason: under many

situations, a party’s secret random bits (even if they are uniform originally) can be compromised,

for example as a result of side channel attacks. Thus again in this case we need to consider

using imperfect randomness in applications without damaging the desired security properties. This

problem is becoming more and more important nowadays because of the enormous amount of

information exchanged through internet.
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1.1 Examples

Here we give three basic problems in distributed computing and cryptography, which are

the focus of this thesis. We will later show how to use imperfect randomness in these problems.

We remark that the techniques developed in this thesis are very general and apply to many other

problems. However these problems are very basic and important, so we choose them to illustrate

the applications of our techniques.

1.1.1 Byzantine Agreement and Leader Election

The Byzantine Agreement problem is a fundamental problem in distributed computing. In

this problem, p processors each have an initial value, and they communicate with each other in order

to reach an agreement on a value b. Note that in this setting there are no broadcast channels and

the processors have to transfer messages to each other in point to point channels. The task is made

even more complicated by the existence of an adversary, who may control some of the processors and

thus make them collaborate to try to prevent an admissible agreement. The processors, however,

must try to reach an admissible agreement that satisfy the following two conditions.

1. All good processors (processors that are not controlled by the adversary) must agree on the

value b.

2. If all the good processors have the same initial value, then b must be equal to that value.

Essentially, the task of Byzantine Agreement is to try to simulate a broadcast channel with

point to point channels. In this thesis we assume that the adversary is computationally unbounded.

Note that the network can be synchronous or asynchronous, thus the Byzantine Agreement problem

also has the synchronous case and the asynchronous case. It is well known that both cases can be

solved if the adversary controls less than 1/3 fraction of the processors. In the synchronous case,

there is a deterministic solution, but the randomized solution takes much fewer rounds. In the

asynchronous case, there is no deterministic solution.

Once we have a broadcast channel, other problems in distributed computing arise. One

basic problem is leader election, and the related collective coin flipping. Again, in both problems

there are p processors, and some processors may be controlled by an adversary. The goal of leader

election is to have the processors communicate with each other to try to select a leader, such that

the probability that the leader is a faulty processor is bounded away from 1. The goal of collective

coin flipping is to have the processors communicate with each other to provide a random coin flip,
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such that the probability that the coin takes head or tail is bounded away from 1. It is clear that in

both these problems randomness is necessary. Also, note that the collective coin flipping problem

can be reduced to the leader election problem, since the processors can first select a leader and

then have the leader flip a coin.

1.1.2 Secure Multiparty Computation

This is a basic problem in cryptography. One simple example is the millionaire problem,

where two millionaires wish to compute which one is richer, but without revealing their net worth.

Generally, the setting is that, p processors each have private data, and they want to jointly compute

a function of their data. However, the protocol to compute the function is required to have the

property that no processor can learn more from the description of the function and the result of

the computation than what he or she can learn from his or her own entry. Also, again there is an

adversary who may control some processors, and the protocol must guarantee that the computation

does not leak information about a good processor’s data to the adversary. Essentially, the processors

want to compute the function as well as maintaining the privacy of their own data.

This problem has several different models. In this thesis, we focus on the case where the

adversary is computationally bounded (i.e., runs in polynomial time) and is passive. Under the

assumption that each processor has access to local uniform random bits, this problem can be solved

by using now standard cryptographic primitives [GMW87].

1.1.3 Privacy Amplification with an Active Adversary

This is an important problem in symmetric information-theoretic cryptography. Imagine

that two parties (Alice and Bob) want to exchange information through a public channel. However,

there is an adversary Eve who is watching the channel. Alice and Bob would like to exchange

information secretly without leaking information to Eve. Generally, this task is impossible, since

Eve knows everything exchanged through the channel. Luckily, in the case where Alice and Bob

share a secret n-bit uniform random string w, the task becomes possible. For example, if Alice

wants to send a string x to Bob, then she can send y = x ⊕ w instead. Without knowing w, Eve

knows no information about x even seeing y. On the other hand, Bob can recover x by computing

x = y ⊕ w.

The above solution is nice, except that often w is not uniform. Thus the problem of privacy

amplification arises. Basically, in this case Alice and Bob try to agree on a secret nearly uniform

random key, through communications over the public channel. Note that again the channel is

3



controlled by an adversary Eve. Eve could be either passive or active. She is passive if she can only

see the communications through the channel without modifying the messages, and she is active if

she can modify the messages in arbitrary ways. Of course the problem with an active adversary

is much harder than the problem with a passive adversary. In this thesis, we assume that the

adversary Eve is active with unlimited computational power.

1.2 General Weak Random Sources and Extractors

To formalize our discussion of imperfect randomness, we need a mathematical model. In

this thesis, unless otherwise stated, we use a very general model: general weak random sources. A

general weak random source is some arbitrary probability distribution, and the only constraint is

that it contains a certain amount of entropy. Here we use the standard notion of min-entropy– a

general weak random source is said to have min-entropy k if the probability of getting any particular

string from the source is at most 2−k. A weak random source on n bits with min-entropy k is called

an (n, k)-source. In the past, the problem of using general weak random sources in algorithms

has been studied extensively, and efficient solutions are provided even for weak random sources

with very small min-entropy. The focus of this thesis, however, is the study of using general weak

random sources in distributed computing and cryptography.

A very useful tool in dealing with weak random sources is the extractor. An extractor is an

algorithm that takes as input one or more weak random sources, and outputs a distribution that

is close to uniform in statistical distance. Given such an algorithm, we can first convert the weak

random sources into distributions that are close to being uniform, and then use these distributions

in standard applications that require uniform random bits.

Another reason for constructing explicit extractors is that these are functions that resemble

many properties of random functions. For example, under certain conditions it can often be shown

that a random function is a good extractor with high probability. Other objects that resemble

the properties of random functions include for example expander graphs, error-correcting codes,

hard functions and pseudo-random generators. In fact, these objects are related to each other and

since they somehow look like random functions, they can often be used to derandomize applications

that require many uniform random bits. The problem of derandomization is also related to some

central open questions in complexity theory. For example, giving a certain kind of explicit hard

function (again, a random function is such a hard function with high probability, but is not explicit)

would imply that BPP = P [NW94, IW97]. Therefore, finding explicit constructions of extractors

would help us gain insights into the larger area of derandomization. In the past the problem of

4



constructing certain kinds of efficient extractors has been studied extensively. In this thesis we also

make improvements over previous results on extractor constructions.

1.3 Main Results

We summarize our main results in the following three sections.

1.3.1 Distributed Computing and Cryptography with Weak Random Sources

The problem of doing distributed computing with imperfect randomness was first studied

by Goldwasser, Sudan, and Vaikuntanathan [GSV05]. There they showed that the task is possible,

but the weak random sources they considered are fairly restricted and they only achieved entropy

δn, assuming that each process starts with an n-bit weak random string. They then raised the

question of whether the task is possible with general weak random sources. In this thesis we

provide a positive answer to this question.

The problem of using weak random sources in cryptography has been studied by many

researchers [MW97b, DS02, DO03, DOPS04, CPS07]. The most impressive work is probably the

negative result of Dodis et al. [DOPS04], where they showed that almost all classical cryptographic

tasks are impossible with just one general weak random source. However, in the setting of several

independent weak random sources, a lot more can be done.

In this thesis, we provide a general framework to solve the problem of using weak random

sources in these applications. Our solution is similar to extractors: we first develop a way to convert

the weak random sources into distributions that are close to uniform in statistical distance. While

the correct tool for a single weak random source is the extractor, here we have a network of players

where each of them has a weak random source, and the correct tool turns out to be network

extractors.

In this thesis, we define network extractors, which are information theoretic objects similar

to extractors, and computational network extractors, which are the counterparts in the computa-

tional setting. Informally speaking, assume that we have a network of p parties, such that t of

them are corrupted by an adversary and each of the honest parties has access to an (independent)

weak random source. Our goal is to build a network extractor protocol such that at the end of the

protocol, some g honest parties end up with private random bits that are close to uniform. Ideally

we want g = p− t; however, this is not generally achievable.

In the information theoretic setting, we assume that the adversary has unlimited computa-
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tional power and can see whatever message that is transmitted in the network. Thus we require the

outputs to be statistically close to uniform and private. In the computational setting, we instead

assume that the adversary is computationally bounded (i.e., a polynomial time Turing machine or a

polynomial size circuit), and we only require that the outputs are computationally indistinguishable

from uniform and private.

In the information theoretic setting, we design several efficient network extractor protocols.

Using our protocols, we show that if the weak random source has min-entropy > n/2, then in

synchronous networks we can do essentially as well as the case where each party has truly uniform

random bits. We then show that both in synchronous networks and asynchronous networks, a

linear fraction of corrupted parties can be tolerated even when the weak random sources only have

min-entropy 2logδ n for an arbitrary constant 0 < δ < 1. These results imply protocols for Byzantine

Agreement and Leader Election where each player only has a (independent) weak random source.

In the computational setting, under standard computational assumptions, we construct

computational network extractor protocols such that even if 99% of the parties are corrupted, in

the end 99% of the honest parties end up with private random bits. Under the assumption that

strong one way permutations exist, we design computational network extractor protocols where

all honest parties end up with private random bits. Moreover, we show that if the weak random

sources have linear entropy, then it suffices to have just two honest parties. If the weak random

sources have entropy nδ, then it suffices to have just a constant number of honest parties. As a

corollary, we show that secure multi-party computation is possible under these two circumstances.

Our result is essentially optimal in the case of linear entropy since the negative result of [DOPS04]

implies that the task is impossible with just one honest party.

This part of work is based on joint work with Yael Kalai, Anup Rao and David Zuckerman

[KLRZ08, KLR09]. The detailed results appear in Chapter 4 and Chapter 5.

1.3.2 Improved Constructions of Extractors

As mentioned earlier, a very useful and standard tool in these applications is the extractor.

In this thesis we also give improved constructions of certain kinds of extractors.

Ideally, we want an algorithm Ext : {0, 1}n → {0, 1}m such that given any (n, k)-source X,

Ext(X) is close to being uniform. However, it is not hard to show that this is impossible even if k

is as large as n − 1. Given this negative result, several different directions have been explored by

researchers.
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One possibility is to give the extractor an additional independent short random seed. With

the help of the seed the task becomes possible. Such extractors are thus called seeded extractors.

In fact, most such extractors are “strong”, in the sense that the output is close to being uniform

even given the random seed. Strong seeded extractors provide an optimal solution to the problem

of simulating randomized algorithms using weak random sources, and a long line of research has

resulted in seeded extractors with almost optimal parameters [LRVW03, GUV09, DW08, DKSS09].

Another direction is to study extractors for special classes of sources, which are sources that

have certain structures. These include for example samplable sources [TV00], bit-fixing sources

[KZ07, GRS04], affine sources [GR05, Bou07], independent sources [BIW04, BKS+05, Raz05,

Rao06, BRSW06] and small space sources [KRVZ06].

The results in this thesis fall into both kinds. Specifically, in this thesis we construct

extractors for independent sources and affine sources, as well as a special case of strong seeded

extractors known as non-malleable extractors. The detailed results appear in Chapter 6.

1.3.2.1 Extractors for Independent Sources

In this model, the extractor is given as input several independent weak random sources,

and is supposed to output a distribution that is close to being uniform. Using the probabilistic

method, it can be shown that there exists an extractor for just two independent weak random

sources, with each having only logarithmic min-entropy. However, despite considerable efforts on

this problem [CG88, BIW04, BKS+05, Raz05, Bou05, Rao06, BRSW06], the known constructions

are far from achieving these parameters. Previously, the best explicit extractor for two independent

(n, k) sources only achieves min-entropy k ≥ 0.499n [Bou05], the best known extractor for three

independent sources achieves min-entropy k ≥ n0.9 [Rao06], and the best explicit extractor for

independent (n, nα) sources requires O(1/α) sources [Rao06, BRSW06].

In this thesis, we improve these results. Based on joint work with Kalai and Rao [KLR09],

we give an efficient construction of two-source extractors for any linear entropy δn, based on a

non-standard but reasonable computational assumption. The assumption is that there exist one-

way permutations that are very hard to invert. A candidate one-way permutation is given in

[Gol09]. In fact, our construction can even work for entropy nα for some constant 1/2 < α < 1

if the one-way permutation is sufficiently hard to invert. Our construction also has other nice

properties that enable its applications in cryptography. In the case of three independent sources,

we give an unconditional explicit extractor that works for min-entropy k = n1/2+α for any constant

0 < α < 1/2.
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1.3.2.2 Extractors for Affine Sources

An affine source is the uniform distribution over some unkown affine subspace of a vector

space. In this thesis we focus on the case where the underlying field of the vector space is F2. Here

the entropy of the source is equal to the dimension of the affine subspace.

An affine extractor is a deterministic function such that given any affine source as the input,

the output of the function is statistically close to the uniform distribution. A weaker object, called

an affine disperser, only requires that the output distribution has a large support size.

Using the probabilistic method, it can again be shown that there exists a deterministic

affine extractor for any (n, k) affine source, as long as k > 2 log n and m < k − O(1). However,

again the known constructions are far from achieving these parameters. In this thesis we make

progress towards constructing optimal affine extractors. We give an affine extractor that works for

entropy k = n/
√

log log n and an affine disperser for entropy k = n/
√

log n that both output nΩ(1)

bits.

1.3.2.3 Non-malleable Extractors

A non-malleable extractor is a strong seeded extractor, with some additional properties.

In fact, it dramatically strengthens the property of a strong extractor in the following sense. For

a strong extractor, the output must be close to the uniform distribution, even given the random

seed. For a non-malleable extractor, the output must be close to the uniform distribution, even

given the random seed as well as the output of the extractor with the given input and an arbitrarily

correlated random seed.

This kind of extractors was first proposed by Dodis and Wichs [DW09] to construct pro-

tocols for privacy amplification. Using the probabilistic method, they showed that non-malleable

extractors exist with good parameters. However, they were not able to construct such non-malleable

extractors. In this thesis, we construct the first explicit non-malleable extractors, based on a widely-

believed conjecture about the distribution of prime numbers in arithmetic progressions. This part of

work is based on joint work with Yevgeniy Dodis, Trevor Wooley and David Zuckerman [DLWZ11].

1.3.3 Privacy Amplification with an Active Adversary

This problem has also been studied by many researchers [MW97b, DKRS06, RW03, KR09a,

DW09, CKOR10], and again typical assumptions are that the two parties have access to local private

uniform random bits.
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In this thesis we make two improvements over previous results. First, we show that the

two parties can use local weak random sources instead of truly uniform random bits. In the case

where the two parties have two independent n-bit sources with min-entropy > n/2, they can do

essentially as well as the case where they have truly random bits. In the case where the two parties

only have independent n-bit sources with entropy δn for an arbitrary constant 0 < δ < 1, they can

achieve privacy amplification with security parameter up to Ω(log k), where k is the entropy of the

shared weak random source. These results give the first protocols for privacy amplification with

local weak random sources.

Second, even in the case where the two parties have access to local uniform random bits,

we improve the parameters of previous protocols. The two parameters that matter most in such

protocols are the round complexity and the entropy loss. Assume we want to achieve a security

parameter of `. Non-constructively, Dodis and Wichs [DW09] showed that there exists a two round

protocol that achieves entropy loss O(`). However, previously, only one of the two optima could be

achieved explicitly: we can either achieve a round complexity of 2 at the price of entropy loss O(`2)

[DW09] or achieve entropy loss O(`) at the price of round complexity O(`) [CKOR10]. In this thesis

we improve these results. In the case where the shared weak random source has min-entropy rate

> 1/2, we give the first protocol that simultaneously achieves both optima– round complexity 2 and

entropy loss O(`). In the case where the shared weak random source has any linear min-entropy, we

give a protocol that runs in O(1) rounds and achieves optimal entropy loss O(`). A key ingredient

in our protocols is the non-malleable extractor that we construct.

Part of this work is based on joint work with Yevgeniy Dodis,Trevor Wooley and David

Zuckerman [DLWZ11]. The detailed results appear in Chapter 7.

1.4 Organization of this Thesis

In Chapter 2 we give some basic definitions to set up the mathematical model that we

will study. In Chapter 3 we give some previous works that will be used in our results. Since

some part of this chapter is pretty technical and complicated, readers are encouraged to skip this

chapter on the first reading, and to return to it whenever necessary. Following this, in Chapter 4

we discuss our constructions for distributed computing with weak random sources, in Chapter 5

we discuss our constructions for cryptography with weak random sources. Chapter 6 gives our

improved constructions of extractors. Finally in Chapter 7 we present our protocols for privacy

amplification.
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Chapter 2

Basic Definitions

This chapter consists of a comprehensive listing of the formal definitions and basic facts

that we will use throughout the thesis. We also include here many technical lemmas that will be

used later in this thesis.

Throughout this thesis, we use common notations such as ◦ for concatenation and [n] for

{1, 2, · · · , n}. All logarithms are to the base 2, unless otherwise stated. We often use capital letters

for random variables and corresponding small letters for their instantiations.

We will use the convention that N = 2n,M = 2m and K = 2k. We will use Um to denote

the uniform distribution over {0, 1}m.

2.1 Statistical Distance

Definition 2.1.1 (statistical distance). Let D and F be two distributions on a set S. Their

statistical distance is

|D − F | def= max
T⊆S

(|D(T )− F (T )|) =
1

2

∑
s∈S
|D(s)− F (s)|

If |D − F | ≤ ε we say that D is ε-close to F .

This measure of distance is nice because it is robust in the sense that if two distributions

are close in this distance, then applying any functions to them cannot make them go further apart.

Proposition 2.1.2. Let D and F be any two distributions over a set S s.t. |D − F | ≤ ε. Let g be

any function on S. Then |g(D)− g(F )| ≤ ε.

2.2 Convex Combinations

A very useful concept in constructing extractors is the convex combination. We have the

following definition.
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Definition 2.2.1. A distribution X is a convex combination of distributions X1, X2, · · · , X` if

there exist positive constants α1, α2, · · · , α` such that

•
∑

i αi = 1.

• For every x ∈ supp(X), Pr[X = x] =
∑

i αi Pr[Xi = x].

A simple example of this concept, and one that we will often use in this thesis is the

following. Suppose X and Y are two random variables in the same probability space, then the

distribution of X is a convex combination of the distributions X|Y = y, for every y ∈ supp(Y ).

The reason why the concept of convex combination is useful is that, in many situations,

when a distribution is a convex combination of several distributions with some nice property, the

distribution itself will also have this nice property. For example, we have the following proposition.

Proposition 2.2.2. [Rao07b](Preservation of properties under convex combination). Let A,B,Q

be distributions over the same finite probability space such that

Pr
q←RQ

[|(A|q = q)− (B|Q = q)| ≥ ε1] < ε2,

then |A−B| < ε1 + ε2.

The above proposition is often used to show that the output of an extractor is close to the

uniform distribution.

2.3 Min-Entropy and Sources of Randomness

Definition 2.3.1. The min-entropy of a random variable X is defined as

H∞(X) = minx∈supp(X){− log2 Pr[X = x]}.

We say X is an (n, k)-source if X is a random variable on {0, 1}n and H∞(X) ≥ k. When n is

understood from the context we simply say that X is a k-source.

Lemma 2.3.2. Let X be an (n, k) source. Let S ⊆ [n] with |S| = n′. Let X|S denote the projection

of X to the bit locations in S. Then for every l, X|S is 2−l-close to a (n′, k − (n− n′)− l) source.
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Proof. Let S be the complement of S.

Then X|S is a convex combination over X|S . For each setting of X|S = h, we induce the

distribution X|S |X|S = h.

Define H = {h ∈ {0, 1}n−n′ |H∞(X|S |X|S = h) < n′−n+k− l}. Notice that H∞(X|S |X|S =

h) = H∞(X|X|S = h). Then by Proposition 2.3.8, for every h ∈ H, Pr[X|S = h] < 2k−(n−n′)−l−k =

2−(−n′+n+l). Since |H| ≤ 2n−n
′
, by the union bound we get that Pr[X|S ∈ H] ≤ 2−l].

2.3.1 Block Sources and Conditional entropy.

A block source is a source broken up into a sequence of blocks, with the property that each

block has min-entropy even conditioned on previous blocks.

Definition 2.3.3 (Conditional Min-Entropy). Given random variables A,B in the same probability

space, we define the conditional min-entropy

H∞(A|B) = min
b
H∞(A|B = b)

Definition 2.3.4 (Block sources). A distribution X = X1, X2, · · · , XC is called a (k1, k2, . . . , kC)-

block source if for all i = 1, . . . ,C, we have that H∞(Xi|Xi−1, . . . , X1) ≥ ki. If ki = k for every i,

we say that X is a k-block source.

If X = X1, · · · , Xt is a random variable (not necessarily a block source) over {0, 1}n divided

into t blocks in some way, and x1, . . . , xi are some strings with 0 ≤ i < t, we use the notation

X|x1, . . . , xi to denote the random variable X conditioned on X1 = x1,. . .,Xi = xi. For 1 ≤ i <

j ≤ t, we denote by Xi,...,j the projection of X into the blocks Xi, . . . , Xj . The following lemma is

useful to prove that a distribution is close to a block source.

Lemma 2.3.5. Let X = X1, . . . , Xt be t dependent random variables. For every i = 1, 2, . . . , t, let

Xi denote the concatenation of the first i variables. Suppose each Xi takes values in {0, 1}ni and

for every i = 1, 2, . . . , t, Xi is εi-close to ki-light, with
∑

i εi < 1/10. Then for every ` > 10 log t we

must have that X is
∑t

i=1 εi + t2−`-close to a block source, where each block Xi has min-entropy

ki − ni−1 − 1− `.

Proof. We will need to define the notion of a submeasure. Let n = nt. Say that M : {0, 1}n → [0, 1]

is a submeasure on {0, 1}n if
∑

m∈{0,1}nM(m) ≤ 1. Note that every probability measure is a

submeasure. We abuse notation and let M(xi) denote the marginal measure induced on the first i

coordinates.
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We say a submeasure on {0, 1}n is ε-close to k-light if∑
m∈{s:M(s)>2−k}

M(m) ≤ ε.

Note that when M is a probability measure, the above corresponds to saying that M is

ε-close to having min-entropy k.

As usual, for any event A ⊂ {0, 1}n, we denote Pr[M ∈ A] =
∑

m∈AM(m).

We now define the submeasures Mt+1 = X, and for i = t, t− 1, t− 2, . . . , 1,

Mi(m) =

{
0 M i

i+1(mi) > 2−ki ∨M i
i+1(mi) < 2−ni−`

Mi+1(m) otherwise

Let M = M1. Now note that for every j < i, M j
i is εj-close to kj-light, since we only made

points lighter in the above process. Further, for all m and i ≤ j, M j
i (mj) ≤ 2−kj , since we reduced

the weight of all m’s that violated this to 0. We also have that for every m, i, M i(mi) = 0 or

M i(mi) ≥ 2−ni−` by our construction.

Now define the sets Bi = {m ∈ {0, 1}n : Mi(m) 6= Mi+1(m)}. Set B = ∪iBi. Then note that

Pr[X ∈ B] ≤
∑t

i=2 Pr[Mi+1 ∈ Bi]. Each Bi, contains two types of points: points that were removed

when moving from Mi+1 to Mi because they were too heavy, and points that were removed because

they were too light. We set Ci = {m : Mi+1(mi) > 2−ki}, namely the “too heavy” points. We see

that Pr[Mi+1 ∈ Ci] ≤ εi, since M i
i+1 is εi-close to ki-light. Set Di = {m : Mi+1(mi) < 2−ni−`},

namely the “too light” points. We get Pr[Mi+1 ∈ Di] < 2−` by the union bound. Using both these

estimates, we get that Pr[X ∈ B] ≤
∑t

i=1 Pr[Mi+1 ∈ Bi] ≤
∑t

i=1 Pr[Mi+1 ∈ Ci] + Pr[Mi+1 ∈ Di] ≤∑
i εi + t2−`.

Now define the distribution Z = X|X /∈ B. Then Z is
∑

i εi + t2−`-close to X. For

every i and z ∈ supp(Z), we have that Pr[Zi = zi|Zi−1 = zi−1] = Pr[Zi = zi]/Pr[Zi−1 = zi−1] ≤
2−ki+1/2−ni−1−` (since every point at most doubles in weight over M), which proves the lemma.

Let X = X1, · · · , Xt be a random variable over {0, 1}n divided into t blocks in some way,

and x1, . . . , xi are some strings with 0 ≤ i < t. We use the notation X|x1, . . . , xi to denote the

random variable X conditioned on X1 = x1,. . .,Xi = xi. For 1 ≤ i < j ≤ t, we denote by Xi,...,j

the projection of X onto the blocks Xi, . . . , Xj .

Next we show that any weak source with linear min-entropy can be divided into a constant

number of blocks, such that the source is close to a convex combination of block sources.
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Lemma 2.3.6. Let X be an (n, αn) source for some constant 0 < α < 1. Let t = 4
α . Divide X

evenly into t blocks X = X1 ◦X2 ◦ · · · ◦Xt. Then X is 2−Ω(n)-close to being a convex combination

of sources {Xj}j∈J such that for every j there exists g ∈ [t] for which

• Xj
1 , . . . , X

j
g−1 is fixed.

• H∞(Xj
g) ≥ α2

6 .

• H∞(X|Xj
g) ≥ α2

6 .

To prove this lemma, first we need the definition of a subsource.

Definition 2.3.7 (Subsource). Given random variables X and X ′ on {0, 1}n we say that X ′ is a

deficiency-d subsource of X and write X ′ ⊆ X if there exits a set A ⊆ {0, 1}n such that (X|A) = X ′

and Pr[x ∈ A] ≥ 2−d.

Proposition 2.3.8. Let X be a random variable with H∞(X) = k. Let X ′ ⊂ X be a subsource of

deficiency d corresponding to some set A ⊂ {0, 1}n. Then H∞(X ′) = k − d.

Lemma 2.3.9 ([BRSW06]). Let X be a random variable over {0, 1}n such that X is ε-close to

an (n, k) source with ε ≤ 1/4. Then there is a deficiency 2 subsource X ′ ⊆ X such that X ′ is a

(n, k − 3) source.

More generally, we have the statement that conditioning on typical values of any function

cannot reduce the min-entropy of our source by much more than we expect.

Lemma 2.3.10 (Fixing a function). [BRSW06] Let X be a distribution over {0, 1}n, F : {0, 1}n →
{0, 1}m be a function, and ` ≥ 0 some number. For every s ∈ supp(F (X)), define Xs to be the

subsource X|F (X) = s. Then there exists s ∈ {0, 1}m for which Xs has deficiency at most m.

Furthermore, we have that

Pr
s←RF (X)

[deficiency of Xs ≤ m+ `] ≥ 1− 2−`

Proof. Let S be the set of s ∈ {0, 1}m such that Pr[F (x) = s] < 2−m−`. Since |S| ≤ 2m, we have

that Pr[F (X) ∈ S] < 2−`. If we choose s ←R F (X) and s /∈ S, we get that X|F (X) = s has

deficiency ≤ m+ `. Choosing ` = 0 we get the first part of the proposition.

We next give a lemma that is used to prove Lemma 2.3.6.
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Lemma 2.3.11 (Fixing Entropies). Let X = X1 ◦X2 ◦ · · · ◦Xt be a t-block random variable over

{0, 1}n. Fix any s > 0 and let 0 = τ1 < τ2 < · · · < τc+1 = n be some numbers. There exists a

universe U such that for every X there exists a set of random variables {Xj}j∈U and a random

variable J over U , such that X = XJ (i.e., X is a convex combination of {Xj}j∈U ). {Xj} has the

following properties:

• For every j ∈ U s.t. Pr[J = j] > 0, there exists a sequence ēj = ej1, · · · , e
j
t ∈ [c]t such that for

every 0 < i ≤ t and every sequence x1, · · · , xi−1 ∈ Supp(Xj
1,··· ,i−1);

τ
eji
< H∞(Xj

i |x1, · · · , xi−1) ≤ τ
eji+1

• with probability 1− t2−s over J , Xj is a subsource of X with deficiency < t2 log c+ ts.

Proof. We prove this by induction on t. The base case where t = 1 is trivially true. Now suppose

this is true for up to t − 1 blocks and we’ll prove it for t blocks. For every x1 ∈ Supp(X1) define

the source Y (x1) to be X2,··· ,t|x1. By the induction hypothesis, there exists a universe U ′ and a

random variable J ′ over U ′ such that Y (x1) = Y J ′ . For every j′ ∈ U ′ s.t. Pr[J ′ = j′] > 0 there

exists a sequence ēj′(x1) ∈ [c]t−1 such that Y j′ satisfies the first property with respect to ēj′(x1).

Define the function Fj′ : X1 → [c]t−1 that maps x1 to ēj′(x1).

Now let the new universe be U = Range(F (X1)) × U ′. Note that U is the same for

all X. Define the new random variable J over U such that the event J = (ē, j′) stands for

(J ′ = j′, Fj′(X1) = ē). Then the convex combination X = XJ satisfies property 1. Moverover, by

Lemma 2.3.10, with probability 1 − 2−s, X1|Fj′(X1) = ē is a deficiency (t − 1) log c + s subsource

of X1, and by the induction hypothesis with probability 1− (t− 1)2−s over J ′, Y j′ is a deficiency

(t−1)2 log c+(t−1)s subsource of Y (x1). Thus with probability at least 1−(t−1)2−s−2−s = 1−t2−s,
the deficiency of Xj is at most (t− 1)2 log c+ (t− 1)s+ (t− 1) log c+ s < t2 log c+ ts.

Corollary 2.3.12. If in the lemma above X has min-entropy k, and Xj is a deficiency t2 log c+ ts

subsource of X as in property 2 with ēj the sequence corresponding to Xj as in property 1, then∑t
i=1 τeji+1

≥ k − t2 log c− ts.

Proof. If this was not the case, we could find some string in the support of X that is too heavy.

Specifically, we take the heaviest string allowed in each successive block to get x = x1 ◦ x2 ◦
· · · ◦ xt. Then it must be Pr[Xi = xi|x1, · · · , xi−1] ≥ 2

−τ
e
j
i
+1 for any 0 < i ≤ t. Together with

the fact that Xj has deficiency < t2 log c + ts we get Pr[X = x] > 2−(t2 log c+ts)Πt
i=12

−τ
e
j
i
+1 =

2−(t2 log c+ts)2
−

∑t
i=1 τej

i
+1 > 2−k. This contradicts the fact that X has min-entropy k.
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Proof of Lemma 2.3.6. We’ll use Lemma 2.3.11. Let the parameters in that lemma be s =√
k, c = 6

α2 and τi = i−1
c n for 0 < i ≤ c + 1. Then Lemma 2.3.11 shows that X is a convex

combination of {Xj}j∈U and with probability 1 − t2−s = 1 − 2−n
Ω(1)

, Xj is a subsource with

deficiency < t2 log c + ts < 0.01k. Now Corollary 2.3.12 says that for such a Xj , we must have∑t
i=1 τeji+1

≥ k−t2 log c−ts > 0.99k. We now show that there must exist at least two eji ’s s.t. eji ≥ 2.

Otherwise suppose there is at most one eji s.t. eji ≥ 2. For eji = 1 we have τ
eji+1

= τ2 = n
c . For eji ≥ 2

we have the min-entropy of the block Xj
i conditioned on any fixing of previous blocks is at most

n
t . Assume for the sake of simplicity that n

ct = 1.5
α is an integer, thus n

t appears in set {τi} and we

must have τ
eji+1

≤ n
t . Therefore

∑t
i=1 τeji+1

≤ n
c (t−1)+ n

t <
tn
c + n

t = 2α
3 n+ α

4n < 0.99αn = 0.99k,

which is a contradiction.

Thus, there must exist at least two eji ’s s.t. eji ≥ 2, so τ
eji
≥ n

c = α2

6 n. Let 0 < i1 < i2 ≤ t

be the two corresponding i’s. Let g = i1 and further condition on any fixing of Xj
1 , . . . , X

j
g−1. Now

by Lemma 2.3.11, we see X is 2−Ω(n)-close to being a convex combination of sources {Xj}j∈J that

satisfy the properties in Lemma 2.3.6.

We use the following standard lemma about conditional min-entropy. (For a proof, we refer

the reader to the proof of Lemma 5 in [MW97a]).

Lemma 2.3.13. Let X and Y be random variables and let Y denote the range of Y . Then for all

ε > 0

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε

Sometimes a random variable may only be close to having a certain amount of min-entropy,

and we have the following lemma, which can be viewed as a generalization of Lemma 3.5.14.

Lemma 2.3.14. Let X be an (n, k)-source and X ′ be a random variable such that |X −X ′| < ε.

Let Z be another random variable and Z denote the range of Z. Then for all ε1 > 0

Pr
Z

[
(X ′|Z = z) is

ε|Z|
ε1

close to having min-entropy k − log |Z| − log

(
1

ε1

)]
≥ 1− ε1

Proof. For a particular Z = z, Pr[X ′ = x′|Z = z] = Pr[X′=x′,Z=z]
Pr[Z=z] . Since X is an (n, k)-source X

must have size of support at least 2k. Choose a subset S in the support of size ε12k/|Z| and let X̄

be the source that is uniformly distributed on S. Then H∞(X̄) = k− log |Z|− log(1/ε1). Let R be

the set {r ∈ S : Pr[X ′ = r|Z = z] > |Z|/(ε12k)}, then

|(X ′|Z = z)− X̄| =
∑
r∈R

(Pr[X ′ = r|Z = z]− |Z|/(ε12k)).
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If Pr[Z = z] > ε1
|Z| , then

|X ′|(Z = z)− X̄| <
∑
r∈R

Pr[X ′ = r, Z = z]− 2−k

ε1/|Z|
≤
∑

r∈R Pr[X ′ = r]− Pr[X = r]

ε1/|Z|

≤ ε

ε1/|Z|
=
ε|Z|
ε1

.

The probability this does not happen is at most ε1
|Z| |Z| = ε1.

Sometimes we need the definition of average conditional min-entropy.

Definition 2.3.15. The average conditional min-entropy is defined as

H̃∞(X|W ) = − log
(

Ew←W

[
max
x

Pr[X = x|W = w]
])

= − log
(

Ew←W

[
2−H∞(X=x|W=w)

])
.

Average conditional min-entropy tends to be useful for cryptographic applications. It is an

essentially weaker notion than min-entropy, as min-entropy implies average conditional min-entropy

with a small loss in parameters. We have the following lemmas.

Lemma 2.3.16 ([DORS08]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥ 1− 2−s.

Lemma 2.3.17 ([DORS08]). If a random variable B has at most 2` possible values, then H̃∞(A|B) ≥
H∞(A)− `.

2.3.2 Somewhere Random Sources

Definition 2.3.18 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (t×r) somewhere-

random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is

uniformly distributed.

Definition 2.3.19. An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt), such

that someXi is a k-source. A somewhere k-source is a convex combination of elementary somewhere-

k-sources.

Definition 2.3.20. (aligned SR-source) [Rao06] We say that a collection of SR-sources X1, · · · , Xu

is aligned if there is some i such that the i’th row of every SR-source in the collection is uniformly

distributed.
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2.3.3 Affine Sources

Definition 2.3.21. (affine source) Let Fq be the finite field with q elements. Denote by Fnq the

n-dimensional vector space over Fq. A distribution X over Fnq is an (n, k)q affine source if there

exist linearly independent vectors a1, · · · , ak ∈ Fnq and another vector b ∈ Fnq s.t. X is sampled by

choosing x1, · · · , xk ∈ F uniformly and independently and computing

X =

k∑
i=1

xiai + b.

In this thesis we focus on the case where q = 2 and we will just write (n, k) affine sources

instead of (n, k)2 affine sources.

In the case of affine sources, the min-entropy coincides with the standard Shannon entropy,

and we will just call it entropy.

The following lemma explains the behavior of a linear function acting on an affine source.

Lemma 2.3.22. (Affine Conditioning). Let X be any affine source on {0, 1}n. Let L : {0, 1}n →
{0, 1}m be any linear function. Then there exist independent affine sources A,B such that:

• X = A+B.

• For every b ∈ Supp(B), L(b) = 0.

• H(A) = H(L(A)) and there exists an affine function L−1 : {0, 1}m → {0, 1}n such that

A = L−1(L(A)).

Proof. Without loss of generality, assume the support of X is a linear subspace (if not, we can do

the analysis for the corresponding linear subspace, and then add the affine shift). Consider the set

{x ∈ Supp(X) : L(x) = 0}. Note that this set is a linear subspace. Let B be the affine source

whose support is this subspace and let b1, ..., bt be a basis for this subspace. Next we complete the

basis to get a basis for the support of X. Let A be the affine source whose support is the span of

the basis vectors in the completed basis that are not in B. Thus X = A+B.

Note that H(A) ≤ H(L(A)) since L(a) 6= 0 for every a ∈ Supp(A). On the other hand,

since L is a deterministic function we have H(L(A)) ≤ H(A). Thus H(A) = H(L(A)). In other

words, L is a bijection between Supp(A) and Supp(L(A)). Let Y = L(A). Since A is an affine
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source there exists a vector a ∈ {0, 1}n such that A = a + Ā where Ā is the uniform distribution

over a linear subspace. Thus

Y = L(A) = L(a) + L(Ā).

Let Ȳ = Y −L(a) = L(Ā). Since L is a linear function and Ā is uniform distributed over a

linear subspace, Ȳ is also uniformly distributed over a linear subspace. Note that H(Ȳ ) = H(Y ) =

H(L(A)) = H(L(Ā)), thus L is a linear bijection between the linear subspaces of Supp(Ā) and

Supp(Ȳ ). Therefore there exists a linear function L′ such that Ā = L′(Ȳ ). Thus

A = a+ Ā = a+ L′(Ȳ ) = a+ L′(Y − L(a)) = L′(Y ) + a− L′(L(a)).

Take L−1 to be the affine function L′ + a− L′(L(a)). Then A = L−1(L(A)).

Now we have the following lemma that exhibits a nice structure of affine sources.

Lemma 2.3.23. Let X be any affine source on {0, 1}n. Divide X into t arbitrary blocks X =

X1 ◦X2 ◦ ... ◦Xt. Then there exist positive integers k1, ..., kt such that,

• ∀j, 1 ≤ j ≤ t and ∀(x1, .., xj−1) ∈ Supp(X1, .., Xj−1), H(Xj |X1=x1,...,Xj−1=xj−1) = kj.

•
∑t

i=1 ki = H(X).

Proof. For any i, 1 ≤ i ≤ t, let Yi = X1◦X2◦ ...◦Xi. Note Yi is a linear function of X, thus Yi is also

an affine source. Now for any j, note that Yj−1 is a linear function Lj of Yj . Thus by Lemma 2.3.22,

there exist independent affine sources Aj , Bj such that Yj = Aj +Bj , H(Lj(Yj)) = H(Aj) and for

every b ∈ Supp(B), Lj(b) = 0. This implies that Yj−1 = Lj(Yj) = Lj(Aj + Bj) = Lj(Aj). Now

since H(Lj(Yj)) = H(Aj), we have that ∀(x1, .., xj−1) ∈ Supp(X1, .., Xj−1), there exists a unique

aj ∈ Supp(Aj) such that Lj(aj) = (x1, .., xj−1).

Let kj = H(Bj). Then,

H(Xj |X1=x1,...,Xj−1=xj−1) = H(Xj |Aj=aj ) = H(Yj |Aj=aj ) = H(Aj +Bj |Aj=aj ) = H(Bj) = kj

where the last equality holds because Aj , Bj are independent.
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Next, observe that H(Yj) = H(Aj) + H(Bj) = H(Lj(Yj)) + H(Bj) = H(Yj−1) + kj . A

simple induction thus gives that

t∑
i=1

ki = H(X).

This lemma essentially says that if we divide an affine source into several blocks, then a

block has the same entropy conditioned on any fixing of the previous blocks. Moreover, the sum of

these entropies equals the entropy of the original source. Thus we can view each block as carrying

some fixed additional entropy, regardless of what the previous blocks are. We note that this is very

different from general weak random sources.

2.4 Cryptographic Definitions

Definition 2.4.1. A function µ(·) is negligible if for every polynomial q(·) there exists a value N

such that for all n > N it holds that µ(n) < 1/q(n).

Definition 2.4.2. Let D = {Dn}n∈N and F = {Fn}N∈N be two distribution ensembles. We say

that D and F are computationally indistinguishable, denoted by D ≈ F , if for every non-

uniform algorithm A running in time poly(n) there exists a negligible function ε such that for every

n ∈ N,

|Pr[A(Dn) = 1]− Pr[A(Fn) = 1]| ≤ ε(n).

Remark. Often we abuse notation, and let Dn ≈ Fn denote the fact that the two ensembles are

computationally indistinguishable.

Definition 2.4.3. If D = {Dn}n∈N and F = {Fn}N∈N are two distribution ensembles, and there

exists a negligible function ε(n) such that for every n ∈ N,

|Dn − Fn| ≤ ε(n),

then we say that D and F are statistically close, and denote it by

D ≡ F .
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Remark. Often we abuse notation, and let Dn ≡ Fn denote the fact that the two ensembles are

statistically close.

Lemma 2.4.4. Let {Xn} and {Yn} be two distribution ensembles. Let E = {En} be a sequence of

events for which there exists a negligible function ε such that Pr[En] = 1− ε(n). Then {Xn|En} ≈
{Yn|En} implies that {Xn} ≈ {Yn}.

We will also use the the following generalization of Lemma 2.4.4.

Lemma 2.4.5. Let {Xn} and {Yn} be two distribution ensembles. Let J be a set such that for

every j ∈ J , Ej = {Ejn} is a sequence of events for which {Xn|Ejn} ≈ {Yn|Ejn}. Then, if there

exists a negligible function ε such that Pr[∪j∈JEjn] = 1− ε(n), then {Xn} ≈ {Yn}.
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Chapter 3

Building Blocks

In this chapter we describe some of the tools and previous works that we will use in this

thesis. Readers can skip this chapter in a first reading, and return for more details when clarification

is needed in later chapters.

3.1 Extractors, Dispersers, Mergers and Condensers

Definition 3.1.1. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong seeded extractor for

min-entropy k and error ε if for every min-entropy k source X,

|(Ext(X,R), R)− (Um, R)| < ε,

where R is the uniform distribution on d bits independent of X, and Um is the uniform distribution

on m bits independent of R.

Definition 3.1.2. A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a strong two source extractor

for min-entropy k1, k2 and error ε if for every independent (n1, k1) source X and (n2, k2) source Y ,

|(TExt(X,Y ), X)− (Um, X)| < ε

and

|(TExt(X,Y ), Y )− (Um, Y )| < ε,

where Um is the uniform distribution on m bits independent of (X,Y ).

Definition 3.1.3. (affine extractor) A function AExt : Fnq → {0, 1}m is a deterministic (k, ε)-affine

extractor if for every (n, k)q affine source X,

|AExt(X)− Um| ≤ ε.
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Here Um is the uniform distribution over {0, 1}m and | · | stands for the statistical distance.

Definition 3.1.4. (affine disperser) A function ADisp : Fnq → {0, 1}m is a deterministic (k, ε)-affine

disperser if for every (n, k)q affine source X,

|Supp(ADisp(X))| ≥ (1− ε)2m.

The function is called a zero-error disperser if ε = 0.

Definition 3.1.5. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-condenser if for every

k-source X, C(X,Ud) is ε-close to some l-source. When convenient, we call C a rate-(k/n→ l/m, ε)-

condenser.

Definition 3.1.6. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-somewhere-condenser

if for every k-source X, the vector (C(X, y)y∈{0,1}d) is ε-close to a somewhere-l-source. When

convenient, we call C a rate-(k/n→ l/m, ε)-somewhere-condenser.

Definition 3.1.7 (Merger). A function M : ({0, 1}n)s × {0, 1}d → {0, 1}n is called an (m, ε)-

merger (of (n, s)-somewhere-random sources), if for every (n, s)-somewhere random source X =

(X1, · · · , Xs), and for R being uniformly distributed over {0, 1}d, the distribution of M(X,R) is

ε-close to having min-entropy m. We say that the merger is strong if the average over r ∈ {0, 1}d

of the statistical distance between M(X, r) and an (n,m)-source is ≤ ε.

3.1.1 Strong Linear Seeded Extractors

We need the following definition and property of a specific kind of extractors.

Definition 3.1.8. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong seeded extractor for

min-entropy k and error ε if for every min-entropy k source X,

Pr
u←RUd

[|Ext(X,u)− Um| ≤ ε] ≥ 1− ε,

where Um is the uniform distribution on m bits. We say that the function is a linear strong seeded

extractor if the function Ext(·, u) is a linear function over GF(2), for every u ∈ {0, 1}d.

Proposition 3.1.9 ([Rao09]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a linear strong seeded

extractor for min-entropy k with error ε < 1/2. Let X be any affine source with entropy k. Then,

Pr
u←RUd

[|Ext(X,u)− Um| = 0] ≥ 1− ε
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3.1.2 Reconstructive Extractors

In this thesis we are going to use a special kind of extractors, called reconstructive extractors.

Informally, the word “reconstructive” means that, if some algorithm A can distinguish the output

of the extractor from the uniform distribution with some sufficiently large probability, then there

is another algorithm that can use A to reconstruct the input source. Following [Uma05], we define

reconstructive extractors:

Definition 3.1.10. A (n, t,m, d, a, ε, δ)-reconstructive extractor is a triple of functions:

• A polynomial time computable extractor function Ext : {0, 1}n × {0, 1}t → {0, 1}m

• An advice function A : {0, 1}n × {0, 1}d → {0, 1}a

• A poly(n, 1/ε) time randomized oracle reconstruction procedure R : {0, 1}a → {0, 1}n

That satisfy the property that for every x ∈ {0, 1}n and D : {0, 1}m → {0, 1} for which

|Pr[D(Ext(x, Ut), Ut) = 1]− Pr[D(Um, Ut) = 1]| ≥ ε,

we must have that

Pr
w

[RD(A(x,w)) = x] ≥ δ.

Note that Ext as above must be a seeded extractor for n bit sources with entropy larger than

a, since any function that distinguishes the output from uniform can be used to get a procedure

that guesses x with probability roughly 2−a.

We have the following theorem, which follows from the discussion in section 6 of [Uma05]:

Theorem 3.1.11 ([Uma05]). There is a constant β > 0 such that for every n, a, ε with a = nΩ(1),

there exists (n, t = O(log(n/ε))),m = nβ, d = O(log(n/ε)), a, ε, 1/2) reconstructive extractor.

An almost immediate consequence of this theorem is the following theorem.

Theorem 3.1.12. For every n, k, ε with k = nΩ(1) and ε = 1
poly(nlogn)

, there is a polynomial time

computable function RExt : {0, 1}n × {0, 1}d → {0, 1}m such that d = O(log(n/ε)), m = kΩ(1) and

if f is a one way function for k/3 sources and X is an (n, k) source, then for every distinguisher

A of size poly(nlogn),

|Pr[A(f(X),RExt(X,Ud), Ud) = 1]− Pr[A(f(X), Um, Ud) = 1]| = negl(n).
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Proof. We set RExt to be the reconstructive extractor promised by Theorem 3.1.11, set up so that

a = k/2.

Assume for the sake of contradiction that there was a distinguishing circuit D of size

poly(nlogn) and a polynomial q such that for infinitely many n’s,

|Pr[A(f(X),RExt(X,Ud), Ud) = 1]− Pr[A(f(X), Um, Ud) = 1]| ≥ 1

q(n)
.

By a standard averaging argument we have

Pr
x←X

[|Pr[D(f(x),RExt(x, Ut), Ut) = 1]− Pr[D(f(x), Um, Ut) = 1]| ≥ 1

2q(n)
] ≥ 1

2q(n)

Note 1
2q(n) ≥ ε since ε = 1

poly(nlogn)
. Thus by the definition, there is a circuit RD of

size poly(n, 1/ε)size(D) = poly(nlogn) such that for every x s.t. |Pr[D(f(x),RExt(x, Ut), Ut) =

1]− Pr[D(f(x), Um, Ut) = 1]| ≥ 1
2q(n) ≥ ε, Pr[RD(f(x), A(x,W )) = x] = 1/2. Thus we have

Pr[RD(f(X), A(X,W )) = X] ≥ 1

4q(n)
,

where the probability is over X and W .

By Lemma 3.5.14,

Pr
a←RA(X,W )

[H∞(X|A(X,W ) = a) ≥ k/3] ≥ 1− 2a+k/3−k = 1− 2−Ω(k).

Also, by averaging, we have that

Pr
a←RA(X,W )

[Pr[RD(f(X), A(X,W )) = X|A(X,W ) = a] ≥ 1

8q(n)
] ≥ 1

8q(n)
.

Note 1
8q(n) ≥ 2−Ω(k) since k = nΩ(1). Thus, by a union bound, there is some fixing of

A(X,W ) = a for which H∞(X|A(X,W ) = a) ≥ k/3 and Pr[RD(f(X), A(X,W )) = X|A(X,W ) =

a] ≥ 1
8q(n) . This contradicts the fact that f is one-way for k/3-sources.

We also need the following lemma.
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Lemma 3.1.13. Let X,Y be two independent random variables on {0, 1}n and Z be a random

variable on {0, 1}m that is independent of (X,Y ). Let f : {0, 1}n → {0, 1}d and g : {0, 1}n ×
{0, 1}d → {0, 1}m be two deterministic functions. Let R = f(X). If there exists a non-uniform

adversary A that distinguishes between (g(Y,R), R,X, Y ) and (Z,R,X, Y ) with probability ε, then

there exists another non-uniform adversary B of size 2d · n · Size(A) that distinguishes between

(g(Y,R), R, Y ) and (Z,R, Y ) with probability at least ε.

Proof. Assume without loss of generality that

Pr[A(g(Y,R), R,X, Y ) = 1]− Pr[A(Z,R,X, Y ) = 1] ≥ ε.

Note thatR is a deterministic function ofX, thus for any fixing ofR = r, (g(Y,R), Z, Y )|(R =

r) is independent of X|(R = r). Therefore, for every fixing of R = r, there exists a fixing of

X|(R = r) and a non-uniform adversary Ar, that has this fixing hardwired into it and emulates A
w.r.t. this fixing, s.t.

Pr[Ar(g(Y,R), Y ) = 1|R = r]− Pr[Ar(Z, Y ) = 1|R = r] ≥
Pr[A(g(Y,R), R,X, Y ) = 1|R = r]− Pr[A(Z,R,X, Y ) = 1|R = r].

Let B be an adversary that on input (g(Y, r), r, Y ) emulates Ar(g(Y, r), Y ). Then we have

Pr[B(g(Y,R), R, Y ) = 1]− Pr[B(Z,R, Y ) = 1] =∑
r

Pr[R = r] (Pr[Ar(g(Y,R), Y ) = 1|R = r]− Pr[Ar(Z, Y ) = 1|R = r]) ≥∑
r

Pr[R = r] (Pr[A(g(Y,R), R,X, Y ) = 1|R = r]− Pr[A(Z,R,X, Y ) = 1|R = r]) =

Pr[A(g(Y,R), R,X, Y ) = 1]− Pr[A(Z,R,X, Y ) = 1] ≥ ε.

Moreover, B is of size 2d · n · Size(A).

3.2 Primes in Arithmetic Progressions

Definition 3.2.1. Let p(r, a) be the least prime in the arithmetic progression a modulo r.

We can now state a special case of a well-known conjecture.
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Conjecture 3.2.2. There exists a constant c > 0, such that for r a power of 2 and a = 1, one has

p(r, a) = O(r logc r).

For the applications in this thesis, we don’t really need r to be a power of 2; it would suffice

if the conjecture held for integers rn, where rn is a smooth integer of about n bits computable in

time polynomial in n. This conjecture is widely believed for c = 2, all r, and all a relatively prime

to r. For more on this conjecture, see, for example, the discussion following equation (1) of [HB78].

The best unconditional conclusion is substantially weaker. Thus, one has p(r, a) = O(r5.2) (see

[Xyl09, HB92].)

3.3 Fourier Analysis

The following definitions from Fourier analysis are standard (see e.g., [Ter99]) , although

we normalize differently than in many computer science papers, such as [Rao07a]. For functions

f, g from a set S to C, we define the inner product 〈f, g〉 =
∑

x∈S f(x)g(x). Let D be a distribution

on S, which we also view as a function from S to R. Note that ED[f(D)] = 〈f,D〉. Now suppose

we have functions h : S → T and g : T → C. Then

〈g ◦ h,D〉 = ED[g(h(D))] = 〈g, h(D)〉.

Let G be a finite abelian group, and let φ a character of G, i.e., a homomorphism from G

to C×. We call the character that maps all elements to 1 the trivial character. Define the Fourier

coefficient f̂(φ) = 〈f, φ〉. We let f̂ denote the vector with entries f̂(φ) for all φ. Note that for a

distribution D, one has D̂(φ) = ED[φ(D)].

Since the characters divided by
√
|G| form an orthonormal basis, the inner product is

preserved up to scale: 〈f̂ , ĝ〉 = |G|〈f, g〉. As a corollary, we obtain Parseval’s equality:

‖f̂‖2`2 = 〈f̂ , f̂〉 = |G|〈f, f〉 = |G|‖f‖2`2 .

Hence by Cauchy-Schwarz,

‖f‖`1 ≤
√
|G|‖f‖`2 = ‖f̂‖`2 ≤

√
|G|‖f̂‖`∞ . (3.1)

For functions f, g : S → C, we define the function (f, g) : S × S → C by (f, g)(x, y) =

f(x)g(y). Thus, the characters of the group G×G are the functions (φ, φ′), where φ and φ′ range
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over all characters of G. We abbreviate the Fourier coefficient (̂f, g)((φ, φ′)) by (̂f, g)(φ, φ′). Note

that

(̂f, g)(φ, φ′) =
∑

(x,y)∈G×G

f(x)g(y)φ(x)φ′(y) =

(∑
x∈G

f(x)φ(x)

)∑
y∈G

g(x)φ′(x)

 = f̂(φ)ĝ(φ′).

3.4 A Non-Uniform XOR Lemma.

We’ll need the following extension of Vazirani’s XOR lemma. We can’t use traditional

versions of the XOR lemma, because our output may not be uniform. Our statement and proof

parallels Rao [Rao07a].

Lemma 3.4.1. Let (W,W ′) be a random variable on G × G for a finite abelian group G, and

suppose that for all characters φ, φ′ on G with φ nontrivial, one has

|E(W,W ′)[φ(W )φ′(W ′)]| ≤ α.

Then the distribution of (W,W ′) is α|G| close to (U,W ′), where U is the uniform distribution on G

which is independent of W ′. Moreover, for f : G×G→ R defined as the difference of distributions

(W,W ′)− (U,W ′), we have ‖f‖`∞ ≤ α.

Proof. As implied in the lemma statement, the value of f(a, b) is the probability assigned to (a, b)

by the distribution of (W,W ′) minus that assigned by (U,W ′). First observe that

f̂(φ, φ′) = 〈f, (φ, φ′)〉 = E(W,W ′)[φ(W )φ′(W ′)]− E(U,W ′)[φ(U)φ′(W ′)].

Since U and W ′ are independent, this last term equals

E(U,W ′)[φ(U)] E(U,W ′)[φ
′(W ′)] = EU [φ(U)] EW ′ [φ

′(W ′)] = 0,

since φ is nontrivial. Therefore, by hypothesis, when φ is nontrivial, one finds that |f̂(φ, φ′)| ≤ α.

When φ is trivial, we get

f̂(φ, φ′) = E(W,W ′)[φ
′(W ′)]− E(U,W ′)[φ

′(W ′)] = 0.

Hence ‖f‖`1 ≤
√
|G×G|‖f̂‖`∞ ≤ |G|α.
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3.5 Previous Works that We Use

We are going to use condensers recently constructed based on the sum-product theorem.

The following construction is due to Zuckerman [Zuc07].

Construction 3.5.1. Let F = Fq be a field where q = 2p for p prime. Define the point-line

incidence graph as the bipartite graph G = (V,W,E) with vertices V = F 2 the set of points, and

W the set of lines over F , and (p, l) is an edge in G iff p and l are incident. Let the function

h : E → V ×W map an edge to its two endpoints. Equivalently, h is the map from F 3 to (F 2)2

such that h(a, b, c) = ((b, ab+ c), (a, c)).

The condenser C : F 3 × {0, 1} → F 2 is C(e, i) = h(e)i.

The following theorem is proved in [Zuc07].

Theorem 3.5.2. [Zuc07] Suppose δ < 0.9 and qδ = ω(1). The function C above is a rate-

(δ → (1 + α/2)δ, ε)-somewhere-condenser, where ε = q−αδ/20 for some constant α > 0.

Note that each bit of the output of the condenser is a degree 2 polynomial of the bits of the

input. Repeating the condenser for a constant number of times, we get the following theorem:

Theorem 3.5.3 ([BKS+05, Zuc07]). For any constant β, δ > 0, there is an efficient family of

rate-(δ → 1 − β, ε = 2−Ω(n))-somewhere condensers Zuc : {0, 1}n → ({0, 1}m)D where D = O(1)

and m = Ω(n).

We now show that this condenser actually works even when the min-entropy of the source

is very high. First we need the following improved theorem about line point incidences in finite

fields.

Theorem 3.5.4 (Incidence Theorem). [Vin07] Let F = Fq, where q is either prime or 2p for p

prime. Let P,L be sets of points and lines in F 2 and |P |, |L| ≤ N = qα with 1 + γ ≤ α ≤ 2− γ for

some γ > 0. Then the number of incidences

I(P,L) ≤ 2N
3
2
− γ

4 .

The following lemma is from [Zuc07].
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Lemma 3.5.5. [Zuc07] If X,Y is not ε-close to a somewhere-k-source, then there exists sets

S ⊆ supp(X), T ⊆ supp(Y ), |S|, |T | < 2k+1/ε, such that

Pr[X ∈ S, Y ∈ T ] > ε/2.

Theorem 3.5.6. Suppose 1
2 < δ ≤ 1 − γ for some γ > 0. The function C above is a rate-

(δ → (1 + γ/12)δ, ε) somewhere-condenser, where ε = q−γδ/20.

Proof. We essentially follow the proof in [Zuc07]. As in that proof, we analyze the equivalent

function h. We may assume that the input to h is uniform on a set of edges of size K = 2k = q3δ,

and set k′ = (1 + γ/12)(2k/3). Suppose the output (X,Y ) of h is not ε-close to a somewhere-k′-

source. Let P = S and L = T be the sets of size less than K0 = 2k
′+1/ε given by Lemma 3.5.5.

Note that K0 ≤ 2q2δ(1+γ/12)+δ(γ/20) < q2−γ .

Now we calculate the number of incidences I(P,L) in two ways. On the one hand, since

each edge is an incident point-line pair, and at least ε/2 fraction of these pairs lie in P × L, the

number of incidences I(P,L) ≥ εK/2. On the other hand, by Theorem 3.5.4,

I(P,L) ≤ 2K
3/2−γ/4
0 = O(K(1+γ/12)(3/2−γ/4)2/3/ε2) = O(K1−γ/12/ε2).

This gives a contradiction for ε = K−γ/60, and the theorem is proved.

We need the following two source extractor from [Raz05].

Theorem 3.5.7 ([Raz05]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δmin[n1/8, k2/40]− 1

There is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1 ×{0, 1}n2 →
{0, 1}m for min-entropy k1, k2 with error 2−1.5m.

We need the following theorem from [Rao06].
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Theorem 3.5.8 ([Rao06]). For every constant γ < 1 and integers n, n′, t s.t. t < nγ and t < n′γ

there exists a constant α < 1 and a polynomial time computable function 2SRExt : {0, 1}tn ×
{0, 1}tn′ → {0, 1}m s.t. if X is a (t × n) SR-source and Y is an independent aligned (t × n′)

SR-source,

|(2SRExt(X,Y ), Y )− (Um, Y )| < ε

and

|(2SRExt(X,Y ), X)− (Um, X)| < ε,

where Um is independent of X,Y , m = min[n, n′]−min[n, n′]α and ε = 2−min[n,n′]Ω(1)
.

Theorem 3.5.9 ([Rao06, BRSW06]). There exist constants c > 0 and c′ and a polynomial time

computable function IExt : ({0, 1}n)u → {0, 1}k such that for every n, k with k = k(n) = Ω(log4 n),

if X1, X2, . . . , Xu are independent (n, k) sources then

|IExt(X1, . . . , Xu)− Uk| < 2−k
c

Theorem 3.5.10 (Somewhere random vs Independent Source Extractor [Rao06, BRSW06]). There

exists constants 0 < γ < 1, c and a polynomial time computable function SRIExt : ({0, 1}n)C ×
{0, 1}tk → {0, 1}k such that for every n, k, t with k > log10 t, k > log10 n and C > c log t

log k ), if

X = X1, ..., XC is the concatenation of C independent (n, k) source and Y is an independent t× k-

SR-source,

|(X,SRIExt(X,Y ))− (X,Uk)| < ε

|(Y,SRIExt(X,Y ))− (Y,Uk)| < ε

where Uk is independent of X and Y , ε = 2−k
γ
.

Theorem 3.5.11 (General Source vs Somewhere random source with few rows Extractor [BRSW06]).

There exist constants α, β < 1 and a polynomial time computable function BasicExt : {0, 1}n ×
{0, 1}kγ+1 → {0, 1}m such that for every n, k(n) with k > log10 n and constant 0 < γ < 1/2, if X

is an (n, k) source and Y is a (kγ × k) (k − kβ)-SR-source,

31



|(Y,BasicExt(X,Y ))− (Y,Um)| < ε

and

|(X,BasicExt(X,Y ))− (XUm)| < ε

where Um is independent of X,Y , m = k − kΩ(1) and ε = 2−k
α

.

We use the following lossless condenser constructed in [GUV09].

Theorem 3.5.12 ([GUV09]). For all constants α > 0, and every n ∈ N, k ≤ n and ε > 0,

there is an explicit (k → k + d, ε) (lossless) condenser Cond : {0, 1}n × {0, 1}d → {0, 1}m with

d = (1 + 1/α) · (log n+ log k + log(1/ε)) +O(1) and m ≤ 2d+ (1 + α)k.

We use the following strong seeded extractor in [GUV09].

Theorem 3.5.13 ([GUV09]). For every constant α > 0, and all positive integers n, k and ε >

exp(−n/2O(log∗ n)), there is an explicit construction of a strong (k, ε) extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)) and m ≥ (1− α)k.

We need the following simple lemma about statistical distance.

Lemma 3.5.14 ([MW97b]). Let X and Y be random variables and let Y denote the range of Y .

Then for all ε > 0

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε

We need the following lemma about conditioning on the seed of a condenser.

Lemma 3.5.15. Let Cond : {0, 1}n × {0, 1}d → {0, 1}m be a (k → l, ε)-condenser. For any (n, k)-

source X, let R be the uniform distribution over d bits independent of X. With probability 1− 2
√
ε

over the fixings of R = r, Cond(X, r) is
√
ε-close to being an l − 2d source.

Proof. Let W = Cond(X,R). We know that W is ε close to having min-entropy l. Now for a fixed

R = r, let Sr = {w ∈ Supp(W ) : Pr[W = w|R=r] > 2−l+2d}. Note that if Pr[W = w|R=r] > 2−l+2d

then Pr[W = w] ≥ Pr[W = w|R=r] Pr[R = r] > 2−l+d. Pick ε1 > 0 and let PrR[Pr[W |R=r ∈ Sr] >
ε1] = ε2, then PrW [Pr[W = w] > 2−l+d] > ε1ε2. Thus the statistical distance between W and any

l-source is at least (1− 2−d)ε1ε2 > ε1ε2/2. Therefore ε1ε2 < 2ε.

Therefore with probability 1 − 2
√
ε over R, ε1 <

√
ε. This implies that W |R=r is

√
ε-close

to having min-entropy l − 2d.
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Our extractor for affine sources use strong linear seeded extractors as ingredients. Specifi-

cally, we use the construction of Trevisan [Tre01] and the improvement by Raz et al. [RRV02].

Theorem 3.5.16 ([Tre01, RRV02]). For every n, k ∈ N with k < n and any 0 < ε < 1 there

is an explicit (k, ε)-strong linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}Ω(k) with d =

O(log2(n/ε)).

We need to use the following extractor for an affine somewhere random source.

Theorem 3.5.17 ([Rao09]). For every constant γ < 1 and integers n, t s.t. t < nγ there exists a

constant α < 1 and a polynomial time computable function ASRExt : {0, 1}tn → {0, 1}n−nα s.t. for

every (t× n) affine-SR-source X, ASRExt(X) is 2−n
Ω(1)

-close to uniform.

Lemma 3.5.18. [ILL89][Leftover Hash Lemma] For any 0 < k < n, let X be an (n, k)-source and

R be the uniform distribution on {0, 1}n independent of X. Let l > 0 and m = k− 2l. Treat x and

r as elements in the field F2n and define the function Hash(x, r) to be the last m bits of x · r. Then

(Hash(X,R), R) is 2−l-close to uniform.

We are going to use a simple linear merger given in [LRVW03].

Construction 3.5.19. Let n, s be integers. Define the function

Merg : ({0, 1}n)s × {0, 1}d → {0, 1}n

in the following way: Let Fq be a finite field with q elements where q is a power of 2. Map each

element in {0, 1}n into F`q and each element in {0, 1}d into Fsq, using some injective mapping. Let

x = (x1, · · · , xs) ∈ (F`q)s and z = (z1, · · · , zs) ∈ Fsq. The value of Merg(x, z) is computed as

Merg(x, z) =
s∑
i=1

xi · zi

where the operations are performed in the vector space F`q.

The following theorem is proved in [LRVW03], by using a field of size O(1/ε) in the above

construction.

Theorem 3.5.20. [LRVW03] For every ε > 0 and integers n, s, there exists an explicit (m, ε)-

merger of (n, s)-somewhere-random sources Merg : ({0, 1}n)s×{0, 1}d → {0, 1}n with d = O(s log(1/ε))

and m = n/2−O(d). Moreover, for any (n, s)-somewhere-random source X, with probability 1−O(ε)

over z ∈ {0, 1}d, Merg(X, z) is ε-close to having min-entropy m.
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Theorem 3.5.21. [Bou07] There is a polynomial time computable function BAExt : {0, 1}n →
{0, 1}m such that m = Ω(n) and for every affine source X of entropy n/2, BAExt(X) is 2−Ω(n)-

close to uniform. Moreover, each bit of the output is a degree 3 polynomial of the bits of the input.

We need one last ingredient, the simple inner product function as a two source extractor

when the sum of the entropy rates of the two independent sources is greater than 1. For a finite

field F, let Had : Fl × Fl → F be the inner product function, i.e., Had(x, y) = x · y.

Theorem 3.5.22. [CG88, Vaz85] For every constant δ > 0, there exists a polynomial time algo-

rithm Had : ({0, 1}n)2 → {0, 1}m such that if X is an (n, k1) source, Y is an independent (n, k2)

source and k1 + k2 ≥ (1 + δ)n, then

|(Y,Had(X,Y ))− (Y,Um)| < ε

with m = Ω(n) and ε = 2−Ω(n).

To prove our construction is an extractor, we need the following definition and lemma.

Definition 3.5.23. (ε-biased space) A random variable Z over {0, 1} is ε-biased if |Pr[Z = 0] −
Pr[Z = 1]| ≤ ε. A sequence of 0-1 random variables Z1, · · · , Zm is ε-biased for linear tests if for

any nonempty set S ⊂ {1, · · · ,m}, the random variable ZS =
⊕

i∈S Zi is ε-biased.

The following lemma is due to Vazirani. For a proof see for example [Gol95]

Lemma 3.5.24. Let Z1, · · · , Zm be 0-1 random variables that are ε-biased for linear tests. Then,

the distribution of (Z1, · · · , Zm) is ε · 2m/2-close to uniform.
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Chapter 4

Distributed Computing with General Weak Random Sources

We first describe the model of the network that we consider. We assume that p processors

communicate with each other via point-to-point channels in order to perform a task. However, an

unknown t of the processors are faulty. We allow Byzantine faults: faulty processors may behave

arbitrarily and even collude maliciously. We call the set of faulty processors the adversary, and we

only consider a non-adaptive adversary – the set of faulty processors is fixed in advance and does

not change. We assume that the communication channels are not private, so the adversary can

see all communication. This is called the full information model. We note that we could obtain

stronger results in a network with private channels, however in the interest of space we focus on

the full information model.

Most of our results are for synchronous networks: communication between processors takes

place in rounds and every message transmitted at the beginning of a round is guaranteed to reach

its destination at the end of the round. In this case we allow rushing: the faulty processors may

wait for all good processors to transmit their messages for a particular round, before transmitting

their own messages. We also have results for asynchronous networks– here the only guarantee is

that every message will eventually be received.

We assume each processor has access to an unknown, arbitrary (n, k)-source of randomness,

and that these sources are mutually independent. This independence assumption seems justifiable

if we view the processors as being physically far away from each other. Such sources may also

arise if the adversary manages to acquire (say via a virus) a small amount of information about

each of the honest processors’ (truly random) sources. In this case, conditioning on the adversary’s

information leaves each of the processors with independent weak sources.

For the case of distributed computing, we mainly focus on two basic problems: Byzantine

agreement and leader election/collective coin-flipping.

Byzantine Agreement. The goal of a protocol for Byzantine agreement is for the processors to

agree on the result of some computation, even if some t of them are faulty. Byzantine agreement

is fundamental because it can be used to simulate broadcast and maintain consistency of data.
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Following the work of Ben-Or [BO83], a series of randomized protocols for asynchronous

as well as synchronous networks appeared, some of which assume the existence of private commu-

nication channels between pairs of processors (for instance [Rab83]) while others do not require

secret communication (for instance [CC85]). In the full information model, Goldwasser et al. gave

an O(log p) round protocol which tolerates t < p/3 faulty processors [GPV06] in the synchronous

model. In the asynchronous model, the best known Byzantine agreement protocol still requires

2O(t2/p) rounds [BO83, BT85] if it succeeds with probability 1 and requires polylog(p) rounds if it

succeeds with probability 1− o(1) [KKK+08].

Leader Election and Collective Coin Flipping. The goal of a protocol for leader election is

to select a uniformly random leader from a distributed network of n processors. In the presence

of faulty processors, we would like to bound the probability that one of the faulty processors gets

selected as the leader. Another related problem, called the collective coin flipping, aims to produce

a random coin whose bias is bounded in a network which may consists of faulty processors. under

the assumption that the processors have access to uniformly random bits, collective coin flipping

can be reduced to the leader election problem: if a leader is successfully elected, then we can have

the leader flip a coin and broadcast the coin flip to all the other processors.

Ben-Or and Linial [BOL78] were the first to study collective coin-flipping under what we

call the BL model: the full information model with reliable broadcast in a synchronous network.

A long sequence of work [Sak89, AN93, BN00, CL95, ORV94, Zuc97, RZ01, Fei99] has resulted in

a protocol which tolerates (1/2− α)p faulty processors and requires only log∗(p) +O(1) rounds to

elect a leader (and hence perform a collective coin flip) in the BL model [RZ01, Fei99].

4.1 Previous Results

For protocols using weak sources, the only results are due to Goldwasser et al. [GSV05].

They require all weak sources to have min-entropy rate at least 1/2. In the full information model,

they only obtain results for weak sources that are more restricted than block sources1. Under the

assumption that the processors have access to general (n, k)-sources, they give results only for the

case of private channels. They posed the open question of whether protocols can be designed in

the full information model assuming only that each processor has access to general (n, k)-sources.

1They refer to these sources as block sources, though they are not as general as block sources are defined in this
paper and the extractor literature.
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4.2 Our Results

We answered the above question in the affirmative by defining and constructing network

extractors. As briefly mentioned in the introduction, these are protocols where the processors

interact with each other, and at the end of the protocol some (ideally all) of the honest processors

end up with private random bits that are close to uniform. In this chapter we define and construct

such objects in the information-theoretic setting, and in the next chapter we study these objects

in the computational setting. The results in this chapter are based on work with Yael Kalai, Anup

Rao and David Zuckerman [KLRZ08].

In order to define network extractor, we need some notation. Processor i begins with a

sample from a weak source xi ∈ {0, 1}n and ends in possession of a hopefully uniform sample

zi ∈ {0, 1}m. Let b be the concatenation of all the messages that were sent during the protocol.

Capital letters such as Zi and B denote these strings viewed as random variables.

Definition 4.2.1 (Network Extractor). A protocol for p processors is a (t, g, ε) network extractor

for min-entropy k if for any min-entropy k independent sources X1, . . . , Xp over {0, 1}n and any

choice of t faulty processors, after running the protocol, the number of processors i for which

|(B,Zi)− (B,Um)| < ε is at least g. Here Um is the uniform distribution on m bits, independent of

B, and the absolute value of the difference refers to variation distance. We say that a protocol is a

synchronous extractor if it is a network extractor that operates over a synchronous network. We say

that it is an asynchronous extractor if it is a network extractor that operates over an asynchronous

network.

We now have the following results about network extractors.

As long as the min-entropy rate of the sources is greater than 1/2, we give nearly optimal

network extractors. In particular, as long as the fraction of faulty processors t is bounded by a

constant less than 1, we show how to build a one round synchronous network extractor which leaves

almost every non-faulty processor with private randomness.

Theorem 4.2.2 (High Entropy Synchronous Extractor). For all p, t, n, α, β > 0, there exists a

constant c = c(α) and a two-round (t, p − (1 + α)t − c, 2−k
Ω(1)

) synchronous extractor for min-

entropy k ≥ (1
2 + β)n in the full-information model. The protocol is one round for t = Ω(p).

If the min-entropy of the general sources is much smaller, we can still design a good network

extractor, though fewer processors end up with private random bits. The new protocol ensures

roughly p − (2 + log logn
log log k )t honest processors end up with private randomness, thus tolerating a
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linear fraction of faulty processors. This protocol runs in a constant number of rounds even with

min-entropy k = 2(logn)Ω(1)
:

Theorem 4.2.3 (Low Entropy Synchronous Extractor). For all p, t, β > 0, k > log p, and n ≤
2O(t), there exists a constant c = c(β) and a (1/β + 1) round (t, p − (1.1 + 1/β)t − c, 2−k

Ω(1)
)

synchronous extractor for min-entropy k ≥ 2logβ n in the full-information model.

In the asynchronous setting, we get slightly weaker results:

Theorem 4.2.4 (High Entropy Asynchronous Extractor). For all p, t, n, β > 0, there exists a

one-round (t, p− 3t− 1, 2−k
Ω(1)

) asynchronous extractor for min-entropy k ≥ (1
2 + β)n in the full-

information model.

Theorem 4.2.5 (Low Entropy Asynchronous Extractor). There exist constants c1, c2 > 0 such that

for all p, t, β > 0, k > log p, and poly(t) ≤ n ≤ 2O(t), there exists a (1/β + 1) round (t, p− c1t/β −
c2, 2

−kΩ(1)
) asynchronous extractor for min-entropy k ≥ 2logβ n in the full-information model.

Applying our network extractors to Byzantine Agreement and Leader Election, we obtain

the following results.

In the synchronous setting, we essentially match the perfect-randomness case [GPV06] when

the min-entropy rate is greater than 1/2, and we can tolerate a linear fraction of faults even with

min-entropy 2(logn)Ω(1)
.

Theorem 4.2.6 (Synchronous Byzantine Agreement). Let α, β > 0 be any constants. For p

large enough, assuming each processor has access to an independent (n, k)-source, there exists syn-

chronous O(log p) expected round protocols for Byzantine Agreement in the full information model

with the following properties.

1. The protocol for k ≥ (1/2 + β)n tolerates (1/3− α)p faulty processors.

2. The protocol for k ≥ nβ tolerates (1/4− α)p faulty processors.

3. The protocol for k ≥ 2logβ n tolerates p/(3.1 + 1/β) faulty processors.

In the asynchronous case, we can tolerate a linear fraction of faults in only a polylogarithmic

number of rounds, as is the case with perfect randomness [KKK+08].
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Theorem 4.2.7 (Asynchronous Byzantine Agreement). Let α, β > 0 be any constants. For p large

enough, assuming each processor has access to an independent (n, k)-source, there exists a constant

0 < γ < 1 and asynchronous polylog(p) expected round protocols for Byzantine Agreement in the

full information model with the following properties.

1. The protocol for k ≥ (1/2 + β)n tolerates (1/8− α)p faulty processors.

2. The protocol for k ≥ 2logβ n tolerates βγp faulty processors.

We obtain essentially the same results if the processors’ min-entropy rate is above 1/2, and

we can tolerate a linear fraction of faults with min-entropy 2(logn)Ω(1)
.

Theorem 4.2.8 (Leader Election). Let α, β > 0 be any constants. For p large enough, assuming

each processor has access to an independent (n, k)-source, there exists log∗ p+O(1) round protocols

for leader election in the BL model with the following properties.

1. The protocol for k ≥ (1/2 + β)n tolerates (1/2− α)p faulty processors.

2. The protocol for k ≥ nβ tolerates (1/3− α)p faulty processors.

3. The protocol for k ≥ 2logβ n tolerates (1/(2 + 1/β)− α)p faulty processors.

4.3 The Constructions

In this section we discuss how to build network extractors ( Definition 4.2.1) in a full-

information network.

4.3.1 Synchronous Network Extractors

4.3.1.1 First Attempts

To show how extractors for independent sources can be used to construct network extractors,

we start with some simple protocols. We shall just sketch the arguments for why these protocols

are good network extractors, reserving formal proofs for our best protocols.
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Protocol 4.3.1. For a synchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

• Let IExt be a 2 source extractor for entropy 0.1tk sources of length 1.1tn.

We break up the players into two sets, A = [1, 1.1t] and the rest of the players in B.

Communication in Round 1 : Every player i ∈ A announces their string xi.

Computation :

1. Let yj = x1, . . . , x1.1t denote the concatenation of these strings received by j.

2. For every j ∈ B, j’th player computes zj = IExt(yj , xj).

A first protocol one might think of is something along the lines of Protocol 4.3.1. The idea is to

partition the players into two subsets A,B such that A is large enough to guarantee that at least

one of the players in A is honest. We see that for every j, the distribution Y j (note that Y j may

be different for different j, since the faulty players may transmit different strings to the non-faulty

players) in the running of the above protocol has min-entropy at least 0.1tk. Further, Y j is inde-

pendent of Xj for every j ∈ B. Thus Zj is in fact ε-close to uniform and independent of Y j by

the properties of IExt. This means that every non-faulty player in the set B ends up with private

randomness. By adjusting the constants, we can get a similar protocol that is a (t, p− (2 + γ)t, ε)

synchronous network extractor in the full-information model, as long as t < p/(2 + γ), for every

constant γ > 0.

There are two problems with the above protocol. First, the best known polynomial time

2-source extractor constructions at the time of this writing [Bou05, Raz05] require that at least one

of the sources has min-entropy rate close to half. This means we only get explicit protocols for such

high entropy. Second, the above network extractor only guarantees that at most p− 2t players get

private randomness, while we hope that as many as p− t players can get private randomness. We

shall improve our results on both these fronts. In Protocol 4.3.2, we show how to use Theorem 3.5.11

to get results for low entropy.
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Protocol 4.3.2. For a synchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

• Let SRExt be as in Theorem 3.5.11 with parameters n1,m1, ε1, k1.

• Let IExt be a C source extractor with parameters n2, k2,m2, ε2 as in Theorem 3.5.9.

• We assume that m0.9
1 ≥

(
t+C
C

)
.

We break up the players into two sets, A = [1, t+ C] and the rest of the players in B.

Communication in Round 1 : Every player i ∈ A announces their string xi.

Computation :

1. Let yi be the
(
t+C
C

)
× m1 matrix whose j’th row is obtained by computing yij =

IExt(xii1 , x
i
i2
, . . . , xiiC), where xi1, . . . , x

i
C+t are the strings received by player i.

2. For every j ∈ B, player j computes zj = SRExt(xj , y
j).

Again, the analysis is quite simple. Since the set A contains t + C players, at least C of

them must be non-faulty. Thus, after the first round, Y j is ε1 close to being a somewhere random

source, for every j ∈ B. Thus, for every j ∈ B, Y j independent of Xj and by the properties of

SRExt, all non-faulty players in B get truly random bits. The above protocol is a (t, p− 2t, ε1 + ε2)

synchronous extractor in the full-information model, as long as t < p/2.

The drawback of this approach is that our extractor SRExt from Theorem 3.5.11 only works

when the somewhere random source has much fewer rows than the length of each row. This protocol

only succeeds in the case that the entropy of the sources is larger than
(
t+C
C

)
. On the other hand,

this protocol does work for polynomially small entropy, since Theorem 3.5.11 and Theorem 3.5.9

can handle polynomially small entropy. In particular, this protocol works as long as n, k � p. We

shall have to work harder to get a protocol that does not require this much entropy.
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4.3.1.2 Protocol for Low Entropy

We have seen that in the case that the entropy is significantly larger than the number of

players, or the entropy rate is larger than half, we have very simple network extractor protocols.

In this section we describe better results for the case of low entropy sources. We shall start by

describing a network extractor protocol that is good enough to get the following theorem:

Theorem 4.3.3 (Polynomial Entropy Synchronous Extractor). There exists a constant c > 0 such

that for every γ > δ > 0, β > 0 and p large enough, there exists a 1 round (δp, (1 − 2γ)p, 2−k
c
)

synchronous extractor for min-entropy k ≥ nβ in the full-information model.

Building on the ideas that go into proving the above theorem, we can give aO(log log n/ log log k)

round protocol that works even when the entropy k is as small as log10 n. This result appears in

section 4.3.1.5.

Theorem 4.3.4. If k > log p and n ≤ exp(t) then for t large enough there exists a (t, p −
2t − (1.1 log logn

log log k )t, 2−k
Ω(1)

) synchronous network extractor for min-entropy k > log10 n that runs

in O(log log n/ log log k) rounds in the full-information model.

Our protocol will be a variation on Protocol 4.3.2. Instead of trying every possible C-tuple

of strings from the set A, we shall use a derandomized sample of these tuples.

We shall need the concept of an AND-disperser :

Definition 4.3.5 (AND-disperser). An (l, r, d, δ, γ) AND-disperser is a bipartite graph with left

vertex set [l], right vertex set [r], left degree d s.t. for every set V ⊂ [r] with |V | = δr, there exists

a set U ⊂ [l] with |U | ≥ γl whose neighborhood is contained in V .

Each vertex on the left identifies a d-tuple of vertices on the right. Thus when l =
(
r
d

)
, we

can easily build an AND-disperser with great performance, just by considering every possible such

tuple. We shall construct a much better AND disperser, i.e., one where l, r are much closer to each

other.

In our application, we shall need a (l, r,C, δ, γ) AND-disperser with l as small as possible, δ

as small as possible and γ as large as possible. We shall prove the following lemma:

Lemma 4.3.6. For every C, δ > 0, there exist constants h, γ > 0 and a polynomial time con-

structible family of (hr, r,C, δ, γ) AND-dispersers.
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Before we see how to prove this lemma, we describe the rest of our construction.

Another well studied object that we need is a construction of a bipartite expander.

Definition 4.3.7 (Bipartite Expander). A (l, r, d, β) bipartite expander is a bipartite graph with

left vertex set [l], right vertex set [r], left degree d and the property that for any two sets U ⊂
[l], |U | = βl and V ⊂ [r], |V | = βr, there is an edge from U to V .

Pippenger proved the following theorem:

Theorem 4.3.8 (Explicit Bipartite Expander [Pip87, LPS88]). For every β > 0, there exists

a constant d(β) < O(1/β2) and a family of polynomial time constructible (l, l, d(β), β) bipartite

expanders.

We shall actually need unbalanced expanders, which can be easily obtained just by deleting

vertices from the above graph. We get the following corollary:

Corollary 4.3.9. For every 1 > β > 0 and constant h > 0, there exists a constant d(β, h) and a

family of polynomial time constructible (r, hr, d(β, h), β) bipartite expanders.

We use these objects to design Protocol 4.3.10, which is the protocol in Theorem 4.3.3. We

can show that Protocol 4.3.10 is a network extractor for entropy k.

43



Protocol 4.3.10. For a synchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

• Let 1 > γ > δ > 0 be any constants.

• Let SRExt, n,m, ε1, k be an extractor with parameters as in Theorem 3.5.11. Let IExt be
a C source extractor with parameters n, k,m2 = k, ε2 as in Theorem 3.5.9.

• Set r = γp.

• Let G1, γ
′, h be such that there is a (hr, r,C, γ−δγ , γ′)-AND-disperser promised by

Lemma 4.3.6.

• Set λ = min{γ′, γ−δ1−γ }.

• Let G2 denote the (p− r, hr, d, λ) bipartite expander given by Corollary 4.3.9.

We break up the players into two sets, A = [1, r] and the rest of the players in B. We identify
every player in A with a vertex in the right vertex set of the graph G1 and identify every player
in B with a vertex in the left vertex set of the graph G2. We identify the left vertex set of G1

with the right vertex set of G2.

Communication in Round 1 : Every player i ∈ A announces his string xi.

Computation :

1. For every vertex g in the left vertex set of G1, every remaining player j computes
the string yjg = IExt(xjg1 , x

j
g2 , . . . , x

j
gC), where here xjg1 , x

j
g2 , . . . , x

j
gC are the strings

announced by the C neighbors of g.

2. Every player j ∈ B computes the d× k matrix sj whose w’th row is yjjw , where here
jw is the w’th neighbor of j in G2.

3. Every player j ∈ B computes the private string SRExt(xj , s
j).

Proof of Theorem 4.3.3. Let SRExt be as in Theorem 3.5.11, set up to extract from an (n, k = nγ)

source and an independent k0.9 × k somewhere random source with error 2−k
Ω(1)

. Let IExt,C be

as in Theorem 3.5.9, set up to extract k random bits from C independent (n, k) sources with error
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2−k
Ω(1)

.

Let X1, . . . , Xp be any independent (n, k) sources. Since there are at most t = δp faulty

players in the set A, at least a γp−δp
r = γ−δ

γ fraction of the strings xi for i ∈ A must be samples

from an (n, k) source. Since G1 is a (hr, r,C, γ−δγ , γ′) AND-disperser, we must have that at least a

γ′ fraction of the vertices g in the left vertex set of G1 are such that Yg is ε2 close to uniform.

Now every non-faulty player j ∈ B who has at least one such g as a neighbor, ends up with

a distribution Sj that is ε2 close to being a d × k somewhere random source. Let H denote the

set of non-faulty players in B that don’t get such a somewhere random source. Then we see that

|H| < λ(p − r) = λ(1 − γ)p < (γ − δ)p, since G2 is a (p − r, hr, d, λ, γ′}) expander and by the

definition of λ. Thus, all but (γ − δ)p+ t = γp of the players in B compute a somewhere random

source. Then, by the properties of the extractor SRExt, each of these players computes a private

random string with an additional error of ε1. Since both of these errors are 2−k
Ω(1)

, we get that the

final error is also 2−k
Ω(1)

.

Next, we complete the proof by showing how to prove Lemma 4.3.6.

Proof of Lemma 4.3.6. We break up [r] into equally sized disjoint sets S1, . . . , S δr
2C

, so that for every

i, |Si| = 2C/δ. Then consider all subsets T ⊂ Si, with |T | = C. The number of such subsets is(2C/δ
C

)
δr
2C = hr for some constant h.

We define the bipartite graph with left vertex set [hr], right vertex set [r] and left degree

C, by connecting every vertex on the left with the corresponding subset of elements of [r]. To see

that this graph is an AND-disperser, let V ⊂ [r] be any subset of density δ. Then, by averaging, we

must have that V is at least δ/2-dense in at least a δ/2 fraction of the Si’s. But every Si in which

V is δ/2 dense has at least 2C
δ
δ
2 = C elements of V . For every such Si, there is a vertex in the left

vertex set of the graph whose neighbors all lie in V .

Thus, there must be at least δ
2
δr
2C = γhr such vertices.

Protocol 4.3.10 addresses the issue of getting network extractors with low entropy (we can

at least handle polynomially small entropy). However, it only guarantees that close to p− 2t of the

p − t non-faulty players end up with useable randomness. We shall soon see that we cannot hope

to give a one round protocol which does better than this, for low min-entropy.
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4.3.1.3 Protocol for High Entropy Rate and Block Sources

Next we show that in the case that each player has access to a block source with just 2

blocks (Definition 2.3.4) or a source with entropy rate greater than half, we can give protocols that

guarantee that almost all non-faulty players end up with useable randomness. The idea is that

in this case, we can essentially run multiple copies of the above protocol at the same time. We

partition the players into a constant number of sets. We can argue that most of the partitions must

have a significant number of non-faulty players. We then run the previous protocol on every set in

the partition.
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Protocol 4.3.11. For a synchronous network

Player Inputs: Player i has xi, x
′
i ∈ {0, 1}n

Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

• Let 1 > γ > δ > 0 be any constants.

• Let SRExt, n,m, ε1, k be an extractor with parameters as in Theorem 3.5.11. Let IExt be
a C source extractor with parameters n, k,m2 = k, ε2 as in Theorem 3.5.9.

• Set α = (1− δ)/2. Set r = αp.

• Let G1, γ
′, h be such that there is a (hr, r,C, 1−δ

1+δ , γ
′)-AND-disperser promised by

Lemma 4.3.6.

• Set λ = min{γ′, γ − δ}.

• Let G2 denote the (p− r, hr, d, λ) bipartite expander given by Corollary 4.3.9.

We partition the players into 1/α equally sized sets B1, . . . , B1/α, each of size r. Let A1, . . . , A1/α

denote the corresponding complements, i.e., Ai = [p] \Bi.

Communication in Round 1 : Every player i announces xi.

Computation :

1. For i = 1, 2, . . . , 1/α,

(a) We identify every player in Ai with a vertex in the right vertex set of the graph
G1 and identify every player in Bi with a vertex in the left vertex set of the graph
G2. We identify the left vertex set of G1 with the right vertex set of G2.

(b) For every vertex g in the left vertex set of G1, each player j ∈ Bi compute
the string yjg = IExt(xjg1 , x

j
g2 , . . . , x

j
gC), where here xjg1 , x

j
g2 , . . . , x

j
gC are the strings

received by j for the C neighbors of g.

(c) Every player j ∈ Bi computes the d× k matrix sj whose w’th row is yjjw , where
here jw is the w’th neighbor of j in G2.

(d) Every player j ∈ Bi computes the private string SRExt(x2
j , s

j).

We can prove the following theorem:
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Theorem 4.3.12 (Polynomial Entropy Synchronous Extractor for Block Sources). There exists a

constant c > 0 such that for every γ > δ > 0, β > 0 and p large enough, there exists a 1 round

(δp, (1 − γ)p, 2−k
c
) synchronous extractor for (k, k) block sources with min-entropy k ≥ nβ in the

full-information model.

Proof. We shall analyze Protocol 4.3.11. Let SRExt be as in Theorem 3.5.11, set up to extract from

an (n, k = nγ) source and an independent k0.9×k somewhere random source with error 2−k
Ω(1)

. Let

IExt,C be as in Theorem 3.5.9, set up to extract k random bits from C independent (n, k) sources

with error 2−k
Ω(1)

.

Let X1, . . . , Xp be any independent (n, k) sources. Note that for every i, there are at least

(1− α− δ)p = (1− δ)p/2 non-faulty players in the set Ai. This is at least a (1− α− δ)/(1− α) =

(1− δ)/(1 + δ) fraction of the number of players in this set.

By the properties of G1 and G2, this means that at most a λ fraction of the players in each

of the Bi’s wouldn’t compute strings that are close to uniformly random, if each of them computed

these strings correctly. However, a δ fraction of the players are faulty. Thus we get that at least

1−λ−δ ≥ 1−γ fraction of the players end up with randomness that is ε1 + ε2 close to uniform.

A special case of this above protocol is when the players all have access to a source with

min-entropy rate greater than half. In this case, we can show that the players can easily get a block

source, just by splitting their sources into two equal parts. This gives us the following theorem:

Theorem 4.3.13 (High Entropy Synchronous Extractor). There exists a constant c > 0 such that

for every γ > δ > 0, constant β > 0 and p large enough, there exists a 1 round (δp, (1− γ)p, 2−k
c

+

2−cβnp) synchronous extractor for min-entropy k ≥ (1
2 + β)n in the full-information model.

Proof. Let X be any (n, (1/2 + β)n) source. Let X1 be the first n/2 bits of X and X2 be the

remaining bits.

Then we have that:

Claim 4.3.14. X1, X2 is 2−Ω(βn) close to being a block source with min-entropy 3βn/5 in each

block.

To see this, first observe that by Lemma 2.3.2 (setting l = βn/10), we get that X1 is 2−βn/10

close to having min-entropy (1/2 + β)n− n/2− βn/10 = 9βn/10. Then, by Lemma 2.3.5, setting
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` = βn/10, we get that X1, X2 is 2(2−βn/10 + 2−βn/10+1)-close to being a block source with min-

entropy 9βn/10−1−2βn/10 ≥ 6βn/10 in the first block and (1/2+β)n−n/2−1−2βn/10 ≥ 3βn/5

in the second block.

Thus, all of the sources are simultaneously 2−Ω(βn)p-close to being block sources. We can

now run Protocol 4.3.11 to get random bits.

4.3.1.4 Lower bounds

In this section, we show that there is no one round network extractor protocol that can do

much better than our construction for the case of general sources with k = nδ over synchronous

networks in the full information model. Namely, for general weak random source with min-entropy

rate < 1
2 , there is no one round network extractor that can tolerate p/2 faulty players or guarantee

p− 2t honest players end up with private random bits.

Theorem 4.3.15. There is no one round (t, p−2t, 1/4) synchronous extractor protocol for general

(n, n/2− 1) sources, in the full information model.

Proof. For the purpose of contradiction, let us assume that such a protocol exists for min-entropy

k < n/2.

This protocol must call for some number of players to transmit messages in the first round

of the protocol. Let us assume that each player starts with strings xi ∈ {0, 1}n and that in the first

round player i transmits some function fi(xi) of the input, where fi : {0, 1}n → {0, 1}mi .

We say that i transmits k bits if the size of the image |fi({0, 1}n)| ≥ 2k.

We note that if i does not transmit k bits, then there must be some point a ∈ {0, 1}mi such

that |f−1
i (a)| ≥ 2n−k ≥ 2k. Setting Xi to be the flat distribution over f−1

i (a), we get a source Xi

with min-entropy at least k s.t. fi(Xi) is a constant.

On the other hand, if i transmits k bits, then we pick 2k points {x1, . . . , x2k} such that fi

is injective on this set. If we set Xi to be the flat distribution on this set, we get a source with

min-entropy k for which for every a ∈ supp(fi(Xi)), H∞(Xi|fi(Xi) = a) = 0, i.e. the source has no

entropy left over after conditioning on the output of fi.

There are now two cases:

At most t players transmit n/2 bits. In this case, by our discussion above, the adversary can

replace every player that transmits at least n/2 bits with a faulty player and choose min-

entropy n/2 weak sources Xi for every other player, in such a way that the transcript of the
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first round transmissions is a constant. The private random string that player i generates is

then just a deterministic function of Xi. We can then find a deficiency 1 subsource X ′i ⊂ Xi

such that the first bit of this private string is constant. Note that X ′i has min-entropy at least

n/2− 1, which means the protocol must fail in this case.

More than t players transmit n/2 bits. In this case, by our discussion above, for each player

i that transmits n/2 bits, we can pick a k-source Xi such that the entropy of the source

conditioned on the first round transcript is 0. Thus every such player cannot generate any

private randomness. We pick some other t players to be faulty. Thus at most p − 2t − 1

players will end up with private randomness.

4.3.1.5 Protocol for Even Smaller Min-Entropy

Now we prove the general theorem of synchronous extractor, Theorem 4.3.4. In fact we

prove a stronger version, which gives a generic way to transform an independent source extractor

that needs C sources into a network extractor protocol which runs in roughly logC
log log k + 3 rounds

and ensures p− (3 + logC
log log k )t honest players end up with private random bits.

We relax the requirement that C is a constant in Assumption 4.3.16, and only require

C = o(log n):

Assumption 4.3.16. We assume we have access to a strong C-Source extractor IExt : ({0, 1}n)C →
{0, 1}k with error ε for (n, k) sources, where C = o(log n). Throughout this section we reserve C

for the number of sources that IExt needs to function.

Remark 4.3.17. Theorem 3.5.9 gives such an extractor with C = o(log n).

First we shall construct a more sophisticated AND-disperser.

Towards this we need the following theorem:

Theorem 4.3.18. [AFWZ95] Let H be a d-regular graph on n vertices and A be the probability

transition matrix of the random walk on H. Let 1 = λ0 > λ1 ≥ ... ≥ λn−1 be the eigenvalues of

A. Let W be a set of w vertices in H and put µ = w/n. Let τ denote the fraction of random

walks of length D − 1 that stay in W . Assume (for the lower bound only) that k is odd and that

µ+ λn−1(1− µ) ≥ 0. Then
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µ(µ+ λn−1(1− µ))k−1 ≤ τ ≤ µ(µ+ λ1(1− µ))k−1.

Lemma 4.3.19 (AND-disperser). There exists a constant c > 0 such that if D = o(logM) then

for every constant 0 < α < 1 and large enough M , there exists an explicit construction of an

(N,M,D,α, β) AND-disperser G such that M < N ≤MdD and β > µD. Here d = cα−8, µ = α2/3.

Proof. We use random walks on expander graphs to construct the AND-disperser. Take any d0-

regular expander graph G0 on M vertices, let 1 = λ0 > λ1 ≥ ... ≥ λM−1 be the eigenvalues

of the probability transition matrix of the random walk on G0. For any subset of vertices W

with |W | = αM , let τ denote the fraction of random walks of length D − 1 that stay in W . If

µ0 = α+λM−1(1−α) > 0, then Theorem 4.3.18 gives a lower bound of τ as τ ≥ αµD−1
0 ≥ µD1 , where

µ1 = min{α, µ0}. Take all the walks of length D− 1 as the vertices in [N ] and have each vertex in

[N ] connect to the D vertices in [M ] that are in the corresponding walk, we get an AND-disperser

as desired.

The problem with the above construction is that some walks may have repeated vertices,

thus some vertices in [N ] may have degree less than D. On the other hand we need every vertex

in [N ] to have degree exactly D(Think of D = C and we have to use C independent sources for the

extractor).

To deal with this problem, we make a slight modification. Instead of using walks of length

D − 1, we take all the walks of length l = 2D − 1 on G0. Among these walks, we delete all the

walks that have more than D repeated vertices. The remaining walks then have at least D distinct

vertices. We then take all the remaining walks as vertices of [N ] and for each vertex in [N ], connect

it to the first D distinct vertices in [M ] that are in the corresponding walk. We bound the number

of walks which have more than D repeated vertices to show that there are still enough walks left.

This then gives us the desired AND-disperser. Note as D = o(logM) the AND-disperser can be

constructed in polynomial time.

We use a special family of Ramanujan graphs X on M vertices as constructed in [LPS88].

The graph X is regular with degree d0 = p+ 1, p prime and has large girth: g(X) = Ω(log |X|) =

Ω(logM).

For a walk (w0, .., wl), call wi a repeat if there exists a j < i such that wj = wi, and new

otherwise. Note l = 2D − 1 = o(logM) = o(g(X)). Thus for sufficiently large M , l < g(X) and

the only possible way to get repeats is to backtrack in the walk.
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Define a “backtracking pair” in a walk to be a sub-walk of length 2m− 2 for some m such

that the order of the vertices in the sub-walk is v1, v2, ..., vm−1, vm, vm−1, ..., v2, v1. Now consider

any walk with more than D repeats. If we remove all the backtracking pairs in it, it becomes a

walk without repeats and the new walk will have length y ≤ D− 1. For a fixed y, the length of all

the backtracking pairs is l − y. Thus there are l−y
2 backtracking steps and at most

( l
l−y

2

)
choices

for the positions of these steps. For each such choice there are at most Md
l+y
2

0 choices for the other
l+y

2 steps. Therefore the total number of walks with more than D repeats is at most

P ≤
D−1∑
y=0

(
l
l−y

2

)
Md

l+y
2

0

≤
D−1∑
y=0

(
2el

l − y
)
l−y

2 Md
l+y
2

0 ≤
D−1∑
y=0

(4e)
l−y

2 Md
l+y
2

0

< M

D−1∑
y=0

(4ed0)
l+y
2 ≤MD(4ed0)

3D
2
−1

Thus the fraction of walks with more than D repeats is at most

η = MD(4ed0)
3D
2
−1/Md2D−1

0 < D

(
(4e)3

d0

)D
2

While by Theorem 4.3.18 the fraction of walks that stay in W is at least τ ≥ µ2D
1 = (µ4

1)
D
2 ,

where µ1 = min{α, α+λM−1(1−α)}. By the property of the expander X, |λM−1| ≤ 2
√
d0−1
d0

[LPS88].

Let d0 = c1α
−4 for a sufficiently large global constant c1 > 0, we have

α+ λM−1(1− α) > α− 2α2

√
c1
> 0.9α.

Thus µ > 0.9α and

τ ≥ (µ4
1)

D
2 > (0.94α4)

D
2 =

(
0.94c1

(4e)3
· (4e)3

d0

)D
2

> 2D

(
(4e)3

d0

)D
2

= 2η.

Therefore the fraction of random walks that stay in W and have at least D distinct vertices

is at least
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β = τ − η > 1

2
τ ≥ 1

2
µ2D

1 > (α2/3)D = µD.

Note N < Md2D−1
0 ≤ MdD with d = d2

0 ≤ cα−8 for a global constant c > 0, and N >

Md2D−1
0 −MD(4ed0)

3D
2
−1 > M .

The second ingredient we’ll use is a family of “m-expanding” graphs.

Definition 4.3.20. [TUZ01] An undirected graph is m-expanding if every two disjoint sets of

vertices of size at least m are joined by an edge.

In [TUZ01] almost optimal parameters for explicit m-expanding graphs are achieved:

Theorem 4.3.21. [TUZ01] For any N,m > 0 there exists an explicit m-expanding d-regular graph

on N vertices with d = O(NmpolylogN)

Notice that in the case N
m is a constant, it suffices to use a constant degree expander as in

Theorem 4.3.8. In our protocols we’ll often view these graphs as bipartite graphs, with N vertices

on both sides.

The last ingredient we need is the extractor for somewhere random source and independent

sources in Theorem 3.5.10. This theorem says that it suffices to take a r × k somewhere random

source and another O( log r
log k ) independent (n, k) sources to extract almost uniform random bits.

4.3.1.6 High-Level Ideas of the synchronous extractor

We now outline the high-level ideas of the synchronous extractor, Protocol 4.3.24.

Idea 1 : The synchronous extractor is a multiple roundprotocol. Each round is a generalization

of Protocol 4.3.10. The difference is that the number of independent sources needed may no

longer be a constant. Thus we use the more sophisticated AND-disperser as in Lemma 4.3.19.

Note that the reason we need a protocol like Protocol 4.3.10 is that we need more than one

independent sources to extract random bits (If there is a one-source extractor, then we don’t

need such protocols).
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Idea 2 : By the end of the first round, all but a small fraction of the receivers obtain a somewhere

random source. If the number of rows in the SR-source is small, then by Theorem 3.5.11

a player can extract random bits using the SR-source and his own weak source. This is

just Protocol 4.3.10. If the number of rows in the SR-source is not small enough, then we

need more than one independent sources together with the SR-source to extract random bits.

Thus we can run the one-round protocol again. The key observation is that the number of

independent sources needed will decrease in each round.

Idea 3 : Assume at the beginning of round l, the number of independent sources needed (except

the SR-source) is Cl. Then, the AND-disperser gives a set of Cl-tuples of which a fraction

of roughly 1/2Θ(Cl) is “good” (consisting of all honest players). The m-expanding graph of

Theorem 4.3.21 gives a bipartite graph with degree roughly O(2Θ(C1)) (except for a poly-

logarithmic factor, which won’t affect our result much). The property of the m-expanding

graph guarantees that in each round all but a small fraction of the receivers obtain an SR-

source.

Idea 4 : The degree of the m-expanding graph is exactly the number of rows in the SR-source

obtained by the end of round l. Thus by Theorem 3.5.10 the number of independent sources

we need now is roughly Cl+1 = O( log 2Θ(Cl)

log k ) = O( Cl
log k ), which says the number of independent

sources needed will decrease by a factor of roughly log k in each round. We then iterate until

this number decreases to 1, at which time a player can extract random bits that are close to

uniform using the SR-source and his own weak source. This will take roughly logC
log log k rounds.

4.3.1.7 Synchronous network extractor protocol

Now we describe our protocol for synchronous extractor. First we need a sub protocol,

Protocol 4.3.22, a generalization of Protocol 4.3.10, for one round in the whole protocol.
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Protocol 4.3.22. For a synchronous one round network

Player Inputs: There are two sets of players, A and B. Every player ui ∈ A has a weak
random string xi ∈ {0, 1}n and an optional r1 × k somewhere random string yi ∈ {0, 1}r1k
Player Outputs: For every player uj ∈ B, uj ends up with a supposed r2 × k somewhere
random string yj ∈ {0, 1}r2k

Sub-Routines and Parameters:

• Let IExt be a C source extractor as in Assumption 4.3.16. Let SRIExt be the Somewhere
Random source vs. independent source extractor as in Theorem 3.5.10.

• |A| = (1 + α)t for some given constant α > 0.

• If this is the first round of the whole protocol, let D = C be the number of (n, k) sources IExt
needs. Otherwise let D = O( log r1

log k ) be the number of independent sources SRIExt needs,
when the somewhere random source has r1 rows. Construct an (N,M = |A|, D, α1 =
0.9α
1+α , β1) AND-disperser G with N ≤MdD1 , β1 ≥ µD1 as in Lemma 4.3.19.

• If D is a constant, let m = min{µD1 N, 0.1αt} and construct the bipartite expander H
on 2N vertices promised by Theorem 4.3.8 with degree d2 = O((N/m)2). Otherwise let

m = min{µD1 N,
|A|
2D
} and construct an m-expanding graph H on N vertices promised by

Theorem 4.3.21 with degree d2 = O(NmpolylogN). View H as a bipartite graph with N
vertices on each side. Identify each player in A with a vertex in [M ] and identify each
player in B with a vertex in the left vertex set of H. Identify [N ] with the right vertex set
of H.

Round 1 :

1. Every player ui ∈ A sends his random string xi and his somewhere random string
yi(if ui has such a string) to all the players in B.

2. For every player vj ∈ B, his corresponding vertex in H has d2 neighbors in the right
vertex set of H: wj1, ..., wjd2 . Each of these neighbors wjq in turn has D neighbors
in [M ]. Let the D neighbors be uq1, ..., uqD and without loss of generality assume
q1 < q2 < ... < qD.

• If this is the first round of the whole protocol, compute sjq =
IExt(xq1, xq2, ..., xqD). Otherwise compute sjq = SRIExt(xq1, xq2, ..., xqD, yq1).

• Compute sjq for every neighbor wjq and form a d2× k somewhere random string
yj = sj1 ◦ ... ◦ sjd2

.
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We also need the following sub protocol, Protocol 4.3.23, which guarantees that if at least 3t

honest players already get private random bits, then in the next round all the other honest players

who haven’t announced their strings will get private random bits.

Protocol 4.3.23. For a synchronous one round network

Player Inputs: There are two sets of players, A and B. Every player ui ∈ A has private
random bits zi ∈ {0, 1}k
Player Outputs: For every honest player uj ∈ B, uj ends up with private random bits zj ∈
{0, 1}m, while every honest player ui ∈ A still has 0.9k private random bits left.

Sub-Routines and Parameters:

• Let Raz be the strong 2-sources extractor in Theorem 3.5.7.

• |A| > 3t.

Round 1 :

1. Every player ui ∈ A takes 0.1 fraction of his private random bits zi, let the fraction
be yi and sends yi to all the players in B.

2. For every player uj ∈ B, let sj be the concatenation of all the yi received from the
players in A. Compute zj = Raz(sj , xj).

The synchronous extractor is now described as Protocol 4.3.24.
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Protocol 4.3.24. For a synchronous network

Player Inputs: Every player ui has a weak random string xi ∈ {0, 1}n
Player Outputs: For some players uj , uj ends up with private random bits zj ∈ {0, 1}m

Sub-Routines and Parameters:

• Protocol 4.3.22 and Protocol 4.3.23.

• Let BasicExt be the extractor in Theorem 3.5.11.

• α > 0 is a given constant.

• R is given as the number of rounds of the protocol.

Divide p players into R+1 disjoint sets A1, ..., AR+1, where |A1| = |A2| = ... = |AR−1| = (1+α)t
and |AR| = min{p−(1+α)(R−1)t, 3(1+α)t}. AR+1 is the set of remaining players. It’s possible
that AR+1 = Φ.

Round l, l = 1, ..., R− 1 : Run Protocol 4.3.22 with A = Al, B = Al+1 and parameter α. In
round 1, players in A don’t have the optional somewhere random strings yi. In subsequent
rounds, players in A have the somewhere random strings yi obtained by the end of the
previous round.

Round R− 1 : At the end of round R − 1, player uj in AR computes zj = BasicExt(xj , yj).
Here xj is uj ’s weak random string, yj is the somewhere random string obtained by the
end of this round.

Round R(Last Round) : If AR+1 6= Φ, run Protocol 4.3.23 with A = AR, B = AR+1.

4.3.1.8 Proof of the theorem

We prove the following stronger theorem:

Theorem 4.3.25. If k > log p and n ≤ poly(p) then as long as t > p0.1, for sufficiently large p there

exists a (t, p− 1.1(3 + logC
log log k )t, ε+ 2−k

Ω(1)
) synchronous extractor that runs in at most 1.1 logC

log log k + 3

rounds in the full-information model. Here ε is the error of the extractor in Assumption 4.3.16.

Remark 4.3.26. The parameter p0.1 can be replaced by pδ for any constant δ > 0 and the constant

1.1 can be replaced by 1 + α for any constant α > 0.
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In all the analysis below we call a supposed somewhere random string y “valid” if it contains

at least one row that is ε-close to being truly random for some small error ε.

To analyze Protocol 4.3.24 we first establish the following lemma:

Lemma 4.3.27. Let Cl be the number of independent (n, k) sources needed for IExt or SRIExt in

round l of the synchronous extractor. Define Badl as the number of honest players in Al that

don’t have a valid somewhere random string for l ≥ 2 and let Bad1 = 0. There exist constants

c1 > 0, c2 > 0 such that for every constant α > 0, the following claims hold.

1. ∀l, Badl ≤ 0.1αt and Cl = o(log n)

2. If Cl > log k, then

Cl+1 ≤
c1 log(c2/α)

log k
Cl

3. If Cl ≤ log k and Cl = ω(1), then Cl+1 is a constant C(α)

4. If Cl is a constant, then by the end of round l, all but Badl honest players in Al obtain random

bits that are ε+ l2−k
Ω(1)

-close to uniform and independent of the whole transcript.

Proof. We prove 1 by induction. For l = 1, the number of independent (n, k) sources needed for

IExt is C1 = C = o(log n) by Assumption 4.3.16. Also Bad1 = 0 < 0.1αt.

Now assume for round l, Cl = o(log n) and Badl ≤ 0.1αt. Note Cl = o(log n) = o(log t)

as n = O(poly(p)) and t > p0.1. Let Ul denote the subset of honest players in Al that have a

valid somewhere random source for l ≥ 2, and the subset of honest players in Al for l = 1, then

|Ul| ≥ (1+α)t−t−Badl ≥ 0.9αt. Thus |Ul||Al| ≥
0.9α
1+α . Consider Protocol 4.3.22 for round l. An AND-

disperser G = (N,M,D,α1, β1) is constructed with M = |Al| = (1 + α)t,D = Cl = o(log t), α1 =
0.9α
1+α . By Lemma 4.3.19, N ≤ MdD1 = MdCl1 for some constant d1 ≤ c′1α

−8
1 , and there exists a

subset V ⊂ [N ] with |V | = β1N > µD1 N s.t. Γ(V ) ⊂ Ul. V is the set of “good” tuples that consist

of all honest players.

As D = o(log t), |Al|
2D

> t0.9 and µD1 N > µD1 M > t0.9. Thus min{µD1 N,
|Al|
2D
} > t0.9 and

min{µD1 N, 0.1αt} > t0.9. Also, if D is super-constant, then m = min{µD1 N,
|Al|
2D
} ≤ |Al|

2D
< 0.1αt.

Otherwise m = min{µD1 N, 0.1αt} ≤ 0.1αt. Therefore t0.9 < m ≤ 0.1αt. Also m < β1N = |V |.
By the property of the m-expanding graph and the bipartite expander, for any subset of players

W ⊂ Al+1 with |W | ≥ m, there is an edge between W and V . Now if an honest player uj ∈ Al+1

has a neighbor vjq ∈ V , then all the neighbors of vjq in [M ], uq1, ..., uqD are honest players.
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Moreover if l ≥ 2, then all these honest players have a valid somewhere random string yqi. Note

that each somewhere random string yi is only a function of the strings broadcasted so far, and

thus is independent of any xj of an honest player j who has not announced his random string.

Therefore sjq = IExt(xq1, xq2, ..., xqD) or sjq = SRIExt(xq1, xq2, ..., xqD, yq1) is ε-close to uniform

and yj = sj1 ◦ ... ◦ sjd2 is a valid somewhere random source. Therefore Badl+1 ≤ m ≤ 0.1αt. By

induction Badl ≤ 0.1αt for all l.

Now consider the number of independent (n, k) sources needed for a player in round l + 1.

The somewhere random string yj obtained by player uj ∈ Al+1 at the end of round l is of size d2×k,

where d2 is the degree of the m-expanding graph or bipartite expander H in round l. If Cl = ω(1)

then in round l we use an m-expanding graph. By Theorem 4.3.21, d2 = O(Nmpolylog(N)), where
N
m = max{(2d1)D, ( 1

µ1
)D} ≤ c8D

3 α−8D for some constant c3 > 0 and D = Cl as d1 ≤ c′1α
−8
1 , µ1 >

α2
1/3. Thus

Cl+1 = O(
log d2

log k
) = O(

log(N/m)

log k
+

log logN

log k
)

Now N ≤MdD1 = (1+α)tdD1 , therefore logN ≤ D log d1 +log(1+α)t ≤ D log d1 log(1+α)t

as we can safely assume d1 ≥ 4, D ≥ 1, t ≥ 4. Thus

log logN

log k
≤ logD + log log d1 + log log((1 + α)t)

log k
=

logD

log k
+O(1)

as k > log p > log t.

On the other hand

log(N/m)

log k
≤ 8D log(c3/α)

log k

Therefore

Cl+1 = O(
D log(c3/α)

log k
+ 1) = O(

Cl log(c3/α)

log k
+ 1)

As long as Cl = ω(1), the above gives that Cl+1 < Cl. As C1 = o(log n), we have Cl = o(log n)

for all l. Thus claim 1 holds.

Now if Cl ≤ log k, then Cl+1 = O(log(c3/α) + 1) = C(α) is a constant. Thus claim 3 holds.
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If Cl > log k, then Cl log(c3/α)
log k + 1 < Cl(log(c3/α)+1)

log k = Cl log(2c3/α)
log k . Thus

Cl+1 = O(
Cl log(c3/α)

log k
+ 1) ≤ c1

Cl log(2c3/α)

log k
=
c1 log(c2/α)

log k
Cl

for c2 = 2c3. Thus claim 2 holds.

If Cl is a constant C(α), then in round l of the synchronous extractor, we use the bipartite

expander H with d2 = O((N/m)2) by Theorem 4.3.8. Note N/m ≤ max{ 1

µ
Cl
1

,
(1+α)td

Cl
1

0.1αt } is a

constant, therefore d2 = O((N/m)2) = d2(α) is a constant. For sufficiently large p this gives

d2 < kγ , where γ is the parameter in Theorem 3.5.11. Therefore, at the end of round l, all but

Badl honest players uj in Al obtain private random bits by computing zj = BasicExt(xj , yj). The

fact that BasicExt is strong implies that zj is also close to independent of the whole transcript. As

in each round of the protocol the error increases by 2−k
Ω(1)

, the error of the random bits obtained

by honest players in Al is at most ε+ l2−k
Ω(1)

. Thus claim 4 holds.

Proof of Theorem 4.3.25. Run Protocol 4.3.24 with parameter α and R to be chosen later. Let Cl
be the number of independent (n, k) sources needed in round l and let l0 be the first round where

Cl0 ≤ log k. By Lemma 4.3.27, at the end of round l = l0 +1, Cl becomes a constant and by the end

of round R = l0 + 2, all but Badl0+2 honest players in Al0+2 obtain private random bits. Now by

Lemma 4.3.27 there exist constants c1 > 0, c2 > 0 such that if Cl ≥ log k, then Cl+1 ≤ c1 log(c2/α)
log k Cl.

By the recursion Cl+1 ≤ c1 log(c2/α)
log k Cl we have

Cl0 ≤
(
c1 log(c2/α)

log k

)l0−1

C1 =

(
c1 log(c2/α)

log k

)l0−1

C

To make Cl0 ≤ log k it suffices to have

(
c1 log(c2/α)

log k

)l0−1

C ≤ log k

we get

l0 ≥
log C− log log k

log log k − log c1 − log log(c2/α)
+ 1 =

log C− log c1 − log log(c2/α)

log log k − log c1 − log log(c2/α)
.
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Thus it suffices to take

R = l0 + 2 =

⌈
log C− log c1 − log log(c2/α)

log log k − log c1 − log log(c2/α)

⌉
+ 2 ≤ (1 + o(1))

log C

log log k
+ 3. (4.1)

Recall that the beginning of round R is the end of round R − 1, thus at the end of round

R− 1 all but BadR ≤ 0.1αt of the honest players in AR get private random bits.

If AR+1 6= φ, then in round R, we run Protocol 4.3.23. As |AR| ≥ 3(1 + α)t and there can

be at most (1 + 0.1α)t players in AR that don’t send out a string yi that is ε′-close to uniform and

independent of each other, the concatenated string sj is ε′-close to a weak random source with min

entropy rate at least 2
3 and is independent of xj . Therefore by Theorem 3.5.7 zj is close to being

uniform and private.

Now there are at most (1 +α)(R− 1)t honest players in the first R− 1 rounds. In round R

there can be at most 0.1αt honest players in AR that don’t get private random bits. Therefore the

number of honest players that get private random bits is at least p− t− (1 + α)(R− 1)t− 0.1αt >

p− (1 + α)Rt. By Lemma 4.3.27 the error is at most ε+R2−k
Ω(1)

.

Note that R ≤ (1 + o(1)) logC
log log k + 3 and C = o(log n). Together with the fact k > log p =

Ω(log n) this implies that the error R2−k
Ω(1)

= 2−k
Ω(1)

.

Choose α = 0.03, we see (1 + α)R = 1.03((1 + o(1)) logC
log log k + 3) < 1.1( logC

log log k + 3), and

R < 1.1 logC
log log k + 3 for p large enough.

Therefore Protocol 4.3.24 is a (t, p − 1.1(3 + logC
log log k )t, ε + 2−k

Ω(1)
) synchronous extractor

that runs in at most 1.1 logC
log log k + 3 rounds.

By using the extractor in Theorem 3.5.9 and arithmetic manipulation of (4.1), we have the

following corollaries for special (n, k) sources, which tolerate a linear fraction of faulty players:

Corollary 4.3.28. For every constant α, δ > 0 and p large enough, there is a (t < p
2+α , p − (2 +

α)t, 2−k
Ω(1)

) synchronous extractor that runs in at most 2 rounds for k = nδ in the full-information

model.

Corollary 4.3.29. There exists a constant c > 0 such that for every constant α > 0 and p large

enough, there is a (p0.1 < t < p
3+α , p− (3 +α)t, 2−k

Ω(1)
) synchronous extractor that runs in at most

3 rounds for k ≥ 2c
√

logn in the full-information model.
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Corollary 4.3.30. For every constant α, δ > 0, there exists a constant c > 0 such that for p large

enough, there is a (p0.1 < t < δp
(1+α)(1+δ) , p− (1 + α)(1/δ + 1)t, 2−k

Ω(1)
) synchronous extractor that

runs in at most 1/δ + 1 rounds for k ≥ 2c logδ n in the full-information model.

Remark 4.3.31. Corollary 4.3.28 is just Theorem 4.3.3, which gives a synchronous extractor that

achieves a tolerance of roughly t < p/2 and guarantees p − 2t honest players end up with private

random bits for k ≥ nδ. If t = Θ(p), then the protocol runs in one round. Moreover, in this case

we don’t need t > p0.1 or n ≤ poly(p), since C is a constant.

Corollary 4.3.29 and Corollary 4.3.30 give synchronous extractors that run in constant

rounds and tolerate a linear fraction of faulty players, even for min-entropy as low as 2logδ n.

4.3.2 Asynchronous Network Extractors

In this section we discuss asynchronous network extractors. Recall that in an asynchronous

network the only guarantee is that a message sent will eventually be received. Thus to design net-

work extractors in an asynchronous full-information network is much harder than in a synchronous

full-information network. However, we manage to obtain only slightly weaker results in this case.

First we have the following protocol for weak sources with high min-entropy (k > n/2).

Protocol 4.3.32. For an asynchronous network

Player Inputs: Every player ui has xi ∈ {0, 1}n
Player Outputs: For some honest players uj , uj ends up with zj ∈ {0, 1}m.

Sub-Routines and Parameters:
Let Raz be the strong 2-sources extractor in Theorem 3.5.7.

Round 1 : Divide p players into 2 sets A and B, with |A| = 2t + 1, |B| = p − 2t − 1. Each
player ui does the following:

1. Every player ui ∈ A sends his random string xi to all players in B.

2. For every player uj ∈ B, uj waits to receive t+ 1 strings. Let yj be the concatenation
of all these strings. Compute zj = Raz(yj , xj).

Theorem 4.3.33 (High Entropy Asynchronous Extractor). As long as n ≥ log2 p, Protocol 4.3.32

is a (t < p/3, p − 3t − 1, 2−k
Ω(1)

) asynchronous extractor for min entropy k ≥ (1/2 + γ)n, where

γ > 0 is any constant.
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Proof. As |A| = 2t+ 1, every honest player uj in B will eventually receive t+ 1 strings from A. At

least one of these strings is from a honest player, thus yj has min-entropy k (the min-entropy can be

poly-logarithmic in the length of yj if n = polylog(p)). Note the random string xj has min-entropy

k ≥ (1/2 + γ)n. As long as n ≥ log2 p it’s easy to check that xj and yj satisfy the conditions

of Theorem 3.5.7. Thus zj = Raz(yj , xj) is 2−k
Ω(1)

-close to being uniform and independent of the

transcript. Moreover, there are at least |B| − t = p− 3t− 1 honest players in B.

Note that if we have a strong 2-source extractor for poly-logarithmic min-entropy, then

Protocol 4.3.32 actually works for small min-entropy. However currently the best known 2-source

extractor requires one source to have min-entropy rate > 1/2 if the other has only poly-logarithmic

min-entropy.

For smaller min-entropy, a simple protocol for asynchronous full-information network is

Protocol 4.3.34, which is a generalization of the protocol given in [GSV05].

Protocol 4.3.34. For an asynchronous network

Player Inputs: Every player ui has xi ∈ {0, 1}n
Player Outputs: For some players {uj}, uj ends up with zj ∈ {0, 1}m

Sub-Routines and Parameters:
Let IExt be a strong C source extractor with parameters n, k,m = k, ε as in Theorem 3.5.9.

Divide the players into p/C disjoint sets, S1, ...Sp/C, each of size C. For set Si, let the players in
that set be ui1, ...uiC.

Round 1 : For each set Si, i = 1, ..., p/C, each player uij in Si does the following:

1. If j 6= 1, send xij to ui1.

2. If j = 1, wait to receive C− 1 strings {xil, l 6= 1} from the other C− 1 players.

• If ui1 successfully receives C−1 strings {xil, l 6= 1}, compute zi1 = IExt(xi1, ..., xiC)
and send a message “complete” to all the other players {ul1, l 6= i}.
• If ui1 receives p/C− t “complete” from the players {ul1, l 6= i} before he receives

C − 1 strings {xil, l 6= 1}, then ui1 sends a “complete” to all the other players
{ul1, l 6= i} and aborts.

Theorem 4.3.35. Protocol 4.3.34 is a (t < p/(2C), (p/C− 2t), ε) asynchronous network extractor

for min-entropy k, where ε is the error of the extractor IExt.
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Proof. We say a set Si is “good” if there’s no faulty player in Si, and “bad” otherwise. If Si is

good, then ui1 will eventually receive C− 1 strings from the other players in Si, or he will receive

p/C− t “complete” messages before that. Either way, ui1 will end or abort and send a “complete”

to all uj1, j 6= i.

If Si is bad, then ui1 may never get all the C− 1 strings. However, eventually he’ll receive

p/C− t “complete” messages, as there are at least p/C− t good sets. Thus ui1’s procedure will also

end eventually. Therefore the whole protocol will eventually end.

Now consider the time the protocol ends. If no ui1 in a good set Si aborts, then every ui1

gets private random bits by computing zi1 = IExt(xi1, ..., xiC). The number of such ui1s is at least

p/C− t.

Otherwise, some ui1 in a good set Si aborts. Consider the logically first ui1 that aborts, he

aborts because he receives p/C−t “complete”s. At least p/C−2t of these “complete”s are from uj1s

in good sets, who don’t abort as ui1 is the first one that aborts. Therefore these uj1s have obtained

private random bits by computing zj1s. It follows Protocol 4.3.34 is a (t < p/(2C), (p/C − 2t), ε)

asynchronous network extractor for min-entropy k.

Note if we use the independent source extractor in Theorem 3.5.9, then for min-entropy

k = nβ we have C = O(1/β). Thus the tolerance of Protocol 4.3.34 depends on β, while in the

synchronous case for min-entropy k = nβ we can tolerate t < p/2 faulty players. A natural question

arises: can we use the same ideas in synchronous extractor to improve the asynchronous extractor?

A problem here is that in an asynchronous network the faulty players may not send out

their strings as expected, thus an honest player may wait forever, which causes the protocol to fail.

However, we manage to obtain similar results as the synchronous case, using additional ideas.

Specifically, we have the following theorem.

Theorem 4.3.36. There exists a constant c > 0 such that if log log logn
log log k = o(1) and poly(t) ≤ n ≤

exp(t), then for sufficiently large t there exists a (t, p − c log logn
log log k t, 2

−kΩ(1)
) asynchronous extractor

that runs in O(log log n/ log log k) rounds in the full-information model.

We also get the following corollaries:

Corollary 4.3.37. There exists a constant c > 0 such that for every constant δ > 0 and t large

enough, as long as t < p/c, there is a (t, p−ct, 2−kΩ(1)
) asynchronous extractor that runs in at most

2 rounds for k = nδ in the full-information model.
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Corollary 4.3.38. There exists a constant c > 0 such that if poly(t) ≤ n ≤ exp(t), then for every

constant δ > 0 and t large enough, as long as t < δp
c , there is a (t, p− ct/δ, 2−kΩ(1)

) asynchronous

extractor that runs in at most 1/δ + 1 rounds for k = 2logδ n in the full-information model.

To construct protocols for these theorems, we need some modifications to the ingredients

used in the synchronous protocol. First we need a modified AND-disperser:

Lemma 4.3.39. There exist global constants b, d > 0 and 0 < µ < 1 s.t. if D = o(logM), then for

sufficiently large M there exists an (N,M, bD, α, β) AND-disperser with the following properties:

1. α = b−1
b , M < N ≤MdbD and β > µbD.

2. For any subset W ⊂ [M ] with |W | = αM , let Q = {v ∈ [N ], |Γ(v)∩W | < D} and γ = |Q|/N ,

then γ < µbD

3 .

Proof. Similar as in the proof of Lemma 4.3.19, take a Ramanujan graph X on M vertices with

degree d0 as constructed in [LPS88]. Take all the random walks on X with length 2bD − 1 and

delete the walks with more than bD repeated vertices. Take the remaining walks to be vertices of

[N ] and for each vertex in [N ], connect it to the first bD distinct vertices in [M ].

Now β is the fraction of walks that stay in W and have at least bD distinct vertices. Let

µ1 = min{α, α+λM−1(1−α)}. By the same analysis as in Lemma 4.3.19, if we choose d0 = d0(α) =

d0(b) large enough, we can make β > 1
2µ

2bD
1 ≥ µbD for some constant 0 < µ = µ2

1/2
1
b = µ(b) < 1

and M < N < Md2bD−1
0 ≤MdbD, where d = d2

0.

Now for any vertex v ∈ [N ], if |Γ(v)∩W | < D, then the walk of length 2bD−1 corresponding

to v must have less than (b+ 1)D vertices in W . Let the random variable Y denote the number of

vertices in W for a random walk of length 2bD− 1, then EY = α2bD = 2(b− 1)D. By the chernoff

bound of random walks on expander graph [Gil98],

γ = Pr(Y < (b+ 1)D) ≤ Pr(|Y − EY | > (b− 3)D) ≤ 2−cbD

for some constant c > 0.

Now we have

µbD/γ > µbD/2−cbD = (µb2cb)D = (
1

2
(2cµ2

1)b)D
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Note µ1 = min{α, α+ λM−1(1− α)} and α = b−1
b goes to 1 as b goes to infinity. Thus for

a sufficiently large constant b we have 2cµ2
1 > 1 and 1

2(2cµ2
1)b > 3. Therefore (1

2(2cµ2
1)b)D > 3 and

γ < µbD

3 .

Another modification is that instead of using an m-expanding graph, we now need to use

an extractor graph. For convenience we need the following definition of an extractor.

Definition 4.3.40. Ext : [N ]× [D]→ [M ] is a (K, ε)-extractor if for every subset S ⊆ [N ] of size

K, |Ext(US , U[D])− U[M ]| ≤ ε, where UX denotes the uniform distribution on the set X.

Such an extractor can be viewed naturally as a bipartite graph Ext(N,M,D) where the left

vertex set is [N ], right vertex set is [M ] and every left vertex has degree D. It can be equivalently

viewed as a function Ext : {0, 1}n × {0, 1}d → {0, 1}m where n = logN, d = logD,m = logM that

works for min-entropy k = logK. We’ll use the graph version of Ext in the protocol.

Note that we don’t need a strong extractor here. However we need an extractor with large

output. For a (k, ε) extractor that uses d truly random bits and has output length m, what we

care about here is the entropy-loss defined by ∆ = k + d−m for an extractor and ∆ = k −m for

a strong extractor. Nonconstructively, one can show that, for any n and k ≤ n, there exist strong

extractors Extn,k : {0, 1}n×{0, 1}d → {0, 1}k−∆ with d = log(n−k)+2 log(1/ε)+O(1) and entropy

loss ∆ = 2 log(1/ε) +O(1)[RTS97].

Definition 4.3.41. An optimal strong extractor is a strong extractor Extn,k : {0, 1}n × {0, 1}d →
{0, 1}k−∆ with d = log(n− k) + 2 log(1/ε) +O(1) and entropy loss ∆ = 2 log(1/ε) +O(1).

We have the following lemma:

Lemma 4.3.42. Assume we can explicitly construct optimal strong extractors, then for any N >

K > 0 and M > 0, there is a polynomial time computable (K, ε) extractor Ext : [N ] × [D] → [M ]

with D = O( M
Kε2

polylogN).

Proof. First construct the strong extractor Exts : {0, 1}n×{0, 1}d → {0, 1}k−∆ with d = O(log n)+

2 log(1/ε)+O(1) and entropy loss ∆ = 2 log(1/ε)+O(1), where n = logN and k = logK. This gives

us output lengthm = k−∆. We want the output length to be logM , thus we need another logM−m
bits. Notice Exts is a strong extractor, thus we can add the bits of the seed to the output while still

keeping the error ε. We’ll add bits of the seed to the output until the output length is logM . If
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m+d < logM , then we add another logM−m−d random bits to both the seed and the output, i.e.,

Ext(x, y ◦ z) = Exts(x, y)◦ y ◦ z. Here y is the seed of length d and z is the additional logM −m−d
random bits. The new seed length in this case will be d = logM −m = logM − logK + ∆. Thus

D = 2d = max{O( 1
ε2

polylogN), O( M
Kε2

)} = O( M
Kε2

polylogN). Now Ext : [N ] × [D] → [M ] is a

(K, ε)-extractor with D = O( M
Kε2

polylogN).

In fact currently we don’t have an explicit construction of the optimal strong extractor.

Currently the best known explicit extractor that achieves optimal entropy loss requires the seed

length to increase by a poly-logarithmic factor:

Theorem 4.3.43. [RRV99] For every n, k ∈ N , and ε > 0 such that k ≤ n, there are explicit

strong (k, ε)-extractors Ext : {0, 1}n × {0, 1}d → {0, 1}k−∆ with entropy loss ∆ = 2 log(1/ε) +O(1)

and d = O(log2 n log(1/ε) log k).

Using this extractor, we get slightly weaker results. Note d = O(log3 n log(1/ε)). Thus in

the graph representation the left degree will be D = 2d = 2O((log logN)3 log(1/ε)). As a result, we will

not be able to handle min-entropy as low as k = polylog(n). However, when the min-entropy is

larger, we’ll be able to improve the number of honest players who end up with private random bits.

The following proposition is well known.

Proposition 4.3.44. Let Ext(N,M,D) be a bipartite graph with left vertex set [N ], right vertex

set [M ] and left degree D. For any subset S ⊂ [M ], let BadS = {u ∈ [N ], | |Γ(u)∩S|
D − |S|M | > ε}. If

Ext is a (K, ε) extractor, then |BadS | ≤ K.

4.3.2.1 High-Level Ideas of the Asynchronous Extractor

We now outline the high-level ideas of the asynchronous extractor. In the highest level the

asynchronous extractor does the same thing as the synchronous extractor. The goal is to have the

number of independent sources needed decrease in each round by a factor of roughly log k, with

the help of somewhere random source of fewer and fewer rows and the extractor in Theorem 3.5.10.

Once the number of independent sources needed decreases to 1, a player can extract random bits

using the SR-source and his own weak source2. However, additional ideas are needed to ensure

that this can work:

2In some cases the number of independent sources needed cannot decrease to 1, but it will decrease to a constant.
In this case we’ll use Protocol 4.3.34
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Idea 1 : In one round of the protocol, where players in A send their strings to players in B, we

can no longer put only (1 + α)t players in A. Otherwise there could be a majority of faulty

players in A and the players in B could wait forever or receive strings only from faulty players.

Similarly we can no longer only use tuples of size C, as if there’s only one faulty player in a

tuple, then a player in B will never receive that tuple. Therefore, we need to increase the size

of A and the size of the tuple.

Idea 2 : The AND-disperser in Lemma 4.3.39 deals with the above problem. More specifically,

consider tuples of size bC for some constant b. Let the total number of such tuples be s1, the

number of tuples that have less than C honest players be t1 and the number of tuples that

consist of all honest players be h1. Lemma 4.3.39 shows that for a large enough b, h1 > t1.

Now imagine we have the players in B wait to receive C strings from a tuple, and receive

such strings from s1− t1 tuples. The key observation is that every player in B will eventually

receive so many strings, and at least one tuple that sends the strings consists of all honest

players. This is because every tuple that consists of at least C honest players will eventually

send out C strings, and the number of such tuples is s1 − t1. Also h1 > t1 so at least one

of the tuples must consist of all honest players. Now the players in B can compute a valid

somewhere random source.

Idea 3 : One problem with the above idea is that the number s1− t1 is too large, which will cause

the number of rows of the SR-source to be too large. Recall in the synchronous extractor we

use an m-expanding graph to reduce this number, here instead we use an extractor graph.

This is because an extractor graph roughly keeps the right fraction of “good” and “bad”

tuples in the neighbors for most vertices, so that the argument in Idea2 can still work.

Idea 4 : The use of extractor graph will leave us a small fraction of honest players in B that don’t

have the nice property discussed above. These players could wait forever in the protocol. To

deal with this we use the same idea as in Protocol 4.3.34, where the players send “Complete”

messages to each other. This will only increase the fraction of unlucky players by a little bit.

4.3.2.2 Asynchronous Network Extractor Protocol

Now we describe our asynchronous network extractor. First we need the following sub

protocols:
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Protocol 4.3.45. For an asynchronous one round network

Player Inputs: There are two sets of players, A and B. Each player ui ∈ A has a string
xi ∈ {0, 1}n and an optional r1 × k somewhere random string yi ∈ {0, 1}r1k.
Player Outputs: For every player uj ∈ B, uj ends up with a supposed r2 × k somewhere
random string yj ∈ {0, 1}r2k.

Sub-Routines and Parameters:

• Let IExt be the C source extractor as in Assumption 4.3.16. Let SRIExt be the Somewhere
Random source vs. independent source extractor as in Theorem 3.5.10.

• |A| = 3bt where b is the constant promised to exist in Lemma 4.3.39. |B| = at where a is
another constant.

• If this is the first round of the whole protocol, let D = C be the number of (n, k) sources IExt
needs. Otherwise let D = O( log r1

log k ) be the number of independent sources SRIExt needs,
when the somewhere random source has r1 rows. Construct an (N,M = |A|, bD, α =
b−1
b , β) AND-disperser G with N ≤MdbD, β ≥ µbD as in Lemma 4.3.39.

• Construct a (K, ε0) extractor graph Ext : [N1] × [D1] → [M1] of Lemma 4.3.42 with

N1 = |B|,M1 = N,K = t/2bD, ε0 = µbD

3 . Let D2 = (1 − 2ε0)D1 + 1. Identify each player
in A with a vertex in [M ] and identify each player in B with a vertex in [N1]. Identify
[M1] with [N ].

Round 1 :

1. Every player ui ∈ A sends his string xi and his somewhere random string yi(if ui has
such a string) to all the players in B.

2. For every player vj ∈ B, his corresponding vertex in [N1] has D1 neighbors in [M1]:
wj1, ..., wjD1 . Each of these neighbors wjq in turn has bD neighbors in [M ]. Let the
bD neighbors be uq1, ..., uqbD and we call (uq1, ..., uqbD) a tuple. Thus each vj ∈ B is
connected to D1 tuples. For each of these tuples, vj waits to receive D strings sent
from that tuple. Without loss of generality assume for tuple (q1, q2, ..., qbD) the first
D strings received are xq1, ..., xqD and q1 < q2 < ... < qD.

• If this is the first round of the whole protocol, compute sjq =
IExt(xq1, xq2, ..., xqD). Otherwise compute sjq = SRIExt(xq1, xq2, ..., xqD, yq1).

• If vj successfully computes D2 sjqs, let yj be the concatenation of these sjqs, send
“Complete” to all the other players in B and end.

• If vj receives |B| − t− 2K “Complete” before he computes D2 sjqs, send “Com-
plete” to all the other players in B, let yj be any arbitrary string and abort.
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Protocol 4.3.46. For an asynchronous one round network

Player Inputs: There are two sets of players, A and B. Every player ui ∈ A has private
random bits zi ∈ {0, 1}k.
Player Outputs: For every honest player uj ∈ B, uj ends up with private random bits zj ∈
{0, 1}m, while every honest player ui ∈ A still has 0.9k private random bits left.

Sub-Routines and Parameters:

• Let Raz be the strong 2-sources extractor in Theorem 3.5.7.

• |A| ≥ 10t.

Round 1 :

1. Every player ui ∈ A takes 0.1 fraction of his private random bits zi, let the fraction
be yi and sends yi to all the players in B.

2. For every player uj ∈ B, uj waits to receive 7t yis. Let sj be the concatenation of all
the yis. Compute zj = Raz(sj , xj).

The asynchronous network extractor is described as Protocol 4.3.47.
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Protocol 4.3.47. For an asynchronous network

Player Inputs: Every player ui has a weak random string xi ∈ {0, 1}n.
Player Outputs: For some players uj , uj ends up with private random bits zj ∈ {0, 1}m

Sub-Routines and Parameters:

• Protocol 4.3.45, Protocol 4.3.46 and Protocol 4.3.34.

• BasicExt is the extractor in Theorem 3.5.11.

• SRIExt is the Somewhere Random vs Independent Source extractor in Theorem 3.5.10.

• b is the constant promised to exist by Lemma 4.3.39.

• R is given as the number of rounds of the protocol.

Divide p players into R disjoint sets A1, ..., AR. |A1| = |A2| = ... = |AR−1| = 3bt.

OP :AR is the set of remaining players.

NOP :|AR| = min{p− 3b(R− 1)t, 10t}. AR+1 is the set of remaining players. It’s possible that
AR+1 = Φ.

Round l, l = 1, ..., R− 1 : Run Protocol 4.3.45 with A = Al, B = Al+1. In round 1, players in
A don’t have the optional somewhere random string yi. In subsequent rounds, players in
A have the somewhere random string yi obtained by the end of the previous round.

OP, Round R, the last Round : Run Protocol 4.3.34 on AR with SRIExt as the extractor.

NOP, Round R− 1 : At the end of round R − 1, player uj in AR obtains private random
bits by computing zj = BasicExt(xj , yj). Here xj is uj ’s weak random string, yj is the
somewhere random string obtained by the end of the previous round.

NOP, Last Round : If AR+1 6= Φ, run Protocol 4.3.46 with A = AR, B = AR+1.

Remark 4.3.48. In the above protocol OP stands for the step when we use the optimal seeded

extractor as in Definition 4.3.41, NOP stands for the step when we use the non-optimal seeded

extractor as in Theorem 4.3.43.
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4.3.3 Proof of the Theorems

We prove the following theorem about asynchronous extractor:

Theorem 4.3.49. Assume we have explicit construction of the optimal seeded extractor in Defini-

tion 4.3.41. There exist constants c1, c2 > 0 such that if k > log p and n ≤ poly(p) then as long as

t > p0.1, for sufficiently large p, there exists a (t, p/c1 − c2( logC
log log k + 1)t, ε+ 2−k

Ω(1)
) asynchronous

extractor that runs in at most 1.1 logC
log log k + 2 rounds in the full-information model. Here ε is the error

of the extractor in Assumption 4.3.16.

Remark 4.3.50. The parameter p0.1 can be replaced by pδ for any constant δ > 0 and the constant

1.1 can be replaced by 1 + α for any constant α > 0.

To prove this theorem we need the following lemma, which is similar to Lemma 4.3.27 for

the synchronous extractor.

Lemma 4.3.51. Let Cl be the number of independent (n, k) sources needed for IExt or SRIExt in

round l of the asynchronous extractor. Define Badl to be the number of honest players in Al that

don’t have a valid somewhere random string for l ≥ 2 and let Bad1 = 0. Assume we use the optimal

seeded extractor in Definition 4.3.41 in the protocol. There exist a constant c0 > 0 such that the

following claims hold.

1. ∀l, Badl ≤ 2t and Cl = o(log n)

2. If Cl > log k, then Cl+1 ≤ c0
log kCl

3. If Cl ≤ log k, then Cl+1 is a constant C ≤ c0

Proof. Similar as in Lemma 4.3.27, we prove 1 by induction. For l = 1, the number of independent

(n, k) sources needed for IExt is C1 = O( logn
log k ) = o(log n) by Theorem 3.5.9. Also Bad1 = 0 < 2t.

Let b be the constant promised to exist by Lemma 4.3.39. Now assume for round l, Cl =

o(log n) and Badl ≤ 2t. Note bCl = o(log n) = o(log t) as n = O(poly(p)) and t > p0.1. Let Ul

denote the subset of honest players in Al that have a valid somewhere random source for l ≥ 2, and

the subset of honest players in Al for l = 1, then |Ul| ≥ 3bt− t−Badl ≥ 3(b− 1)t. Thus |Ul||Al| ≥
b−1
b ,

which means the honest players consist of a large fraction of the players.

Consider Protocol 4.3.45 for round l. An AND-disperser G = (N,M, bD, α, β) is constructed

with M = |Al| = 3bt,D = Cl, α = b−1
b . By Lemma 4.3.39, N ≤ MdbD = MdbCl for some constant
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d, and there exists a subset V ⊂ [N ] with |V | = βN > µbDN s.t. Γ(V ) ⊂ Ul. V is the set of “good”

tuples that consist of all honest players (note |V | > 0 as D = o(logN)).

Let W = {v ∈ [N ], |Γ(v) ∩ Ul| < D} and γ = |W |/N , then β > µbD = 3ε0 > 3γ. W is the

set of “bad” tuples that consist of less tha D = Cl honest players.

Now consider the extractor Ext : [N1] × [D1] → [M1]. As M1 = N and we identify the

vertices in [M1] and [N ], we can equivalently view V and W as subsets of [M1]. Let S1 = {v ∈
[N1], |Γ(v)∩V |

D1
≤ β − ε0}, S2 = {v ∈ [N1], |Γ(v)∩W |

D1
≥ γ + ε0} and S0 = [N1]/(S1 ∪ S2). S0 is

the set of players in B that have roughly the right fraction of “good” and “bad” tuples in the

neighbors. As Ext is a (K, ε0) extractor, by Proposition 4.3.44 |S1| ≤ K and |S2| ≤ K. Therefore

|S0| ≥ N1 − 2K = |B| − 2K.

For each honest player uj ∈ S0, |Γ(uj) ∩ V | > (β1 − ε0)D1 and |Γ(uj) ∩W | < (γ + ε0)D1.

Thus uj has at least (1 − γ − ε0)D1 + 1 > (1 − 2ε0)D1 + 1 = D2 neighbors in [M1]/W . Each of

these neighbors corresponds to a tuple of size bD that consists of at least D honest players. For

each of these tuples, uj will eventually receive D strings. Thus uj will receive D strings from D2

tuples eventually. Also, as D2 = (1 − 2ε0)D1 + 1 > (1 − (β − ε0))D1 + 1, at least one of these D2

tuples must be in V and thus consists of all honest players. The strings sent from this tuple and

received by uj are all from honest players. Therefore if uj finishes computing the D2 sjqs, then at

least one of them is close to uniform and thus uj obtains a valid somewhere random string yj . We

have at least |S0| − t = |B| − t− 2K such honest players, therefore eventually every player uj in B

will finish computing yj or receive |B| − t− 2K “complete” and abort. Thus the protocol for any

round will eventually end.

Now if no player aborts then all honest players obtain valid somewhere random strings.

Otherwise consider the first honest player who aborts, he aborts because he receives |B| − t− 2K

“complete”. Let the number of faulty players in B be tB, then at least |B|− t−2K− tB “complete”

are from honest players that don’t abort. Thus at least |B| − t − 2K − tB honest players obtain

valid somewhere random strings. As K = t/2bD ≤ t/2, Badl+1 ≤ t+2K ≤ 2t. Therefore Badl ≤ 2t

holds for all l.

Now consider the number of independent (n, k) sources needed for a player in round l + 1.

The somewhere random string yj obtained by player uj ∈ Al+1 at the end of round l is of size D2×k,

where D2 = (1 − 2ε0)D1 ≤ D1. By Lemma 4.3.42, D1 = O( M1

Kε20
polylogN1) = 2O(D)polylog(t).

Therefore by Theorem 3.5.10 the number of independent (n, k) sources needed in round l + 1 is

Cl+1 = O(
logD2

log k
) = O(

D

log k
+

log log t

log k
) ≤ c1(

Cl
log k

+ 1)

73



for some constant c1 > 0 as k > log p > log t.

Now it’s clear that as long as Cl = ω(1), Cl+1 < Cl. As C1 = o(log n) we have Cl = o(log n)

for all l. Thus claim 1 holds.

Let c0 = 2c1. If Cl ≤ log k, then Cl+1 ≤ c1( Cl
log k + 1) ≤ c0 is a constant. Therefore claim 3

holds.

If Cl > log k, then Cl
log k > 1 and thus

Cl+1 ≤ c1(
Cl

log k
+ 1) ≤ 2c1(

Cl
log k

) ≤ c0

log k
Cl.

Thus claim 2 holds.

Proof of Theorem 4.3.49. Run Protocol 4.3.47 with round number R to be chosen later. Let Cl
be the number of independent (n, k) sources needed in round l. By Lemma 4.3.51, there exists

a constant c0 > 0 such that if Cl ≥ log k, then Cl+1 ≤ c0
log kCl. Consider the first round l0 when

Cl0 ≤ log k. Let R = l0, by Lemma 4.3.51 CR+1 will be a constant C ≤ c0. In round R + 1 we

run Protocol 4.3.34 on AR+1 where each ui1 ∈ AR+1 waits to receive C − 1 strings from the other

players and compute zi1 = SRIExt(xi1, xi2, ..., xiC , yi1). By the same analysis in Theorem 4.3.35, at

least |AR|/C −BadR − t ≥ |AR|/c0 − 3t honest players end up with private random bits.

By the recursion Cl+1 ≤ c0
log kCl we get

Cl0 ≤
(

c0

log k

)l0−1

C1 =

(
c0

log k

)l0−1

C

To ensure Cl0 ≤ log k it suffices to have(
c0

log k

)l0−1

C ≤ log k.

we get

l0 ≥
log C− log log k

log log k − log c0
+ 1 =

log C− log c0

log log k − log c0

Thus it suffices to take
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R =

⌈
log C− log c0

log log k − log c0

⌉
≤ (1 + o(1))

log C

log log k
+ 1.

Now |AR+1| = p − 3bRt, therefore the number of honest players that get private random

bits is at least |AR+1|/c0 − 3t = p/c0 − 3(bR/c0 + 1)t. In each round when we apply the extractor,

the error will increase by 2−k
Ω(1)

, thus the total error is at most ε+R2−k
Ω(1)

.

Note that R ≤ (1 + o(1)) logC
log log k + 1. Thus for p large enough R < 1.1 logC

log log k + 1. Together

with the fact C = o(log n) and k > log p = Ω(log n) this implies that the error R2−k
Ω(1)

= 2−k
Ω(1)

.

Choose c1 = c0, c2 = 3(1.1b/c0 + 1), we have that Protocol 4.3.47 is a (t, p/c1− c2( logC
log log k +

1)t, ε+2−k
Ω(1)

) asynchronous extractor that runs in at most 1.1 logC
log log k+2 rounds in the full-information

model.

If we use the extractor in Theorem 4.3.43, then we get the following theorem:

Theorem 4.3.52. There exists a constant c1 > 0 such that if log log logn
log log k = o(1) and n = poly(p),

then as long as t > p0.1, for sufficiently large p there exists a (t, p − c1( logC
log log k + 1)t, ε + 2−k

Ω(1)
)

asynchronous extractor that runs in at most 1.1 logC
log log k + 2 rounds in the full-information model. Here

ε is the error of the extractor in Assumption 4.3.16.

Remark 4.3.53. The parameter p0.1 can be replaced by pδ for any constant δ > 0 and the constant

1.1 can be replaced by 1 + α for any constant α > 0.

Proof. [Proof Sketch] Run Protocol 4.3.47 with round number R to be chosen later. Now basically

repeat the proof of Lemma 4.3.51 and Theorem 4.3.49. Let Badl be the number of honest players in

Al that don’t have a valid independent somewhere random source for l ≥ 2, and define Bad1 = 0.

Let Cl be the number of independent (n, k) sources needed for a player in round l. Again by

induction we can show that ∀l, Badl ≤ 2t. What is different now is the relation between Cl+1 and

Cl.

Consider the (K, ε0) extractor graph Ext : [N1]× [D1]→ [M1] constructed in the protocol.

Similar as in Lemma 4.3.42, we have

D1 = max{M1

Kε20
, 2O((log logN1)3 log(1/ε0))}.

Note M1

Kε20
= 2O(D) and O((log logN1)3 log(1/ε0)) = O(D(log log t)3). Thus
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D1 = 2O(D(log log t)3) ≤ 2O(Cl(log log p)3) = 2O(Cl(log logn)3).

The last equality follows because n = poly(p). Thus

Cl+1 = O(
logD1

log k
) ≤ O(

Cl(log log n)3

log k
) ≤ c0(log log n)3

log k
Cl

for some constant c0 > 0.

Therefore

Cl ≤
cl−1

0 (log log n)3(l−1)

logl−1 k
C.

If log log logn
log log k = o(1), then log k > c0(log log n)3 and Cl will eventually decrease to 1. Let l0

be the first round where Cl0 ≤ 1 and R = l0− 1, then by the end of round R all but BadR+1 of the

honest players in AR+1 obtain private random bits by computing zj = BasicExt(xj , yj).

Let

cl0−1
0 (log log n)3(l0−1)

logl0−1 k
C ≤ 1

We get

l0 ≥
log C

log log k − 3 log log log n− log c0
+ 1

Thus it suffices to take

R =

⌈
log C

log log k − 3 log log log n− log c0

⌉
≤ (1 + o(1))

log C

log log k
+ 1.

The equality follows because log log logn
log log k = o(1).

If AR+2 6= φ, then in round R+1, we run Protocol 4.3.46 with A = AR+1 and B = AR+2. As

|AR+1| ≥ 10t and BadR+1 ≤ 2t, every player in AR+2 will eventually receive |AR+1|−BadR+1− t ≥
7t strings. Among these strings at most BadR+1+t ≤ 3t are not ε′ close to uniform and independent

of each other. Thus the concatenated string sj is ε′ close to have min entropy rate at least 4
7 and
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independent of xj . Therefore by Theorem 3.5.7 zj = Raz(sj , xj) is 2−k
Ω(1)

close to uniform and

independent of the transcript so far.

Now there are at most 3bRt honest players in the first R rounds. In round R+ 1 there can

be at most BadR+1 ≤ 2t honest players that don’t get private random bits. Therefore the number

of honest players that get private random bits is at least p − t − 3bRt − 2t = p − (3bR + 3)t. In

each round when we apply the extractor, the error increases by 2−k
Ω(1)

, thus the total error is at

most ε+R2−k
Ω(1)

.

Note that R ≤ (1+o(1)) logC
log log k +1. Thus for p large enough R < 1.1 logC

log log k +1. Together with

the fact C = o(log n) and log log log n = o(log log k) this implies that the error R2−k
Ω(1)

= 2−k
Ω(1)

.

Choose c1 = 3(1.1b + 1), we have Protocol 4.3.47 is a (t, p − c1( logC
log log k + 1)t, ε + 2−k

Ω(1)
)

asynchronous extractor that runs in at most 1.1 logC
log log k + 2 rounds in the full-information model.

Using the extractor in Theorem 3.5.9 where C = O( logn
log k ), the above theorem gives the

following theorem about (n, k) sources, and corollaries which tolerate a linear fraction of faulty

players.

Theorem 4.3.54. There exists a constant c > 0 such that if log log logn
log log k = o(1) and n = poly(p),

then as long as t > p0.1, for sufficiently large p there exists a (t, p− c log logn
log log k t, 2

−kΩ(1)
) asynchronous

extractor that runs in O(log log n/ log log k) rounds in the full-information model.

Corollary 4.3.55. There exists a constant c > 0 such that for every constant δ > 0 and p large

enough, there is a (t < p
c , p− ct, 2

−kΩ(1)
) asynchronous extractor that runs in at most 2 rounds for

k = nδ in the full-information model.

Corollary 4.3.56. There exists a constant c > 0 such that if n = poly(p), then for every constant

δ > 0 and p large enough, there is a (p0.1 < t < δp
c , p − ct/δ, 2

−kΩ(1)
) asynchronous extractor that

runs in at most 1/δ + 1 rounds for k = 2logδ n in the full-information model.

Remark 4.3.57. The asynchronous network extractor tolerates a linear fraction of faulty players

and guarantees a linear fraction of honest players end up with private random bits, even for min-

entropy roughly as small as k = 2logδ n.

In the case k = nδ, we don’t need t > p0.1 and we can deal with n ≥ poly(p), since C is a

constant. Moreover if t = Θ(p), then the protocol runs in one round.
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4.4 Applications in Distributed Computing

In this section we use our network extractors to get new protocols for Byzantine agreement,

leader election and collective coin flipping using weak random sources.

4.4.1 Collective Coin-Flipping and Leader Election

We use the following theorem as a black box.

Theorem 4.4.1 ([RZ01, Fei99]). For every β < 1/2, there exists a polynomial time computable

log∗ p + O(1) round protocol for leader election tolerating t ≤ βp faulty players, as long as each

player has O(log p) truly random bits, in the full-information model with a broadcast channel.

Given this theorem, the obvious protocol in the case that each player only has access to a

weak random source is to first run a network extractor and then run the protocol for leader election

assuming that each player has access to truly random bits. We can do slightly better than this by

observing that our network extractor for low entropy sources (Theorem 4.3.3) actually separates

the players into two sets, and guarantees that at most roughly t of the players in a set of size

roughly p− t don’t have access to private randomness.

Theorem 4.4.2 (Leader Election for Low Entropy). Let α, γ > 0 be any constants. There exists

a constant β > 0 such that if each player has access to a (n, nγ) source, with γβ log n > log log p

and p is large enough, there exists a polynomial time computable synchronous log∗ p+O(1) round

protocol for Leader Election tolerating (1/3− α)p faulty players in the full information model.

Proof Sketch. Let t = δp and let 1/3 > γ > δ be a constant very close to δ. We start by running

Protocol 4.3.10 on the players. This leaves us with a set of players of size 1− γp, of which at most

γp players have access to bits which are p2−k
Ω(1)

close to being truly random. Since we can choose

β in the theorem, we can make this error an arbitrarily small constant.

Since γ < 1/3, this set of players has a γ
1−γ < 1/2 fraction of faulty players. The rest of the

players have randomness that is close to being private and uniform.

We then run the protocol promised by Theorem 4.4.1 on this set to elect a leader.

In the case that we have access to sources of randomness with min-entropy rate greater than

1/2 or access to block sources with 2 blocks each, we can use our much better network extractors

for these situations to get results that match the best results for the case that each player has

access to truly random bits.
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When the min-entropy is even smaller, we can use the network extractor from Theorem 4.3.4

and its corollaries (Corollary 4.3.29, Corollary 4.3.30) to get the following theorems.

Theorem 4.4.3. There exists a constant c > 0 such that for any constant α > 0 and p large

enough, there exists a polynomial time computable log∗ p+O(1) rounds protocol for Leader Election

tolerating t ≤ (1/4 − α)p faulty players in the full information model, assuming each player has a

weak source with min-entropy k ≥ 2c
√

logn.

Theorem 4.4.4. For all constants α, δ > 0, there exists a constant c > 0 such that for sufficiently

large p there exists a polynomial time computable log∗ p+O(1) rounds protocol for Leader Election

tolerating t ≤ (1/(2 + 1/δ)−α)p faulty players in the full information model, assuming each player

has a weak source with min-entropy k ≥ 2c logδ n.

4.4.2 Byzantine Agreement

First we state the best protocols that are available for the case of Byzantine agreement when

each player has access to truly random bits. For synchronous networks, the following theorem is

available:

Theorem 4.4.5 ([GPV06]). For every β < 1/3 − ε, there exists a O( log p
ε2

) round protocol for

Byzantine agreement in a synchronous network tolerating βp Byzantine faults in the full information

model.

In the case of asynchronous networks, we have the following theorem:

Theorem 4.4.6 ([KKK+08]). For any constants ε, c > 0 there exists an expected polylog(p) round

protocol for Byzantine agreement in an asynchronous full-information network tolerating t < p
6+ε

faulty players with success probability 1− 1/ lnc n.

Now we discuss how to achieve Byzantine agreement when each player only has access to

weak sources. We observe that for Byzantine agreement, it suffices that more than 2p/3 of the

players achieve consensus. Once we have a protocol that guarantees this, we can easily guarantee

that all non-faulty players share the consensus, simply by taking a majority vote among the first

d2p
3 e votes received.

Theorem 4.4.7 (Synchronous Byzantine Agreement for Low Entropy). Let α, γ > 0 be any con-

stants. There exists a constant β > 0 such that if each player has access to a (n, nγ) source, with

γβ log n > log log p and p is large enough, there exists a polynomial time computable synchronous
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O(log p) expected round protocol for Byzantine Agreement tolerating (1/4 − α)p faulty players in

the full information model.

Proof Sketch. Let t = δp and let 1/4 > γ > δ be a constant very close to δ. We start by running

Protocol 4.3.10 on the players. This leaves us with a set of players of size (1 − γ)p, of which at

most γp players don’t have access to bits which are p2−k
Ω(1)

close to being truly random. Since we

can choose β in the theorem, we can make this error an arbitrarily small constant.

Since γ < 1/4, this set of players has a γ
1−γ < 1/3 fraction of faulty players. The rest have

randomness that is close to being private and uniform.

We then run the protocol promised by Theorem 4.4.5 on this set. This guarantees that we

achieve consensus on this set. Finally, we have one more round where every player in this special

set transmits their agreed value to the rest of the players. Everybody takes a majority vote to

decide on their final value. Since at most 1/3 of the players in the set transmit a value that is not

the consensus value, we terminate with a consensus for every non-faulty player.

As before, in the case that the players have access to sources with min-entropy rate greater

than half, or block sources with two blocks, we use our network extractors to obtain protocols that

are as good as the best protocols when the players have access to truly random bits.

When the min-entropy is even smaller, we can use the network extractor from Theorem 4.3.4

and its corollaries (Corollary 4.3.29, Corollary 4.3.30) to get the following theorems.

Theorem 4.4.8. There exists a constant c > 0 such that for any constant α > 0 and p large enough,

there exists an expected O(log p) rounds Byzantine Agreement protocol tolerating t ≤ (1/5 − α)p

faulty players in the synchronous full information model, assuming each player has a weak source

with min-entropy k ≥ 2c
√

logn.

Theorem 4.4.9. For all constants α, δ > 0, there exists a constant c > 0 such that for p large

enough there exists an expected O(log p) rounds Byzantine Agreement protocol tolerating t ≤ (1/(3+

1/δ) − α)p faulty players in the synchronous full information model, assuming each player has a

weak source with min-entropy k ≥ 2c logδ n.

For asynchronous Byzantine Agreement, we have the following theorems:

Theorem 4.4.10 (Asynchronous Byzantine Agreement for High Entropy). For any constant ε > 0

there exists an expected polylog(p) rounds Byzantine Agreement protocol tolerating t < p
8+ε faulty

players in the asynchronous full information model, assuming each player has a weak source with

min-entropy k ≥ (1/2 + γ)n for some constant γ > 0.
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Proof Sketch. First run Protocol 4.3.32, then apply the protocol in Theorem 4.4.6 on set B. Note

|B| = p − 2t − 1 ≥ (6 + ε)t while all the honest players in B obtain private random bits that are

2−k
Ω(1)

to uniform by Theorem 4.3.33. There can be at most t faulty players in B. Thus BA can

be achieved on B in expected polylog(p) rounds. We then have one more round where each player

in B sends his agreed value to all players in A, and every player in A waits to receive 2t+ 1 values

and takes the majority vote as his value. Note as B has at least 2t+ 1 honest players every player

in A will eventually receive 2t + 1 values, of which at most t are faulty. Thus by taking majority

vote every player in A will also agree to the correct value.

For polynomially small min-entropy, we have the following theorem:

Theorem 4.4.11. There exists a constant 0 < α < 1 such that for every constant δ > 0 and p

large enough, there exists an expected polylog(p) rounds Byzantine Agreement protocol tolerating

t ≤ αp faulty players in the asynchronous full information model, assuming each player has a weak

source with min-entropy k ≥ nδ.

proof sketch. First run Protocol 4.3.47. By Corollary 4.3.55 there is a constant c > 0 such that

at least p − ct honest players end up with private random bits. Take α = 1/7c, then as long

as t ≤ αp we have p − ct ≥ 6p/7 > 5p/6. Thus we can run the protocol in Theorem 4.4.6 to

achieve BA in p − ct honest players in expected polylog(p) rounds. Now we do the same thing as

in Theorem 4.4.10, use one more round to achieve BA in all the honest players.

Similarly we have the following theorem:

Theorem 4.4.12. There exists a constant 0 < α < 1 such that for every constant β > 0 and p

large enough, there exists an expected polylog(p) rounds Byzantine Agreement protocol tolerating

t ≤ αβp faulty players in the asynchronous full information model, assuming each player has a

weak source with min-entropy k ≥ 2logβ n.
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Chapter 5

Cryptography with General Weak Random Sources

In this chapter we study the problem of using general weak random sources in cryptography.

This kind of questions have been considered by quite a few researchers [MW97b, DS02, DO03,

DOPS04, CPS07]. Dodis et al. [DS02, DOPS04] showed how to make interactive proofs sound with

respect to weak sources, and showed how to build secure signatures under some strong assumptions.

Canetti et al. [CPS07] showed how to obtain universally composable (UC) security, under the

assumption that there exists a common reference string (CRS), which is a samplable high min-

entropy source.

The negative results have been more impressive. Dodis et al. [DOPS04] showed that almost

all of the classic cryptographic tasks, including encryption, bit commitment, secret sharing, and

secure two-party computation (for nontrivial functions), are impossible even with an (n, 0.9n)-

source. Given these negative results, we seek to provide some positive results on the problem of

secure multi-party computation where each party only has access to a general weak random source.

The point here is that we now have more than one general weak random source, so we can indeed

do something non-trivial.

As briefly described in the introduction, we attack this problem by building network extrac-

tor in the computational setting. In this setting we assume that the adversary is computationally

bounded, i.e., it is a polynomial time Turing machine or a polynomial sized circuit. Thus, we also

only require that the output distribution of the honest processors to be indistinguishable from being

private and uniform. Below we give the formal definition of a computational network extractors.

Here we assume that all the processors involved (honest and faulty) are computationally

bounded (i.e., run in time poly(n), where n is the length of the weak random sources), and the

outputs need only be computationally (rather than statistically) indistinguishable from uniform.

We restrict our attention to the synchronous setting.

Definition 5.0.13 (Computational Network Extractor). A protocol for p processors is a (t, g)

computational network extractor for min-entropy k if for any min-entropy k independent sources
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X1, . . . , Xp over {0, 1}n and any choice of t faulty processors, with probability 1 − negl(n), after

running the protocol there are g honest processors G = {i1, . . . , ig} such that

{(B, (Xi)i 6∈G , (Zi)i∈G}n∈N ≈ {B, (Xi)i 6∈G , Ugm}n∈N

where Ugm is the uniform distribution on gm bits, independent of B and (Xi)i 6∈G , and where ≈
denotes computational indistinguishability.

Like most cryptographic constructions, our constructions of computational network extrac-

tors rely on some computational assumptions. However, in this case, we show that we can achieve

better results than network extractors in the information theoretic setting–most, or even all, honest

processors get private randomness, even for weak random sources with low min-entropy.

Our first result shows that if trapdoor permutations exist, then there exists a computa-

tional network extractor for sources with min-entropy k = nΩ(1), in which almost every non-faulty

processor ends up with a (computationally) private random string.

Theorem 5.0.14. Assume that trapdoor permutations exist. Then for every α, β, γ, δ > 0 there

exists a constant 0 < c < 1 (that depends only on β) such that for every nδ ≤ p ≤ kc there exists a

(t = γp, p−(1+α)t) computational network extractor for min-entropy k ≥ nβ in the full information

model.

Next, we show that under a stronger assumption, we can actually construct computational

network extractors where all of the honest processors end up with private random bits. The as-

sumption is that there exist one-way permutations that are (very) hard to invert, even when the

input is sampled from a weak source.

Definition 5.0.15 (One-Way Functions for Weak Sources). We call a family of polynomial time

computable permutations f : {0, 1}n → {0, 1}n one-way for k-sources if for every (n, k) source

X, and every circuit A of size 2O(log2 n), Pr[A(f(X)) = X] is negligible.

We note this is equivalent to saying that f is exponentially hard to invert under the uniform

distribution.

Proposition 5.0.16. If f = {fn : {0, 1}n → {0, 1}n} is one way for k-sources, then for every

circuit A of size 2O(log2 n), Prx←U [A(fn(x)) = x] = negl(n)2−(n−k), and vice versa.
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About our assumption

• Ideally, we would like to achieve our goals assuming that it is hard to invert these permutations

with polynomial sized circuits. This is actually enough for achieving error 1/poly(n). For

our cryptographic applications we need the error to be negligible, thus we need the stronger

definition above.

• We actually do not need the function f to be a permutation. All we need is that the function

f is not “too lossy.” More formally, for any constant δ > 0 we assume the existence of a

family of functions f = {fn : {0, 1}n → {0, 1}n}n∈N and a constant γ = γ(δ) such that for

every (n, δn)-source X, f(X) is a (n, γn)-source.

A candidate function is suggested by Goldreich in [Gol09]. We note that the assumption

that there exist one-way functions w.r.t. weak random sources has been used before. For example,

Canetti [Can97] conjectured that the discrete-log function is one-way w.r.t. any weak source with

sufficient min-entropy. Assumptions of a similar flavor were also used in several other crypto results,

e.g., [Wee05, DP08, Pie09].

Under this assumption, we obtain the following results.

Theorem 5.0.17 (Network Extractors for Linear Min-Entropy). Fix a constant δ > 0, and suppose

that there exists a family of one-way permutations for (n, 0.3δn)-sources. Then, there is a network

extractor protocol where each player takes as input an independent (n, δn)-source, and as long as

there are at least 2 honest players, all the honest players end up with a string that is computationally

indistinguishable from being uniform and private.

Theorem 5.0.18 (Network Extractors for Polynomial Min-Entropy). Fix a constant δ > 0, and

suppose that there exists a family of one-way permutations for (n, 0.3nδ)-sources. Then, there

exists a constant u = u(δ) such that there is a network extractor protocol where each player takes

as input an independent (n, nδ)-source, and as long as there are at least u honest players, all the

honest players end up with a string that is computationally indistinguishable from being uniform

and private.

Our network extractor constructions establish that as long as such one-way permutations

exist, weak sources are the same as true randomness for the purpose of running cryptographic

protocols, as formalized below.
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Corollary 5.0.19. Fix a constant δ > 0. Assume that there exists a family of one-way permuta-

tions for (n, 0.3δn)-sources, and assume that there exists a family of enhanced trapdoor permuta-

tions. Then any functionality can be computed securely even if each party has only access to an

(independent) (n, δn)-source, as long as there are at least two honest parties.

Corollary 5.0.20. Fix a constant δ > 0. Assume that there exists a family of one-way permutations

for (n, 0.3nδ)-sources, and assume that there exists a family of enhanced trapdoor permutations.

Then there exists a constant u = u(δ) such that any functionality can be computed securely even if

each party has only access to an (independent) (n, nδ)-source, as long as there are at least u honest

parties.

5.1 The Constructions

In this section we describe our constructions of computational network extractors. We first

describe the constructions under standard computational assumptions.

5.1.1 Computational Network Extractors under Standard Assumptions

5.1.1.1 High Level Ideas

We now focus on the case where each player has an independent (n, k) source, for k = nβ.

The information theoretic protocols for this setting of parameters start with a large set of players

(more than t players) revealing their sources. This immediately results with a significant loss in

the number of players that end up with private randomness. Namely, the guarantee is that only

p− 2t players end up with private randomness. Thus, this network extractor is meaningful only in

the case of honest majority.

In the computational setting, we construct a protocol in which only a small set of honest

players (much smaller than t) reveal their sources. At first this seems to be useless, since it may

be the case that all the players who reveal their sources are malicious. However, we guarantee

that some small subset of the players who reveal their sources are indeed honest. More specifically,

the players reveal their sources in some pre-specified order until the point where “enough” honest

players (though much less than t) revealed their sources. At first this seems impossible to do since

we do not know who the honest players are. Nonetheless, we achieve this using computational

assumptions.

We construct a protocol that proceeds in d rounds, where in the j’th round all the players in

the j’th set (which is of size significantly smaller than t) announce their sources to all the players.
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The intuition is that if, in some round j, a sufficient number of honest players announce their

sources then we are in good shape, since the rest of the players can use the announced strings

to generate a somewhere random matrix: each row in the matrix corresponds to the output of a

C-source extractor applied to C of the announced strings. On the other hand, if almost all of the

players in the set are dishonest, we didn’t lose much by having them announce their private sources,

and it seems like we made some kind of progress since the fraction of honest players among the

remaining players has gone up.

However, instructing all the players to announce their sources in the appropriate round is

obviously not a good idea, since then all of the honest players will completely reveal their sources

to the adversary. Yet, consider the first round j in which a significant number of honest players

announce their sources. At the end of this round, only a small set of honest players have announced

their sources, and every honest player who hasn’t announced her source is in possession of a private

random string! We use this fact to our advantage.

We change the above protocol by using computational assumptions to ensure that after this

“good” round the players do not reveal any information about their source (to a computationally

bounded adversary). To this end, instead of instructing each player to announce her source in the

appropriate round, we instruct each player to announce a function f of her source. On the one hand,

this function f should maintain the entropy of the source (i.e., should be injective). On the other

hand, f should hide all information about the source. These two requirements, of being injective

and hiding, can be achieved simultaneously only in the computational setting, under cryptographic

assumptions. Moreover, in order to hide all information about the source, the function f needs to

be randomized.

Note that at the end of the “good” round, many of the players have a random string.

So, one could try using part of this (supposedly) random string as randomness for the function.

Unfortunately, this will not work since these random strings depend on the sources, and for the

function f to be hiding the random string should be independent of the sources. We overcome this

obstacle as follows.

Recall that in every round (in particular the “good” round), a set of strings are announced,

and each player uses the announced strings to try to extract a random (uniformly distributed)

string from her private source. Each player first saves a chunk of her (supposedly) random string

as private randomness, where at the end of the protocol all these d chunks (one chunk per each

round) will be xored and will consist the player’s output. Then, all the players use a small fresh

chunk of these (supposedly) random strings to generate for each player Pi a private random string

independent of the source xi. This is done as follows: First, each player stretches her small chunk
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of randomness using a pseudo-random generator (which is known to exist assuming the existence

of one-way functions). Then, for each player Pi, all players use a portion of the chunk to run a coin

flipping protocol, in which only player Pi receives a random string ri. Now each player Pi has a

(supposedly) private random string ri, which is independent of her source xi, and will continue to

the next round of the protocol, while using f(xi, ri) as her private source.

However, this is still not good enough, since for the proof to work we need to ensure that

each random string ri is independent of all the sources simultaneously. To this end, we instruct

all the players to use a small fresh chunk of their random strings to elect a small set of leaders.

Each of these leaders will no longer use their private source, and will use the all-zero string instead.

Now, if there is at least one honest leader, then each ri is independent of all the remaining sources

simultaneously. Finally, in order to ensure that with high probability, at least one of the leaders is

indeed honest, we need to assume that the number of players is large enough (this is where we use

the assumption that the number of players is polynomially related to n).

This is the high-level idea of the proof of Theorem ??. Note that in the above protocol

(which we will refer to as the initial protocol) several players don’t end up with private randomness.

In particular, the players that announced their source before the “good” round may not get private

randomness since, at the point of announcement, the (randomized) function of their source may

actually reveal significant information about their source. This is the case since the string used as

randomness in the function may actually not be random at all (as randomness is not available yet).

Similarly, the leaders who were elected before the “good” round may not get private randomness.

However, the number of rounds d is small (in particular, is o(p)), the number of players who reveal

their source in each round is small (in particular, is o(p)), and the number of leaders elected in

each round is very small. Thus, we conclude that the number of honest player that do not end

up with private randomness is small, and is o(p) according to our setting of parameters (which is

significantly smaller than the number of dishonest players t, which is assumed to be a constant

fraction of the total number of players).

There is another technicality that we overlooked. The initial protocol as described above,

needs a broadcast channel (or alternatively, a public-key infrastructure) to execute the coin-flipping

and leader election protocols. Intuitively, a broadcast channel is needed to agree on the output.

Looking closely at the protocol, we notice that we do not actually need a broadcast channel

for our coin flipping protocols, since in each of these protocols only a single player receives an

output. So, to run these coin-flipping protocols all we need is to instruct all the players to send

this player a non-malleable commitment to a random string, and then reveal the random string.

This player will then use the xor all these random strings as her private output.
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On the other hand, the leader election protocol seems to really need a broadcast channel.

To eliminate this need, we change the protocol yet again. Instead of running a single leader election

protocol per round, in which all players need to agree on who the leaders are, we run p protocols in

each round (one protocol per player), where in the i’th protocol only player Pi receives an output.

If the output is 1 then player Pi thinks of herself as elected as leader, and if the output is 0 then she

thinks of herself as a non-leader. Each of these protocols will output 1 only with small probability

– if we want to elect ` leaders per round, then each of these protocols will output 1 with probability

`/p. The players will use a fresh chunk of their (supposedly) random string for each of these

protocols.

5.1.1.2 The Protocol

Now we give the protocol for the computational network extractor.
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Protocol 5.1.1. For a synchronous computational network

Player Inputs: Each player Pi has an (n, k) source xi ∈ {0, 1}n, with k = nε.
Player Outputs: Each player Pi outputs a (private random) string si ∈ {0, 1}n

τ
, where τ , ε/4.

Sub-Routines and Parameters:

1. IExt as in Theorem 3.5.9, and BasicExt as in Theorem 3.5.11.

2. Function F : {0, 1}n×{0, 1}n → {0, 1}n such that for every r ∈ {0, 1}n the function F (·, r)
is injective, and for every x, y ∈ {0, 1}n, F (x, U) ≈ F (y, U), where U ∈R {0, 1}n. For
example, take F (x, u) = x⊕ u.

Let d , p1/3 and δ , p2/3.a

The protocol consists of d rounds. Round j ∈ [d] proceeds as follows:

1. Players P(j−1)δ+1, . . . , Pjδ broadcast their j’th round sources (where the 1’st round sources
are the input sources). Denote these δ strings by y1, . . . , yδ. We think of these strings as
(n, k0) sources, where k0 = nε/2.b

2. Let IExt : ({0, 1}n)u → {0, 1}k0 be an extractor as in Theorem 3.5.9.

For each i1, . . . , iu ∈ [δ] compute mi1,...,iu , IExt(yi1 , . . . , yiu), and let M be the matrix
whose (i1, . . . , iu)-row is mi1,...,iu . Note that M is a (δu, k0)-matrix.

3. Let BasicExt : {0, 1}n×{0, 1}δu·k0 → {0, 1}m be an extractor as in Theorem 3.5.11,c where

m = k0 − kΩ(1)
0 . Each player Pi does the following:

(a) Compute zji = BasicExt(xji ,M) where xji is the j’th round source of player Pi.

(b) Parse zji = (sji , w
j
i , v

j
i , ·), where sji , w

j
i , v

j
i ∈ {0, 1}n

τ
.

(c) Save sji as private randomness.

4. Each player Pi partitions her string wji into p disjoint parts,d and uses the k’th part to run
a secure multi-party coin-tossing protocol in which only player Pk gets a (private) n-bit
output. For each player Pi, we denote its output by rji ∈ {0, 1}n.

5. Run a secure multi-party protocol for electing ` , p1/6 random leaders in {jδ + 1, . . . , p},
where the randomness of player Pi is vji . Denote this set of leaders by Lj .e

6. Start round j + 1, where each player Pi /∈ Lj uses xj+1
i , F (xji , r

j
i ) as his input source,

and each player Pi ∈ Lj uses the zero string as his input source.

Once the d rounds terminate, each player Pi outputs si =
⊕d

j=1 s
j
i .

aWe assume for the sake of simplicity that p1/3 and p2/3 are integers.
bWe fix the parameters so that, with high probability, the j’th round source has min-entropy k0 (given the

transcript in all previous rounds).
cWe fix the parameters so that δu ≤ kγ0 for some γ ∈ (0, 1/2), as required in Theorem 3.5.11.
dNote that wji can indeed be partitioned to p disjoint parts, each of size nO(1), since p ≤ nε/4u << nτ .
eIf in any of these protocols there was an abort, restart without the aborting (malicious) player.
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5.1.1.3 The Analysis

Here we presenet the proof of Theorem 5.0.14. We show that Protocol 5.1.1 is a computa-

tional network extractor with the desired parameters.

Throughout the proof we use the following notation. For any j ∈ [d], let

• Bj = {Bj
i }i∈[p], where Bj

i is the concatenation of all the strings broadcasted by player Pi

in all rounds ≤ j. Thus, Bj consists of all the strings broadcasted by all the players in all

rounds ≤ j.

• Sj = {Sti}i∈[p],t≤j ,W
j = {W t

i }i∈[p],t≤j , and V j = {V t
i }i∈[p],t≤j , where Sti ,W

t
i , V

t
i were com-

puted by player Pi in Step 3(b) of round t.

Fix a parameter

h , δ3/4 = p1/2.

Let j ∈ [d] be the first round such that the set of players {P(j−1)δ+1, . . . , Pjδ} (who reveal

their j’th round source in the beginning of round j) contains at least h honest players. The existence

of such j follows from the fact that there are d rounds, a total of p− t honest players, and h ≤ p−t
d

(for large enough n). Moreover, by definition of j,

h(j − 1) + (d− (j − 1))δ ≥ p− t = (1− β)p.

Applying basic algebraic manipulations, we conclude that for every constant γ > β (and

for every large enough n),

j − 1 ≤ βp

δ − h
≤ γd. (5.1)

Throughout the proof, we think of j as fixed. By definition of j, there are at least u honest

players in

{P(j−1)δ+1, . . . , Pjδ} \ (L1 ∪ . . . ∪ Lj−1)

(where u = O( logn
log k0

) is defined as in Theorem 3.5.9). This follows from the fact that for every

constant γ ∈ (β, 1) (and for every large enough n),

|L1 ∪ . . . ∪ Lj−1| ≤ (j − 1)` ≤ γd` = γp1/3p1/6 = γp1/2 ≤ h− u,

where the first inequality follows from the union bound, and the second inequality follows from

Equation (5.1).
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Let

G , {i > jδ : Pi is honest ∧ Pi /∈ L1 ∪ . . . ∪ Lj−1}.

Note that

|G| ≥ p− t− (j − 1)h− δ − (j − 1)` ≥ (1− β)p− (j − 1)(h+ `)− δ ≥ (1− β)p− γd(h+ `)− δ.

By our choice of parameters, for every constant γ > β (and for every large enough n),

|G| ≥ (1− γ)p.

Therefore, what remains to show is that(
B, (Si)i∈G

)
≈
(
B, (Ui)i∈G

)
, (5.2)

where (Ui)i∈G are independent random variables uniformly distributed in {0, 1}nτ .

Assume for the sake of contradiction that there exists a non-uniform PPT adversary A1

and a polynomial q such that for infinitely many n’s,∣∣Pr[A1

(
B, (Si)i∈G

)
= 1]− Pr[A1

(
B, (Ui)i∈G

)
= 1]

∣∣ ≥ 1

q(n)
.

Recall that for every honest player Pi ∈ Lj , the source Xj+1
i is the all zero string. Therefore,

there exists a non-uniform PPT adversary A2, that has all the sources of the dishonest players

hardwired into it, such that for infinitely many n’s,∣∣Pr
[
A2

(
Bj ,

(
⊕jt=1 S

t
i

)
i∈G , {F (Xj

i , R
j
i )}i∈G\Lj

)
= 1
]
−

Pr
[
A2

(
Bj ,

(
Ui
)
i∈G , {F (Xj

i , R
j
i )}i∈G\Lj

)
= 1
] ∣∣ ≥ 1

q(n)
.

Denote by T ⊆ [p] the set of corrupted players. We say that a tuple

(bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T )← (Bj−1, Sj−1,W j−1, V j , Y1, . . . , Yδ, {Rji}i∈T )

is GOOD if the following three properties are satisfied (where y1, . . . , yδ are the strings broadcasted

in the beginning of the j’th round, and rji is the string that player Pi gets from the coin-tossing

protocol in step 4 of round j).
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1. There are infinitely many n’s for which,∣∣Pr
[
A2

(
Bj ,

(
⊕jt=1 S

t
i

)
i∈G , {F (Xj

i , R
j
i )}i∈G\Lj

)
= 1
]
−

Pr
[
A2

(
Bj , (Ui)i∈G , {F (Xj

i , R
j
i )}i∈G\Lj

)
= 1
] ∣∣ ≥ 1

2q(n)
,

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T ).

2.

|((Sji )i∈G , (W̃
j
i )i∈G)− ((U1

i )i∈G , (U
2
i )i∈G)| = negl(n) (5.3)

where each W̃ j
i is a truncated form of W j

i , while omitting the parts that are used to generate

{rji }i∈T . The random variables
(
Sji , W̃

j
i

)
i∈G are conditioned on

(bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ, {rji }i∈T ),

and the random variables (U1
i )i∈G , (U

2
i )i∈G are independent; each U1

i is uniformly distributed

in {0, 1}nτ , and each U2
i is uniformly distributed in {0, 1}n

τ
(

1− |T |
p

)
.

3. There is at least one (honest) player in G ∩ Lj .

Claim 5.1.2. There exists a GOOD tuple.

Proof. A standard probabilistic argument shows that the probability that a random tuple

(bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T )← (Bj−1, Sj−1,W j−1, V j , Y1, . . . , Yδ, {Rji}i∈T )

satisfies the first property with probability at least 1
2p(n) . We next show that the second and third

properties each hold with probability 1 − negl(n). The fact that the third property holds with

probability 1 − negl(n) follows from the fact that |Lj | = p1/6, the number of honest players in

{jδ + 1, . . . , p} is O(p), the total number of players p is polynomially related to n, and from the

fact that for a random vj ← V j , the set Lj is random in {jδ + 1, . . . , p}. It remains to prove that

the second property also holds with probability 1− negl(n). This part is quite involved. We start

with introducing the following notation.

For a tuple (bj−1, sj−1, wj−1, vj−1)← (Bj−1, Sj−1,W j−1, V j−1) and for each i ∈ G, let

X ′i , Xj
i |bj−1,sj−1,wj−1,vj−1 .
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Similarly, for each i ∈ [δ] let

Y ′i , Yi|bj−1,sj−1,wj−1,vj−1 .

We first prove the following claim.

Claim 5.1.3. With probability 1−negl(n) (over (bj−1, sj−1, wj−1, vj−1)) it holds that every random

variable in (X ′i)i∈G and every at least u random variables in {Y ′1 , . . . , Y ′δ} have min-entropy k0 =

nε/2.

Proof. Recall that (before fixing (bj−1, sj−1, wj−1, vj−1)), all the random variable in (Xj
i )i∈G and at

least u random variables in {Y1, . . . , Yδ} have min-entropy k = nε. Thus (using the union bound)

it suffices to prove the following:

1. For every i ∈ G, with probability 1 − negl(n) (over (bj−1, sj−1, wj−1, vj−1)) it holds that X ′i
has min-entropy k0 = nε/2.

2. For every i ∈ {1, . . . , δ} such that Yi has min-entropy k, with probability 1 − negl(n) (over

(bj−1, sj−1, wj−1, vj−1)) it holds that Y ′i has min-entropy k0 = nε/2.

We prove the first item (the second item follows exactly in the same manner). Fix any

i ∈ G. Denote by BAD the set of all the tuples (bj−1, sj−1, wj−1, vj−1) such that the min-entropy of

X ′i (conditioned on (bj−1, sj−1, wj−1, vj−1)) is smaller than k0. Assume for the sake of contradiction

that there exists a polynomial q and infinitely many n’s such that

Pr[(Bj−1, Sj−1,W j−1, V j−1) ∈ BAD] >
1

q(n)
.

This implies that for infinitely many n’s there exists a fixing of the sources of all the other

players, (X`) 6̀=i = (x`) 6̀=i, such that

Pr[(Bj−1, Sj−1,W j−1, V j−1) ∈ BAD] >
1

q(n)
,

where the above probability is conditioned on (x`)`6=i.

Recall that for every t ∈ [d] it holds that |sti| = |wti | = |vti | = nτ . Therefore, after fixing

(x`) 6̀=i, the support of (Bj−1, Sj−1,W j−1, V j−1) is of size at most 23dnτ . Thus, by applying the
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union bound, this implies that for infinitely many n’s there exists (bj−1, sj−1, wj−1, vj−1) ∈ BAD
such that

Pr[(Bj−1, Sj−1,W j−1, V j−1) = (bj−1, sj−1, wj−1, vj−1)] ≥ 2−3dnτ

q(n)
.

For each of the above n’s, fix (bj−1, sj−1, wj−1, vj−1) ∈ BAD as above. By definition of

BAD, there exists x such that

Pr[X ′i = x] ≥ 2−k0 ,

where the probability is conditioned on (bj−1, sj−1, wj−1, vj−1) and on (x`)`6=i, as above.

Thus,

Pr[Xj
i = x] ≥Pr[X ′i = x|(Bj−1, Sj−1,W j−1, V j−1) = (bj−1, sj−1, wj−1, vj−1)]· (5.4)

Pr[(Bj−1, Sj−1,W j−1, V j−1) = (bj−1, sj−1, wj−1, vj−1)] ≥ (5.5)

2−k0 · 2−3dnτ

q(n)
> 2−k, (5.6)

where the latter inequality follows from our parameter settings τ = ε/4 and p ≤ n
ε

4u . This

contradicts the fact that the min-entropy of Xj
i is k, which in turn follows from the fact that for

every r ∈ {0, 1}nτ the function F (·, r) is injective.

Next, we claim that the random variables (X ′i)i∈G are all independent, and are independent

of (Y ′i )δi=1. This can be seen by induction on j. In particular, this implies that the random variables

(X ′i)i∈G are independent of the matrix

M ′ ,M |Bj−1=bj−1,Sj−1=sj−1,W j−1=wj−1,V j−1=vj−1 ,

computed in Step 2 of round j. Thus, using Theorem 3.5.9 we conclude that with probability

1− negl(n) (over (bj−1, sj−1, wj−1, vj−1)) it holds that M ′ is 2−n
Ω(1)

-close to a SR-matrix. Let

Z ′i , BasicExt(X ′i,M
′),

as computed by Pi in Step 3(a) of round j. Then, with probability 1 − negl(n), for every i ∈ G,

the random variable Z ′i is 2−n
Ω(1)

-close to a uniform string. Moreover, the fact that BasicExt is a

strong extractor implies that, with probability 1− negl(n), for every i ∈ G,

|(Y ′1 , . . . , Y ′δ , Z ′i)− ((Y ′1 , . . . , Y
′
δ , Ui)| < 2−n

Ω(1)
.
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This, together with the fact that the random variables (Z ′i)i∈G are all independent condi-

tioned on (Y ′1 , . . . , Y
′
δ ), implies that with probability 1− negl(n),

|(Y ′1 , . . . , Y ′δ , (Z ′i)i∈G)− (Y ′1 , . . . , Y
′
δ , (Ui)i∈G)| < |G|2−nΩ(1)

< p2−n
Ω(1)

= 2−n
Ω(1)

.

where the first inequality follows from a standard hybrid argument. Therefore, with probability

1− negl(n) over

(bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ)← (Bj−1, Sj−1,W j−1, V j−1, Y1, . . . , Yδ),

it holds that

|(Zji |bj−1,sj−1,wj−1,vj−1,y1,...,yδ)i∈G − (Ui)i∈G | = 2−n
Ω(1)

. (5.7)

Recall that

Zji = (Sji ,W
j
i , V

j
i , ·).

Therefore, Equation (5.7) implies in particular that, with probability 1− negl(n) over

(bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ)← (Bj−1, Sj−1,W j−1, V j−1, Y1, . . . , Yδ),

it holds that

|((Sji )i∈G , (W
j
i )i∈G , (V

j
i )i∈G)− ((U1

i )i∈G , (U
2
i )i∈G , (U

3
i )i∈G)| = 2−n

Ω(1)
.

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ). This implies

that, with probability 1− negl(n) over

(bj−1, sj−1, wj−1, vj , y1, . . . , yδ)← (Bj−1, Sj−1,W j−1, V j , Y1, . . . , Yδ),

it holds that

|((Sji )i∈G , (W
j
i )i∈G)− ((U1

i )i∈G , (U
2
i )i∈G)| = 2−n

Ω(1)
,

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj , y1, . . . , yδ). Finally, this in

turn implies that, with probability 1− negl(n) over

(bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ, {rji }i∈T )← (Bj−1, Sj−1,W j−1, V j−1, Y1, . . . , Yδ, {Rji}i∈T ),

it holds that

|((Sji )i∈G , (W̃
j
i )i∈G)− ((U1

i )i∈G , (U
2
i )i∈G)| = 2−n

Ω(1)
,

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T ), as de-

sired.
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Fix a GOOD tuple (bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T ). Parse

Bj = (Bj−1, Y1, . . . , Yδ, V IEW1, V IEW2),

where V IEW1 consists of the transcripts of all the secure coin-flipping protocols, and V IEW2 is

the transcript of the leader electing protocol.

The first property of a GOOD tuple implies that there exists a non-uniform PPT adversary

A3 (that has the values (bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T ) hardwired into it) such that for

infinitely many n’s,∣∣Pr
[
A3

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW1, V IEW2,

(
⊕jt=1 S

t
i

)
i∈G

)
= 1
]
−

Pr
[
A3

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW1, V IEW2, (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
,

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T ).

The fact that sj−1 is fixed implies that there exists a non-uniform PPT adversary A4 such

that for infinitely many n’s,∣∣Pr
[
A4

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW1, V IEW2,

(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A4

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW1, V IEW2, (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
,

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T ).

The fact that the coin tossing protocols are secure implies that V IEW1 can be simulated.

Namely, there exists a non-uniform PPT adversary A5 such that for infinitely many n’s,∣∣Pr
[
A5

(
{F (Xj

i , R
j
i )}i∈G\Lj ,

(
Rji
)
i∈T , V IEW2,

(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A5

(
{F (Xj

i , R
j
i )}i∈G\Lj ,

(
Rji
)
i∈T , V IEW2, (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
− negl(n),

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T ).

The fact that the random variables
(
Rji
)
i∈T are fixed to

(
rji
)
i∈T implies that there exists a

non-uniform PPT adversary A6 such that for infinitely many n’s,∣∣Pr
[
A6

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW2,

(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A6

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW2, (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
− negl(n),
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where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }i∈T ).

The fact that the leader election protocol is secure implies that there exists a non-uniform

PPT adversary A7 such that for infinitely many n’s,∣∣Pr
[
A7

(
{F (Xj

i , R
j
i )}i∈G\Lj , L

j ,
(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A7

(
{F (Xj

i , R
j
i )}i∈G\Lj , L

j , (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
− negl(n).

This, together with the fact that the random variable V j is fixed to vj implies that there

exists a non-uniform PPT adversary A8 such that for infinitely many n’s,∣∣Pr
[
A8

(
{F (Xj

i , R
j
i )}i∈G\Lj ,

(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A8

(
{F (Xj

i , R
j
i )}i∈G\Lj , (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
− negl(n).

Fix any α ∈ G ∩Lj (the existence of such α follows from the fourth property of GOOD). In

the remaining of the proof we contradict the above equation by proving that

{(Sji )i∈G , (F (Xj
i , R

j
i ))i∈G\{α}}n∈N ≈ {(Ui)i∈G , (F (Xj

i , R
j
i ))i∈G\{α}}n∈N.

To this end we prove the following three equations (and use a hybrid argument):

{(Sji )i∈G , (F (Xj
i , R

j
i ))i∈G\{α}}n∈N ≈ {(S

j
i )i∈G , (F (0n, U2

i )i∈G\{α}}n∈N, (5.8)

{(Sji )i∈G , (F (0n, U2
i )i∈G\{α}}n∈N ≈ {(U1

i )i∈G , (F (0n, U2
i )i∈G\{α}}n∈N, (5.9)

and

{(U1
i )i∈G , (F (0n, U2

i )i∈G\{α}}n∈N ≈ {(Ui)i∈G , (F (Xj
i , R

j
i ))i∈G\{α}}n∈N. (5.10)

Equation (5.9) follows immediately from the second property of GOOD. Assume for the

sake of contradiction that Equation (5.8) does not hold. This (contradiction) assumption, together

with the second property of GOOD, implies that there exists (sji )i∈G such that

|(W̃ j
i )i∈G − (Ui)i∈G | = negl(n), (5.11)

and

{(F (Xj
i , R

j
i ))i∈G\{α}}n∈N 6≈ {(Ui)i∈G\{α}}n∈N, (5.12)
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where all the random variables are conditioned on (Sji )i∈G = (sji )i∈G (and on the GOOD tuple

(bj−1, sj−1, wj−1, vj , y1, . . . , yδ, {rji }iıT )). Assume for the sake of simplicity of the analysis that

after the above fixing of (Sji )i∈G = (sji )i∈G , all the random variables (W̃ j
i )iıG are independent and

uniformly distributed (rather than being statistically close to such, as implied by Equation (5.11)).

In particular, the part of W j
α that is used to generate (Rji )i∈G is uniformly distributed and is

independent of (Xj
i )i∈G\{α}. Thus (Rji )i∈G is uniformly distributed conditioned on (Xj

i )i∈G\{α}.
1

This, together with the semantic security of F (i.e., the property that for every x, y ∈ {0, 1}n it

holds that F (x, U) ≈ F (y, U)), implies that

{(F (Xj
i , R

j
i ))i∈G\{α}}n∈N ≈ {(F (0n, Ui)i∈G\{α}}n∈N,

contradicting Equation (5.12). The proof that Equation (5.10) holds is very similar, and is therefore

omitted.

5.1.2 Computational Network Extractors under Stronger Assumptions

In this section we show that we can construct better computational network extractors

under the assumption that there exist one-way permutations for weak random sources. Indeed,

we will show that in this case we can guarantee that all honest processors end up with private

random bits. We construct two network extractor protocols. One for the case where each player

has an independent source with linear entropy δn, and one for the case where each player has an

independent source with polynomially-small entropy nδ.

5.1.2.1 Computational Network Extractors for Linear Min-Entropy

The construction of such a computational network extractor relies on a two-source extractor

constructed based on the assumption that there exist one-way permutations for weak random

sources. The construction and the analysis of the two source extractor will be presented in the next

chapter, while here we focus on the construction of the computational network extractor. To this

end, we state the theorem of the two source extractor as below.

Theorem 5.1.4. Fix a constant α > 0 and parameters t = 4
α and k ≥ nΩ(1). Assume that there

exists a polynomial time computable permutation f : {0, 1}n → {0, 1}n such that for any (n, 0.3k)-

source Y , any circuit of size poly(nlogn) can invert f(Y ) with only negligible probability. Then there

1Note that the strings (Rji )i∈G are uniformly distributed, even though the dishonest players may have tried to
skew the output by aborting. This is the case since for any i ∈ G, in the i’th coin flipping protocol only player Pi
gets an output Rji , and thus an abort occurs independently of the value of Rji .
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exists a polynomial time computable function TExt : {0, 1}n × {0, 1}n → {0, 1}m such that for any

(n, αn)-source X, any (n, k)-source Y that is independent of X, and any deterministic function h

(not necessarily computable in polynomial time) on {0, 1}n

(TExt(X,Y ), X, h(X), f (t+1)(Y )) ≈ (Um, X, h(X), f (t+1)(Y )).

We first present a protocol where all the honest players except one end up with private

randomness. Note that if we knew of one player j that is honest, then the protocol would be

very simple: Player j will simply reveal his source, and all other players would apply the 2-source

extractor TExt (presented above) to this source and to their own source. The fact TExt is a strong

extractor immediately implies that all the honest players, except for player j, would end up with

private randomness. However, since we don’t know of any player that is honest, it is tempting to

try the following approach.

Naive Network Extractor Protocol for Linear Min-Entropy

1. The protocol proceeds in p rounds, where p is the number of players. In round i:

(a) Player i sends xi to all other players.

(b) Each player ` computes ri` = TExt(xi, x`).

2. Each player i outputs the bitwise xor r1
i ⊕ · · · ⊕ r

p
i .

Let j denote the first honest player. Then, for every player i different than j, rji is uniform. Despite

this, the output of player i may not be random, and may even be a fixed constant. The problem is

that the random variables r1
i , . . . , r

p
i are not independent, and a malicious adversary can actually

cause the output to be a fixed constant.

The idea is to get around this problem by using computational assumptions. To this end,

each player `, instead of using the same source X` in each round, will use the source f i(X`) in

round `. However, for this approach to work we need the guarantee that

(TExt(Xi, X`), X`, f(Xi)) ≈ (Uniform, X`, f(Xi)).

Our extractor TExt does not satisfy this, but luckily our extractor does satisfty the following

(similar) guarantee:

(TExt(Xi, Xj), Xj , f
t+1(Xi)) ≈ (Uniform, Xj , f

t+1(Xi)),
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where t is a constant that depends on δ.

So, instead we consider the following network extractor protocol, which has the guarantee

that all the honest players, except for the first one, end up with private random-looking strings.

Lossy Network Extractor Protocol for Linear Min-Entropy

1. Let g = f t+1. The protocol proceeds in p rounds, where p is the number of players. In

round i:

(a) Player i sends gi(xi) to all other players.

(b) Each player ` computes ri` = TExt(gi(xi), g
i(x`)).

2. Each player i outputs the bitwise xor r1
i ⊕ · · · ⊕ r

p
i .

Now we can prove that all the honest players, except player j (who is the first honest player), end

up with private random-looking strings. The analysis proceeds in three steps.

1. We first fix all sources sent before round j, and we fix {ri`}`∈[p],i<j , which were all computed

before round j. We claim that even conditioned on all these fixings, the sources are still

independent, and with high probability they all have “enough” entropy left.

2. Next, we claim that the strings {rj`} of all the honest players ` 6= j, are independent and

uniformly distributed.

3. Finally, we claim that the rest of the ri` for i > j are (computationally) independent of {rj`},
which implies that the output of all the honest players, except player j, are computationally

indistinguishable from random. For this we use the fact that for any two independent variables

Yi and Yj with “sufficient” entropy

(TExt(Yi, Yj), Yj , g(Yi)) ≈ (Uniform, Yj , g(Yi)). (5.13)

Note that in the protocol above, player j, who is the first honest player, does not necessarily

end with private randomness. To fix this, we add another phase to the protocol. So, the protocol

consists of two phases. In the first phase, the players run the (lossy) protocol presented above.

In the second phase, the idea is that all the honest players use their (supposedly) random string,

generated in the first phase, to run a coin flipping protocol and generate a public random-looking
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seed V . Recall that we assumed that there are at least two honest players, therefore there is at

least one honest player besides player j. Thus, V is indeed random-looking. Finally, each player i

will extract randomness from his own source Xi using the seed V .

This approach would indeed work if there were at least three honest players, since in that

case we could argue that V is random-looking and is independent of each of the sources Xi. Thus,

we could use it to extract (private) randomness from each source.

However, if there are only two honest players then this approach does not seem to work,

since in this case we cannot argue that V is independent of all the sources. Indeed if there is a

single honest player ` besides player j (who is the first honest player) then it may be the case that

V depends on the source of player `. This is the case since player ` maybe the only player who

used “good” randomness for the coin-flipping protocol. As before, we get around this dependence

by using reconstructive properties of extractors.

Our Final Network Extractor Protocol for Linear Min-Entropy. We first note that The-

orem 3.1.12 immediately implies the following corollary:

Corollary 5.1.5. If f is a one way function for 0.3αn-sources, then there is an efficiently com-

putable function LExt as in Theorem 3.1.12, with parameters ε = 1
poly(nlogn)

and d = O(log(n/ε)) =

polylog(n), such that for any (n, 0.9αn) source X,

(LExt(X,Ud), f(X), Ud) ≈ (Um, f(X), Ud).

• Parameters.

– Constant α > 0, where αn is the min-entropy of each of the input sources Xi.

– Parameters d, ε as in Corollary 5.1.5 and m = polylog(n). Note d = polylog(n) and

ε = negl(n).

– t = d 4
0.9αe.

• Ingredients.

– The 2-source extractor TExt : {0, 1}n × {0, 1}n → {0, 1}m from Theorem 6.1.2.

– LExt : {0, 1}n × {0, 1}d → {0, 1}m a (0.9αn, ε)-extractor as in Theorem 3.1.12.

– f : {0, 1}n → {0, 1}n a one way permutation for 0.3αn-sources. Let g = f (t+1).

• The protocol. The protocol proceeds in two phases.
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– Phase 1. The first phase of the protocol proceeds in p rounds (where p is the number

of players). In round j ∈ [p] the players do the following.

1. The j’th player sends g(2j)(Xj) to all other players, where g = f (t+1) is described

above.

2. Each player i computesRji = TExt(g(2j)(Xj), g
(2j)(Xi)). Note |Rji | = m = polylog(n).

At the end of the p’th round each player i computes Ri = ⊕pj=1R
j
i .

We show that at the end of this phase all the honest players, except for the first one, end

up with private randomness. In order to ensure that all the honest players, including

the first one, end up with private randomness, we proceed to the second phase.

– Phase 2. Each player i partitions Ri into two equal parts Ri = (Vi,Wi). All players

engage in a secure multiparty computation to compute V = ⊕pi=1Vi
2, where each player

i uses Wi as its internal randomness.

Finally, each player i outputs Zi = LExt(g(2i−1)(Xi), V ).

We have the following theorem.

Theorem 5.1.6. For any p ≥ 2, any t ≤ p− 2, and any n ≥ p1+γ (for some constant γ > 0), the

protocol described above is a (t, p− t)-computational network extractor protocol.

Proof. Fix any p and any t such that p−t ≥ 2. Let G ⊆ [p] denote the set of all honest players. Let

j denote the GOOD round, where the first honest player sends its source; i.e., G ⊆ {j, . . . , p}. We

assume without loss of generality that the PPT adversary (who controls all the malicious players)

is deterministic. Thus, it suffices to prove that

{B, (Zi)i∈G} ≈ {B,Ugm}.

The proof proceeds in two parts. In the first part we prove that all the Ri’s of all the honest

players, except player j, appear to be independent and uniformly distributed, even conditioned on

the entire transcript of phase 1. Actually ,we prove the following stronger statement:

{Xj , (g
(2j+1)(Xi))i∈G\{j}, (Ri)i∈G\{j}} ≈ {Xj , (g

(2j+1)(Xi))i∈G\{j}, U(g−1)m} (5.14)

2Here, if the adversary aborts the protocol, we simply discard the aborting party and restart the secure computation
with fresh Vi’s
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Note that this statement is indeed stronger since for every i ∈ G \ {j} it holds that i > j, which

implies that 2i > 2j + 1, and therefore it is easy to compute g(2i)(Xi) from g(2j+1)(Xi).

In the second part we use Equation (5.14) to prove that indeed

{(B, (Zi)i∈G} ≈ {(B,Ugm}.

Part 1. Assume for the sake of contradiction that there exists a non-uniform PPT adversary A
and a polynomial q such that for infinitely many n’s∣∣Pr[A(Xj , (g

(2j+1)(Xi))i∈G\{j}, (Ri)i∈G\{j}) = 1]−

Pr[A(Xj , (g
(2j+1)(Xi))i∈G\{j}, U(g−1)m) = 1]

∣∣ ≥ 1

q(n)
.

Let Bj−1 denote the transcript until round j − 1. Fix any tuple

{bj−1, (r
1
i , . . . , r

j−1
i )i∈G} ← {Bj−1, (R

1
i , . . . , R

j−1
i )i∈G}.

Denote any random variable Y , conditioned on the above tuple, by Y ′. We say that the tuple above

is BAD if the following properties are satisfied.

1. There are infinitely many n’s for which∣∣Pr[A(X ′j , (g
(2j+1)(X ′i))i∈G\{j}, (R

′
i)i∈G\{j}) = 1]−

Pr[A(X ′j , (g
(2j+1)(X ′i))i∈G\{j}, U(g−1)m) = 1]

∣∣ ≥ 1

2q(n)
.

2. For every i ∈ G, the random variableX ′i has min-entropy 0.9αn and {X ′i}i ∈ G are independent

random variables.

Claim 5.1.7.

Pr[{bj−1, (r
1
i , . . . , r

j−1
i )i∈G} is BAD] ≥ 1

3q(n)
.
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Proof of Claim 5.1.7. A standard argument shows that a random tuple

{bj−1, (r
1
i , . . . , r

j−1
i )i∈G} ← {Bj−1, (R

1
i , . . . , R

j−1
i )i∈G}

satisfies the first property with probability at least 1
2q(n) .

The fact that the random variables {X ′i}i∈G remain independent can be seen by induction on the

number of rounds. Moreover, since all the Rji ’s are of size only polylog(n) and n ≥ p1+γ , by

Lemma 3.5.14 with probability 1 − negl(n) over the fixings, every X ′i has min-entropy at least

0.9αn (take ε = 2− log2 n in that lemma).

Thus the probability that a random tuple is BAD is at least 1
2q(n) − negl(n) ≥ 1

3q(n)

Fix any BAD tuple

{bj−1, (r
1
i , . . . , r

j−1
i )i∈G} ← {Bj−1, (R

1
i , . . . , R

j−1
i )i∈G}.

Note that Ri = ⊕pj=1R
j
i . Since (R1

i , . . . , R
j−1
i )i∈G are fixed, and (Rj+1

i , . . . , Rpi )i∈G can

be computed in polynomial time from (g(2j+1)(X ′i))i∈G\{j}, there exists another non-uniform PPT

adversary A1 such that

∣∣Pr[A1(X ′j , (g
(2j+1)(X ′i))i∈G\{j}, (R

′j
i )i∈G\{j}) = 1]−

Pr[A1(X ′j , (g
(2j+1)(X ′i))i∈G\{j}, U(g−1)m) = 1]

∣∣ ≥ 1

2q(n)
.

A standard hybrid argument shows that there exists ` ∈ G \ {j} (note there are at least 2

honest players) s.t.

∣∣Pr[A1(X ′j , (g
(2j+1)(X ′i))i∈G\{j}, (R

′j
i )i∈G\{j,`}, R

′j
` ) = 1]−

Pr[A1(X ′j , (g
(2j+1)(X ′i))i∈G\{j}, (R

′j
i )i∈G\{j,`}, Um) = 1]

∣∣ ≥ 1

2p · q(n)
.

Since the random variables {X ′i}i∈G remain independent, there is a fixing of (X ′i)i∈G\{j,`}
that preserves the distinguishing probability. Note after this fixing, (R′ji )i∈G\{j,`} is a deterministic

function of X ′j . Thus, there exists another non-uniform PPT adversary B, that has all the fixings

hardwired into it, s.t.
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∣∣Pr[B(X ′j , g
(2j+1)(X ′`), R

′j
` ) = 1]− Pr[B(X ′j , g

(2j+1)(X ′`), Um) = 1]
∣∣ ≥ 1

2p · q(n)
. (5.15)

Note X ′j and X ′` are independent, both have min-entropy at least 0.9αn and X ′j is a deter-

ministic function of g(2j)(X ′j). Moreover, recall that

R′j` = TExt(g(2j)(X ′j), g
(2j)(X ′`)).

Thus, according to Theorem 6.1.2 (more precisely, Equation (6.1), where h = g(−2j)),

(R′j` , X
′
j , f

(t+1)(g(2j)(X ′`))) ≈ (Um, X
′
j , f

(t+1)(g(2j)(X ′`))).

Note f (t+1)(g(2j)(X ′`)) = g(2j+1)(X ′`)), thus

(R′j` , X
′
j , g

(2j+1)(X ′`)) ≈ (Um, X
′
j , g

(2j+1)(X ′`)),

which contradicts Equation (5.15). Therefore, Equation (5.14) holds. Namely,

{Xj , (g
(2j+1)(Xi))i∈G\{j}, (Ri)i∈G\{j}} ≈ {Xj , (g

(2j+1)(Xi))i∈G\{j}, U(g−1)m}

Part 2. We now use Equation (5.14) to prove our final statement

{B, (Zi)i∈G} ≈ {B,Ugm}.

We parse B = (B1, B2) where B1 denotes the transcript of Phase 1, and B2 denotes the transcript

of Phase 2. Thus, we need to prove that

{B1, B2, (Zi)i∈G} ≈ {B1, B2, Ugm}.

Recall that Phase 2 consists only of a secure multiparty computation of V = ⊕Vi. By the definition

of secure multiparty computation, all the transcript of the second phase can be simulated given V ,

given all the sources of the malicious players (Xi)i 6∈G , and given Rj . The reason we need to give

also Rj is that during this secure computation player Pj (who is the first honest player), may not

have private randomness, and therefore we think of this player as being malicious. Thus, it suffices

to prove that

{B1, Rj , V, (Zi)i∈G} ≈ {B1, Rj , V, Ugm}. (5.16)
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We first notice that for every i ∈ G − {j},

2i− 1 ≥ 2j + 1.

This follows from our assumption that j is the first honest player, and thus for every i ∈ G \ {j} it

holds that i ≥ j + 1.

This, together with Equation (5.14), implies that

{Xj , (g
(2i−1)(Xi))i∈G\{j}, (Ri)i∈G\{j}} ≈ {Xj , (g

(2i−1)(Xi))i∈G\{j}, U(g−1)m},

which in turn implies that

{Rj , (g(2i−1)(Xi))i∈G , V } ≈ {Rj , (g(2i−1)(Xi))i∈G , U}. (5.17)

Remark 5.1.8. Here we would like U to be uniform, but the complete proof for this is somewhat

involved: the adversary can choose to abort the protocol in the secure computation. What is true

is that the indistinguishability holds with U being chosen adversarially from a set of t uniformly

sampled strings. Since the number of aborts is at most the number of dishonest players (which is

bounded by poly(n)), any adversary that can distinguish the two sides with a truly uniform U can

also succeed in the case that U is distributed as we described.

Next, notice that it is easy to simulate the transcript B1 given(
(Xi)i/∈G , (g

(2i)(Xi))i∈G

)
.

Therefore, to prove Equation (5.16) it suffices to prove that

{Rj , (g(2i)(Xi))i∈G , V, (LExt(g(2i−1)(Xi), V ))i∈G} ≈ {Rj , (g(2i)(Xi))i∈G , V, Ugm}.

This is immediately implied from Equation (5.17), from Corollary 5.1.5, and from the fact that all

the sources {Xi}i∈G are independent.

5.1.2.2 Network Extractor for Polynomially Small Min-Entropy

In this section we give a computational network extractor protocol where each player has an

independent (n, k) source with k = nα for any constant 0 < α < 1. Our protocol works as long as

there are a constant number of honest players. We assume the existence of one way permutations

for 0.3nα-sources.
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Corollary 5.1.9. If f is a one way permutation for 0.3nα-sources, then there is an efficiently com-

putable function LExt as in Theorem 3.1.12, with parameters ε = 1
poly(nlogn)

and d = O(log(n/ε)) =

polylog(n), such that for any (n, 0.9nα) source X,

(LExt(X,Ud), f(X), Ud) ≈ (Um, f(X), Ud).
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Protocol 5.1.10. For a synchronous computational network

Player Inputs: Each player Pi has a string xi sampled from an independent (n, nα) source Xi.
Player Outputs: Each player Pi outputs a (private random) string wi.

Sub-Routines and Parameters:

1. IExt as in Theorem 3.5.9, and BasicExt as in Theorem 3.5.11.

2. f : {0, 1}n → {0, 1}n a one way permutation for 0.3nα-sources.

3. The seeded extractor LExt as in Corollary 5.1.9.

The protocol proceeds in two phases.

• Phase 1. The first phase of the protocol proceeds in p rounds (where p is the number of
players). In round j ∈ [p] the players do the following.

1. Player Pj sends f (j+1)(xj) to all other players. Denote all the j strings broadcasteda

so far by y1, . . . , yj . The following steps apply to the remaining players (players Pi
with i > j).

2. Let u be the number of independent sources IExt takes. For each i1, . . . , iu ∈ [j],
each player Pi computes mi1,...,iu , IExt(yi1 , . . . , yiu). Let Mj be the matrix whose
(i1, . . . , iu)-row is mi1,...,iu . Note that Mj is a (ju, k)-matrix.

3. Each player Pi computes eji = BasicExt(f (j)(xi),Mj) and truncates the output so that

|eji | = log3 n. Parse eji = (sji , r
j
i ).

4. All players Pi, i > j engage in a secure multi-party computation to compute rj = ⊕rji ,
where each player Pi uses sji as its internal randomness.

5. Each player Pi computes zji = LExt(f (j)(xi), r
j) and truncates the output so that

|zji | = O(log2 n).

At the end of the p’th round, each player Pi, i ∈ [p] computes zi = ⊕pj=1z
j
i .

• Phase 2.

1. Each player Pi parses zi = (si, ri). All the players {Pi}i∈[p] engage in a secure multi-
party computation to compute r = ⊕ri, where each player Pi uses si as its internal
randomness.

2. Each player Pi computes wi = LExt(f (i)(xi), r), and outputs wi as its final output.

aFor the sake of simplicity, think of the network as having broadcast channels, although our protocol also works
in the case of point to point channels.
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Theorem 5.1.11. Let k = nα for some constant 0 < α < 1. Let u = O( 1
α) be the number of

independent (n, k) sources IExt needs. There exists a constant 0 < γ < 1 such that for any p s.t.

u + 2 ≤ p ≤ kγ/u and any t ≤ p − u − 2, Protocol 5.1.10 is a (t, p − t) computational network

extractor.

To prove the theorem, we first prove the following lemma (in the lemma and the analysis

we use capital letters to denote the corresponding strings viewed as random variables):

Lemma 5.1.12. Let ` ∈ [p] be the smallest element such that the set {P1, . . . , P`} contains at

least u honest players: Ph1 , · · · , Phu. Denote the remaining honest players by Pg1 , · · · , Pgv . Let e

denote the concatenation of all eji ’s, and b denote the concatenation of the broadcasted sources of

all faulty players. Then

({Zgi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E,B) ≈ ({Ugi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E,B).

In other words, at the end of phase 1, the outputs of all the honest players, except the fist u

honest players, are indistinguishable from being independent and uniform, even given Xh1 , · · · , Xhu ,

f (`+1)(Xg1), · · · , f (`+1)(Xgv), all the Eji ’s, and all the sources broadcasted by the faulty players.

Remark 5.1.13. This statement is stronger than the statement that Zg1 , · · · , Zgv are indistinguish-

able from being independent and uniform given all the transcript of Phase 1, because the transcript

can be computed in polynomial time from (Xh1 , · · · , Xhu , f
(`+1)(Xg1), · · · , f (`+1)(Xgv), E,B) (Note

that the players Pg1 , · · · , Pgv broadcast their sources after round `, thus gi > `. So the broadcasted

sources {f (gi+1)(Xgi)} can be computed efficiently from {f (`+1)(Xgi)}).

Outline of the Proof. We first give an informal outline of the proof, since the proof involves a

lot of notations.

We are going to fix the “good” round ` = hu, where u honest players have broadcasted

their sources. We then argue that in this round, the output E`i of all honest players that haven’t

broadcasted their sources are statistically close to uniform, independent of the transcript so far

and independent of each other. To do this, note the sources broadcasted by honest players are

independent, and each has min-entropy nα. Thus when we apply IExt to the sources from u honest

players, the output will be close to uniform, and therefore, the matrix M` in round ` is close to

a somewhere random source. The hope is that when we apply BasicExt to M` and a remaining
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honest player’s source, the output will be close to uniform and independent of the transcript so far

by Theorem 3.5.11.

However, the transcript contains information(specifically, eji ’s) about the remaining honest

players’ sources. Thus we’ll have to first fix the transcript, and argue that conditioned on a TYPI-

CAL fixing, a remaining honest player’s source and M` still satisfy the conditions in Theorem 3.5.11.

To do this, we first fix (Xh1 , . . . , Xhu−1). Note that conditioned on this fixing, IExt(Xh1 , . . . , Xhu)

is a deterministic function of Xhu . We then show by induction on round j < ` that conditioned on

any fixing of the transcript, Xhu and the remaining honest players’ sources are still independent.

Moreover, since the size of eji ’s are small, by Lemma 3.5.14 and Lemma 2.3.14 conditioned a typical

fixing of the transcript so far, IExt(Xh1 , . . . , Xhu) is close to a (k, k−kβ) source, and any remaining

honest player’s source is close to an (n, k − kβ) source, where β is the constant in Theorem 3.5.11.

Thus M` is close to a (`u × k)(k − kβ)-source and is independent of any remaining honest player’s

source. Now note ` < p, thus as long as p is small, by Theorem 3.5.11 the output E`i of all honest

players that haven’t broadcasted their sources are statistically close to uniform, independent of the

transcript so far and independent of each other.

Next, we argue that Z`gi is indistinguishable from being uniform and independent of the

transcript so far, and the subsequent computations do not reveal any information about it to a

computationally bounded adversary. Thus the final output of any Pgi is indistinguishable from

being uniform and private.

To do this, consider a particular honest player Pg1 . The fact that there are at least u + 2

honest players implies there are at least 2 honest players in {gi}. Pick another honest player Pg2 .

Assume for the sake of contradiction that there exists an adversary that distinguishes Z`g1
from

uniform, given the transcript and the subsequent computations. Then there is a fixing of all the

transcript so far(including E`g1
) and all the sources {Xgi}i 6={1,2} such that conditioned on the fixing,

the adversary still distinguishes Z`g1
from uniform. Note that now all subsequent transcript can be

computed in polynomial time from Xg2 and f (`+1)(Xg1). Thus there exists another adversary that

distinguishes Z`g1
from uniform given Xg2 and f (`+1)(Xg1). Recall Z`g1

= LExt(f (`)(Xg1), R`) and

now R` is a deterministic function of Xg2 . Thus Lemma 3.1.13 implies there is another adversary

that distinguishes Z`g1
from uniform given R` and f (`+1)(Xg1). Since E`g1

is statistically close to

uniform, the property of the secure multiparty computation guarantees that R` is indistinguishable

from being uniform and independent of Xg1 . Thus the existence of the above adversary contradicts

Theorem 3.1.12.
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Proof of Lemma 5.1.12. We assume without loss of generality that the PPT adversary (who

controls all the malicious players) is deterministic. Thus, it suffice to prove

({Zgi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E) ≈ ({Ugi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E) (5.18)

Note that after round `, there are u honest players who have already broadcasted their sources.

The fact that f is deterministic and injective implies that Yh1 , · · · , Yhu are all independent and each

has min-entropy k = nα. Thus by Theorem 3.5.9, Mh1,··· ,hu = IExt(Yh1 , · · · , Yhu) is 2−k
Ω(1)

-close to

being uniform. We now introduce some notations:

• Ej = {Eqi }i∈[p],q≤j , Z
j = {Zqi }i∈[p],q≤j , where Eqi is computed by player Pi in step 3 of round

q in phase 1, and Zqi is computed by player Pi in step 5 of round q in phase 1. Thus, Ej

consists of all Eqi ’s computed by all players in all rounds ≤ j, Zj consists of all Zqi ’s of all

players in all rounds ≤ j.

Now fix

(xh1 , . . . , xhu−1)← (Xh1 , . . . , Xhu−1)

(e`−1, z`−1)← (E`−1, Z`−1)

For any random variable Z, we denote by Z ′ the random variable Z conditioned on these

fixings. Let TYPICAL denote the event that conditioned on these fixings, the following properties

are satisfied:

• X ′hu , X
′
g1
, · · · , X ′gv are independent random variables.

• M ′h1,··· ,hu is 2−k
Ω(1)

-close to having min-entropy k − kβ.

• ∀i ∈ [v], X ′gi has min-entropy k − kβ.

Here β is the parameter in Theorem 3.5.11. We have

Claim 5.1.14.

Pr[TYPICAL] = 1− negl(n).
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The proof of this claim is by induction on j < ` and is very similar to the proofs of

Claim 6.1.4 and Claim 6.1.5, therefore we omit the details here. The only difference is that initially

Mh1,··· ,hu is only 2−k
Ω(1)

-close to being uniform(having min-entropy k). Thus when dealing with it

we need to use Lemma 2.3.14 instead of Lemma 3.5.14.

Now, further fix

(x′hu ← X ′hu)

For any random variable Z ′, we let Z ′′ = Z ′|(X ′hu = x′hu). Let TYPICAL2 denote the event

that conditioned on all the above fixings, the following properties are satisfied:

• ∀i ∈ [v], (E`gi)
′′ is 2−k

Ω(1)
-close to being uniform, and is a deterministic function of X ′′gi .

• X ′′g1
, · · · , X ′′gv are independent random variables.

Claim 5.1.15. If TYPICAL holds, then

Pr[TYPICAL2] = 1− negl(n).

As before, the proof of this claim is very similar to the proofs of Claims 6.1.4 and 6.1.5,

and therefore we omit the details here. One thing that needs to be noted is that M` is a `u × k
matrix. Thus as long as p < kγ/u, where γ is the constant in Theorem 3.5.11, the claim follows

from Theorem 3.5.11.

Now, assume for the sake of contradiction that Equation (5.18) does not hold. Namely, as-

sume that there exists a polynomial time non-uniform adversary A1 and there exists a polynomial q

such that for infinitely many n’s,

|Pr[A1({Zgj}j∈[v], {Xhj}j∈[u], {f (`+1)(Xgj )}j∈[v], E) = 1]−

Pr[A1({Ugj}j∈[v], {Xhj}j∈[u], {f (`+1)(Xgj )}j∈[v], E) = 1]| > 1

q(n)

A standard hybrid argument implies that there exists i ∈ [v] such that for infinitely many n’s,

|Pr[A1(Zgi , {Zgj}j 6=i,j∈[v], {Xhj}j∈[u], {f (`+1)(Xgj )}j∈[v], E) = 1]−

Pr[A1(U, {Zgj}j 6=i,j∈[v], {Xhj}j∈[u], {f (`+1)(Xgj )}j∈[v], E) = 1]| > 1

p · q(n)

112



We assume without loss of generality that i = 1. Recall that there are at least u+ 2 honest

players. Thus, there are at least 2 honest players in {gj}j∈[v]. Pick another honest player Pg2 . We

say that a tuple

(e`−1, z`−1, e`g1
, {xhj}j∈[u], {xgj}j∈[v],j 6={1,2})← (E`−1, Z`−1, E`g1

, {Xhj}j∈[u], {Xgj}j∈[v],j 6={1,2})

is BAD if conditioned on the fixing of this tuple, the following properties are satisfied:

1. There exists a non-uniform polynomial time adversary A2 such that for infinitely many n’s,

∣∣∣Pr[A2(Z`g1
, R`, Xg2 , f

(`+1)(Xg1)) = 1]− Pr[A2(U,R`, Xg2 , f
(`+1)(Xg1)) = 1]

∣∣∣ ≥ 1

2p · q(n)
,

2. Xg1 and Xg2 are independent. E`g2
is a deterministic function of Xg2 and is 2−k

Ω(1)
-close to

being uniform. Xg1 has min-entropy k − o(k).

Claim 5.1.16. There exists a BAD tuple.

Again, the proof of this claim is rather standard and is very similar to the proof of

Claim 5.1.7, we thus omit the details here.

Now fix a BAD tuple (e`−1, z`−1, e`g1
, {xhj}j∈[u], {xgj}j∈[v],j 6={1,2}). Then all R`j ’s from honest

players except Pg2 are fixed. The R`j ’s from faulty players are a deterministic function of the

transcript so far, thus are also fixed. Note R` =
⊕
R`j and R`g2

is a deterministic function of Xg2 .

Thus R` is now a deterministic function of Xg2 . Note Xg1 and Xg2 are independent conditioned

on the fixing, thus Rl is independent of Xg1 . Moreover, since E`g2
is 2−k

Ω(1)
-close to being uniform,

the property of the secure multiparty computation protocol guarantees that the R`j ’s from faulty

players are indistinguishable from being independent of R`g2
. Thus R` =

⊕
R`i is indistinguishable

from being uniform. Note Z`g1
= LExt(f (`)(Xg1), R`), thus

(Z`g1
, R`, f (`+1)(Xg1)) ≈ (LExt(f (`)(Xg1), Ud), Ud, f

(`+1)(Xg1)), (5.19)

On the other hand, note that when we fix the BAD tuple, Xg1 and Xg2 are independent,

and R` is a deterministic function of Xg2 . Thus by the first property of the BAD tuple and
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Lemma 3.1.13, there exists another non-uniform adversary A3 that runs in time 2|R
`|nTime(A2) =

poly(n, 1
ε )Time(A2) = poly(nlogn) such that

∣∣∣Pr[A3(Z`g1
, R`, f (`+1)(Xg1)) = 1]− Pr[A3(U,R`, f (`+1)(Xg1)) = 1]

∣∣∣ ≥ 1

2p · q(n)
.

Note Rl ≈ Ud, combined with Equation 5.19 we get

∣∣∣Pr[A3(LExt(f (`)(Xg1), Ud), Ud, f
(`+1)(Xg1)) = 1]− Pr[A3(U,Ud, f

(`+1)(Xg1)) = 1]
∣∣∣ > 1

3p · q(n)
.

Note f (`)(Xg1) has min-entropy k − o(k) > 0.9k = 0.9nα conditioned on all the fixings and

f is a one way permutation for 0.3nα-sources. Note A3 that runs in time poly(nlogn). Thus this

contradicts Theorem 3.1.12.

Once we have the lemma, it’s fairly easy to prove the main theorem. We first prove that if

{Zgi}’s are really {Ugi}’s, then all Wi’s of honest players are indistinguishable from being uniform

and private. Then since {Zgi}’s are indistinguishable from {Ugi}’s, the theorem follows.

To prove the statement above, consider any particular honest player Pj . Assume there exists

a PPT adversary that distinguishes Wj and uniform given the transcript in Phase 1 and Phase 2.

We first fix all honest players’ sources except Pj . There is a fixing of the sources such that the

adversary still distinguishesWj and uniform given the transcript. Note after this fixing all transcript

in Phase 1 and Phase 2 except {Ugi}’s are a deterministic function of Xj . Now we further fix all the

transcript and {Ugi}’s except f (j+1)(Xj) and Ug1 . Again there is a fixing such that the adversary

still distinguishes Wj and uniform. Now the adversary is only given f (j+1)(Xj) and Ug1 . Recall

Wj = LExt(f (j)(Xj), R) and note now R is a deterministic function of Ug1 . Thus Lemma 3.1.13

implies there exists another adversary that distinguishes Wj and uniform given R and f (j+1)(Xj).

The property of the secure multiparty computation guarantees that R is indistinguishable from

being uniform and independent of Xj . Note all Eji ’s and Zji ’s are small thus conditioned on all the

fixings mentioned above f (j)(Xj) still has min-entropy > 0.9k. Thus the existence of the above

adversary contradicts Theorem 3.1.12.

Proof of Theorem 5.1.11. Again, we assume without loss of generality that the PPT adversary

(who controls all the malicious players) is deterministic. At the end of Phase 1, we have
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({Zgi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E) ≈ ({Ugi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E)

Let the set of all honest players be G, i.e., G = {hi}∪{gi}. Note that ({Zhi}i∈[u], {f (hi)(Xhi)}i∈[u],

{f (gi)(Xgi)}i∈[v]) can be computed in polynomial time from ({Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E) (keep

in mind that gi ≥ l + 1). Thus we have

({Zgi}i∈[v], {Zhi}i∈[u], {f (i)(Xi)}i∈G , E) ≈ ({Ugi}i∈[v], {Zhi}i∈[u], {f (i)(Xi)}i∈G , E) (5.20)

Note that the transcript in Phase 1 can be computed in polynomial time from (E, {f (i+1)(Xi)}i∈G),

and the transcript in Phase 2 can be computed in polynomial time from ({Zi}i∈[p]). Moreover,

({Zi}i/∈G) can be computed in polynomial time from the transcript in Phase 1. Thus to prove the

theorem it suffices to prove

({Wi}i∈G , {Zi}i∈G , {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zi}i∈G , {f (i+1)(Xi)}i∈G , E).

Now if we run Phase 2 with the two distributions on both sides of Equation 5.20, and let

w̄i denote the output of player Pi when we run the protocol with the right hand side distribution,

we get

({Wi}i∈G , {Zhi}i∈[u], {Zgi}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({W̄i}i∈G , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E). (5.21)

We’ll first prove

({W̄i}i∈G , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E).

Assume for the sake of contradiction that there exists a non-uniform polynomial time adversary

A1 and a polynomial q such that for infinitely many n’s,
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|Pr[A1({W̄i}i∈G , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]−

Pr[A1(Ui}i∈G , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]| > 1

q(n)

A standard hybrid argument implies that there exists j ∈ G such that

|Pr[A1(W̄j , {W̄i}i∈G,i 6=j , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]−

Pr[A1(U, {W̄i}i∈G,i 6=j , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]| > 1

p · q(n)

for infinitely many n’s.

We say that a tuple

(e, {zhi}i∈[u], {xi}i 6=j,i∈G)← (E, {Zhi}i∈[u], {Xi}i 6=j,i∈G)

is BAD if conditioned on the fixing of this tuple, the following properties are satisfied:

1. There exits a non-uniform polynomial time adversary A2 such that for infinitely many n’s

∣∣∣Pr[A2(W̄j , {Ugi}i∈[v], f
(j+1)(Xj)) = 1]− Pr[A2(U, {Ugi}i∈[v], f

(j+1)(Xj)) = 1]
∣∣∣ ≥ 1

2p · q(n)
,

2. Xj has min-entropy k − o(k).

Claim 5.1.17. There exists a BAD tuple.

Proof of Claim 5.1.17. A standard probabilistic argument shows that a random tuple

(e, {zhi}i∈[u], {xi}i 6=j,i∈G)← (E, {Zhi}i∈[u], {Xi}i 6=j,i∈G)

satisfies
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|Pr[A1(W̄j , {W̄i}i∈G,i 6=j , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]−

Pr[A1(U, {W̄i}i∈G,i 6=j , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]| ≥ 1

2p · q(n)

with probability at least 1
2p·q(n) .

Note that once (E, {Zhi}i∈[u], {Xi}i 6=j,i∈G) are fixed, ({W̄i}i∈G,i 6=j , {f (i+1)(Xi)}i∈G,i 6=j) can

be computed in polynomial time from {Ugi}i∈[v]. Thus there exists a non-uniform adversary PPT

A2 that has the fixings hardwired into it such that

∣∣∣Pr[A2(W̄j , {Ugi}i∈[v], f
(j+1)(Xj)) = 1]− Pr[A2(U, {Ugi}i∈[v], f

(j+1)(Xj)) = 1]
∣∣∣ ≥ 1

2p · q(n)

Furthermore, since {Xi}i∈G are independent, it’s easy to show by induction on round j′ ∈
[p] that the only fixings that can cause Xj to lose entropy are Ej

′

j ’s and Zj , and these are a

deterministic function of Xj(conditioned on the fixings). The total length of these strings is at

most O(p log3 n) = o(k) since k = nα and p ≤ kγ/u. Thus by Lemma 3.5.14 with probability

1− negl(n) over the fixings of (E, {Zhi}i∈[u], {Xi}i 6=j,i∈G), Xj has min-entropy k− o(k). The claim

thus follows.

Now we further fix {Ugi}i∈[v] except Ug1 . There is a fixing of {Ugi}i∈[v],i 6=1 that preserves

this probability. Thus there exists a non-uniform PPT adversary A3 that has the fixings hardwired

into it such that conditioned on the fixings,

∣∣∣Pr[A3(W̄j , Ug1 , f
(j+1)(Xj)) = 1]− Pr[A3(U,Ug1 , f

(j+1)(Xj)) = 1]
∣∣∣ ≥ 1

2p · q(n)

for infinitely many n’s.

Moreover, after all these fixings R is a deterministic function of Ug1 . Note that W̄j =

LExt(f (j)(Xj), R) and Ug1 is independent of Xj . Thus by Lemma 3.1.13 there exists a non-uniform

adversary A4 that runs in time 2|R|nTime(A3) = poly(n, 1
ε )Time(A3) = poly(nlogn) such that∣∣∣Pr[A4(W̄j , R, f

(j+1)(Xj)) = 1]− Pr[A4(U,R, f (j+1)(Xj)) = 1]
∣∣∣ ≥ 1

2p · q(n)
.
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Note Ug1 is uniform and independent of all the other random variables, thus the property

of the secure multiparty computation protocol guarantees that R =
⊕
Ri is indistinguishable from

being uniform and independent of Xj . Further note conditioned on all the fixings above, f (j)(Xj)

has min-entropy k− o(k) > 0.9k. Note f is a one way permutation for 0.3k-sources and A4 runs in

time poly(nlogn). Thus this contradicts Theorem 3.1.12.

Therefore, we must have

({W̄i}i∈G , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E).

From Equation 5.20 we get

({Ui}i∈G , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zhi}i∈[u], {Zgi}i∈[v], {f (i+1)(Xi)}i∈G , E).

Therefore

({W̄i}i∈G , {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zhi}i∈[u], {Zgi}i∈[v], {f (i+1)(Xi)}i∈G , E).

Together with Equation 5.21 this implies

({Wi}i∈G , {Zi}i∈G , {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zi}i∈G , {f (i+1)(Xi)}i∈G , E).

as desired.
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Chapter 6

Improved Constructions of Extractors

In this chapter we give results that improve previous constructions of extractors in various

ways. As described in the introduction, extractors are algorithms that take as input different kinds

of weak random sources and output a distribution that is close to uniform. As illustrated in the

previous chapters, extractors play an important role in applications that involve weak random

sources. Extractors are also combinatorial objects that are interesting in their own rights.

6.1 A Two-Source Extractor under Computational Assumptions

In this section, we show that we can build a better two-source extractor if we assume a

computational assumption. The assumption is the one that has already been used in Chapter 5–

there exist one way permutations for weak random sources. Informally, we have the following

theorem.

Theorem 6.1.1 (2-Source Extractor). Suppose that for every δ > 0, there exists a family of

one-way permutations for (n, 0.3δn)-sources. Then there is a polynomial time computable 2-source

extractor for 2 independent (n, δn)-sources that extracts nΩ(1) bits that are computationally indis-

tinguishable from uniform.

Note that the first O(log n) bits of the output of our extractor are actually guaranteed to

be statistically indistinguishable from uniform, since every statistical test on such a small number

of bits can be efficiently simulated. Thus, even though we make a computational assumption, our

conclusion is of an information theoretic nature.

6.1.1 Overview of Our Construction

In this section we shall be slightly inaccurate, in order to easily convey what we consider to

be the key ideas in our work. We first note that it is well known how to extract randomness from

two independent sources, assuming one of them is a block source. A block source X is a source that
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can be partitioned into two parts X = (X1, X2) in such a way that X1 has entropy δn, and X2

has entropy δn even conditioned on any fixing of X1 = x1. The entropy in such a source is spread

out, and it is well known how to take advantage of such structure. For example, it is known how

to extract randomness from a block source X = (X1, X2) using an independent weak source Y , as

long as the blocks X1, X2 and the weak source Y each have entropy δn [BRSW06, RZ08, BKS+05].

Block sources are fairly general, in the sense that every weak source can be shown to be a

convex combination of block sources — for every source X with linear entropy δn, if X is broken

into a sufficiently large (t = 100/δ) number of blocks X = (X1, X2, . . . , Xt), then X is a convex

combination of sources, where each element in the convex combination has the structure that there

is some index j ∈ [t] for which (Xj , X) is a block source where each block has linear entropy.

Intuitively, each block in the source has at most δn/100 bits, and so cannot contain all δn bits of

entropy.

This fact alone is not enough to apply extractors for block sources, since the index j above

is not known ahead of time. Still, we might be tempted to try the following approach:

Naive 2-Source Extractor for (X,Y)

1. Let BExt be an extractor for a block source and an independent weak source

2. Partition x = (x1, . . . , xt).

3. For every i, compute ri = BExt(xi, x, y).

4. Output the bitwise xor r1 ⊕ · · · ⊕ rt.

Since it is no loss of generality to assume that there is some index j for which (Xj , X) is

a block source, Rj = BExt(Xj , X, Y ) must be uniform. Unfortunately, the reason this algorithm

does not work is that the rest of the candidate random strings Ri are not independent of Rj , and

so the output could be a fixed constant even though Rj is uniform.

Our actual construction is a variation of the above construction, where we use computational

assumptions to enforce that Rj is independent (in some sense) from the other Ri’s. More specifically,

we use a one-way permutation for δn-sources to generate independence. This idea was implicit in the

work of Goldreich-Levin [GL89] on finding hardcore predicates. There they showed that for any one-

way function f , the triplet (〈X,R〉, R, f(X)) is computationally indistinguishable from (U,R, f(X)),

where U is a random bit, and X,R are both uniformly distributed in {0, 1}n. In other words, they
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showed that 〈X,R〉 looks random and independent of (R, f(X)), even though it may be uniquely

determined by (R, f(X)). Their construction was an early example of a reconstructive extractor, a

concept that was subsequently formalized and refined in a sequence of works [NW94, Tre01, TZ04,

TUZ01, SU05, Uma05]. We now know of several different constructions of reconstructive extractors.

We do not define this concept here, but what is important to know in our application is that every

reconstructive extractor RExt must satisfy the property that if f is one-way with respect to a weak

source X, then

(RExt(X,R), R, f(X)) ≈ (Uniform, R, f(X)),

where ≈ denotes computational indistinguishability.

Given such an object, here is how we can use it to build a 2-Source extractor.

Our 2-Source Extractor

1. Let BExt be an extractor for a block source and an independent weak source and RExt be a

reconstructive (seeded) extractor. Let f be a one-way permutation for weak sources.

2. Partition x = (x1, . . . , xt).

3. For every i, compute zi = BExt(xi, x, f
i(y)).

4. Set ri = RExt(f i(y), zi).

5. Output the bitwise xor r1 ⊕ · · · ⊕ rt.

Here f i(y) = f(f(· · · f(y) · · · )), where f is applied i times. The goal here is to break the

dependence (at least in a computational sense) between the Ri’s.

Outline of the analysis. To analyze this construction, we need to exploit a strong property of

BExt(X1, X2, Y ). It turns out that one can show that there is a random variable T on a few bits,

such that for every fixing of (T,X1),

• BExt(X1, X2, Y ) is independent of Y .

• BExt(X1, X2, Y ) is uniform.
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In particular, since the output of BExt is only a few bits, this means that after fixing (X1, T ),

we can fix the output of BExt(X1, X2, Y ) and still be left with two independent sources X,Y with

high entropy (here we assume the slightly inaccurate fact that fixing a binary string of length l can

only reduce the entropy of another variable by l).

Recall that there is some index j for which (Xj , X) is a block source. In the first step of

the analysis, we use the properties of BExt described above to fix Z1, . . . , Zj−1 and R1, . . . , Rj−1.

We claim that even after this fixing, (Xj , X) is a block source that is independent of the source Y

with linear entropy. We do this by fixing each of the Z1, . . . , Zj−1’s one by one. Each such fixing

maintains the independence we want, yet does not reduce the entropy of the sources by much, since

the Zi’s are short. Once all the Zi’s are fixed, the corresponding Ri’s are deterministic functions

of Y that output only a few bits, so we can fix them without reducing the entropy in Y by much.

Care must be taken that all of these fixings do not ruin the entropy in Xj (in particular, fixing

X1, . . . , Xj−1 should not ruin the entropy in Xj), but it turns out that this can be done.

We get that after all these fixings, Zj must be uniform and independent of Y . Thus, by

the properties of reconstructive extractors, the following two distributions are computationally

indistinguishable:

(Rj , Zj , f
j+1(Y )) ≈ (Uniform, Zj , f

j+1(Y )).

In fact, we can actually prove the stronger statement that

(Rj , X, f
j+1(Y )) ≈ (Uniform, X, f j+1(Y )).

Observe that information theoretically this is very far from true. In fact, Rj is a deter-

ministic function of (X, f j+1(Y )). Finally, since (Rj+1, . . . , Rt) are all efficiently computable from

(X, f j+1(Y )), we obtain

(X, f j+1(Y ), Rj) ≈ (X, f j+1(Y ),Uniform),

which implies that the output of our extractor is computationally indistinguishable from uniform.

In fact, our proof shows that the extractor is strong — the output looks uniform even if

one of the inputs is known.

6.1.2 The Formal Analysis

We have the following theorem:
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Theorem 6.1.2. Fix a constant α > 0 and parameters t = 4
α and k ≥ nΩ(1). Assume that there

exists a permutation f : {0, 1}n → {0, 1}n such that for any (n, 0.3k)-source Y , any non-uniform

adversary that runs in time poly(nlogn) can invert f(Y ) with only negligible probability. Then

TExt : {0, 1}n × {0, 1}n → {0, 1}m described above is a computational 2-source extractor such that

for any (n, αn)-source X, and any (n, k)-source Y that is independent of X,

(TExt(X,Y ), X) ≈ (Um, X)

Remark.

• Rather than proving Theorem 6.1.2, we prove the following (stronger) statement:

(TExt(X,Y ), X, h(X), f (t+1)(Y )) ≈ (Um, X, h(X), f (t+1)(Y )), (6.1)

where h is any deterministic function (not necessarily computable in polynomial time) on

{0, 1}n. The reason is that we need this stronger variant for our network extractor protocol

in Chapter 5.

• If we let m = O(log n), then the theorem implies that in particular,

|TExt(X,Y )− Um| = negl(n)

.

To prove Equation (6.1) we first prove the following lemma(in the analysis we use capital letters to

denote the corresponding strings viewed as random variables).

Lemma 6.1.3. Divide X into X = (X1, . . . , Xt) as in the construction of TExt, and let Z =

TExt(X,Y ). Suppose there exists g ∈ [t] such that

• X1, . . . , Xg−1 are fixed.

• H∞(Xg) ≥ α2

6 .

• H∞(X|Xg) ≥ α2

6 .

Then

(Z,X, h(X), f (t+1)(Y )) ≈ (Um, X, h(X), f (t+1)(Y ))
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Proof of Lemma 6.1.3. Let sri denote the string sr computed in BExt(xi, x, f
(i)(Y )). Fix

(sr1, . . . , srg−1)← (SR1, . . . , SRg−1)

(r1, . . . , rg−1)← (R1, . . . , Rg−1)

and

(z1, . . . , zg−1)← (Z1, . . . , Zg−1).

For any random variable Z, we denote by Z ′ the random variable Z conditioned on these

fixings.

Let TYPICAL denote the event that conditioned on these fixings, the following conditions

are satisfied:

• X ′ and Y ′ are independent

• H∞(Y ′) ≥ k − polylog(n)

• H∞(X ′g) ≥ α2

8 n

• With probability 1− negl(n) over (x′g ← X ′g), H∞(X ′|X ′g = x′g) ≥ α2

8 n

Claim 6.1.4.

Pr[TYPICAL] = 1− negl(n).

Proof of Claim 6.1.4. SinceX1, . . . , Xg−1 are fixed, (SR1, . . . , SRg−1) is a deterministic function

of Y . Thus, conditioning on (sr1, . . . , srg−1)← (SR1, . . . , SRg−1), X and Y are still independent.

Moreover, since each sri has size cs, the total size of (sr1, . . . , srg−1) is bounded by tcs = polylog(n).

Thus, by Lemma 3.5.14, with probability 1 − negl(n) over these fixings, Y has min-entropy k −
polylog(n) (let ε = 2− log2 n in the lemma).

Next, we further condition on (r1, . . . , rg−1)← (R1, . . . , Rg−1). Note that now (R1, . . . , Rg−1)

is a deterministic function of X. Thus, conditioned on this fixing, X and Y are still indepen-

dent. Moreover, since each ri is of size polylog(n), the total size of (r1, . . . , rg−1) is bounded by

t|ri| = polylog(n). Thus, by Lemma 3.5.14, with probability 1− negl(n) over these fixings, Xg has
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min-entropy H∞(Xg) − polylog(n) > α2

8 n (let ε = 2− log2 n in the lemma). Next, note that condi-

tioned on any fixing of xg ∈ Supp(Xg), we have H∞(X) ≥ α2

6 n, and with probability 1 − negl(n)

over the further fixings of (R1, . . . , Rg−1), H∞(X) > α2

8 n. Thus we have

Pr
Xg ,R1,...,Rg−1

[H∞(X ′|X ′g = x′g) >
α2

8
n] ≥ 1− ε1,

where ε1 = negl(n).

Now a standard averaging argument shows that, with probability at least 1−√ε1 over the

fixings of (R1, . . . , Rg−1),

Pr
x′g←X′g

[H∞(X ′|X ′g = x′g) >
α2

8
n] ≥ 1−

√
ε1.

Note ε1 = negl(n), thus
√
ε1 = negl(n).

Finally, we further condition on (z1, . . . , zg−1)← (Z1, . . . , Zg−1). Note that now (Z1, . . . , Zg−1)

is a deterministic function of Y . Thus, conditioned on this fixing, X and Y are still indepen-

dent. Moreover, since each zi is of size polylog(n), the total size of (z1, . . . , zg−1) is bounded by

t|zi| = polylog(n). Thus, by Lemma 3.5.14, with probability 1 − negl(n) over these fixings, Y has

min-entropy k − polylog(n)− polylog(n) = k − polylog(n) (let ε = 2− log2 n in the lemma).

The probability that all of the above happen is at least 1 − negl(n) − negl(n) − negl(n) =

1− negl(n).

Now fix

(x′g, sr
′
g)← (X ′g, SR

′
g).

For every random variable Z ′, denote by

Z ′′ = Z ′|(X ′g = x′g, SR
′
g = sr′g).

Let TYPICAL2 denote the event that conditioned on all the above fixings, the following holds:

• X ′′ and Y ′′ are independent, R′′g is a deterministic function of X ′′

• H∞(Y ′′) ≥ 0.9k

• (R′′g , Y
′′) ≡ (Ud, Y

′′)

Claim 6.1.5. If TYPICAL holds, then

Pr[TYPICAL2] = 1− negl(n)
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Proof of Claim 6.1.5. First note that when TYPICAL holds, X ′ and Y ′ are independent, and

H∞(X ′g) ≥ α2

8 n. This means X ′g has min-entropy rate ≥ α
2 . Therefore by Theorem 3.5.2 M ′g is

2−Ω(n)-close to a (c × `)0.9`-somewhere random source. Theorem 3.5.7 implies that there exists a

somewhere-random source SR with c rows, each row of length s, s.t.

|(M ′g, SR′g)− (M ′g, SR)| = negl(n).

A standard averaging argument shows that with probability 1 − negl(n) over the fixing of

M ′g (and thus X ′g), we still have

|SR′g − SR| = negl(n).

Moreover, X ′g (and thus M ′g) is a deterministic function of X ′, thus conditioned on the fixing

of X ′g (and thus M ′g), X
′ and Y ′ are still independent. Note once conditioned on M ′g, SR

′
g is a

deterministic function of Y ′, and is thus independent of X ′. Also, with probability 1−negl(n) over

the fixing of X ′g, H∞(X ′) ≥ α2

8 n. The probability that both these two events happen is 1−negl(n),

and when this happens, Theorem 3.5.11 implies that

|(SR′g, Rg)− (SR′g, Ud)| < 2−n
Ω(1)

+ negl(n) = negl(n).

Since this happens with probability 1− negl(n), we actually have that

|(SR′g, Rg)− (SR′g, Ud)| = negl(n).

Again, by a standard averaging argument, with probability 1 − negl(n) over the fixing of

SR′g, we still have

|Rg − Ud| = negl(n).

Note since SR′g is a deterministic function of Y ′, conditioning on it still leaves X ′ and Y ′

independent. Moreover, since the size of srg is small, the same argument in the proof of Claim 6.1.4

implies that with probability 1 − negl(n) over the fixings of SR′g, H∞(Y ′) ≥ k − polylog(n) −
polylog(n) > 0.9k. Finally, conditioned on the fixing of SR′g, Rg is a deterministic function of X ′,

and is thus independent of Y ′. Note |Rg − Ud| = negl(n), therefore
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(Rg, Y
′′) ≡ (Ud, Y

′′)

The probability that all of the above are satisfied is 1− negl(n).

Next we prove the following claim.

Claim 6.1.6. If both TYPICAL and TYPICAL2 hold, then

(⊕ti=gZ ′′i , X ′′, h(X ′′), f t+1(Y ′′)) ≈ (Um, X
′′, h(X ′′), f t+1(Y ′′))

Proof of Claim 6.1.6. Assume for the sake of contradiction that there exists a non-uniform

PPT adversary A1 and a polynomial q such that for infinitely many n’s∣∣Pr[A1(⊕ti=gZ ′′i , X ′′, h(X ′′), f t+1(Y ′′)) = 1]− Pr[A1(Um, X
′′, h(X ′′), f t+1(Y ′′)) = 1

∣∣ ≥ 1

q(n)
.

Since Z ′′g+1, · · · , Z ′′t and f t+1(Y ′′) can be computed from (X ′′, fg+1(Y ′′)) in polynomial time, there

exists another non-uniform PPT adversary A2 such that∣∣Pr[A2(Z ′′g , R
′′
g , X

′′, h(X ′′), fg+1(Y ′′)) = 1]− Pr[A2(Um, R
′′
g , X

′′, h(X ′′), fg+1(Y ′′)) = 1
∣∣ ≥ 1

q(n)
.

Recall that

Z ′′g = RExt(f (g)(Y ′′), R′′g)

and f (g)(Y ′′) is a deterministic function of f (g+1)(Y ′′)(though not computable in polynomial

time). Thus Z ′′g is a deterministic function of f (g+1)(Y ′′) and R′′g . Next note that R′′g is a determin-

istic function of X ′′, and X ′′, Y ′′, Um are independent. Thus Lemma 3.1.13 implies that there exists

another non-uniform adversaryA3 that runs in time 2d·n·poly(n) = poly(n, 1
ε )·poly(n) = poly(n, 1

ε )

such that ∣∣Pr[A3(Z ′′g , R
′′
g , f

g+1(Y ′′)) = 1]− Pr[A3(Um, R
′′
g , f

g+1(Y ′′)) = 1]
∣∣ ≥ 1

q(n)
.

Note that the fact that TYPICAL2 holds implies that (R′′g , Y
′′) ≡ (Ud, Y

′′). This, together

with Proposition 2.1.2 implies that∣∣∣Pr[A3(RExt(f (g)(Y ′′), Ud), Ud, f
g+1(Y ′′)) = 1]− Pr[A3(Um, Ud, f

g+1(Y ′′)) = 1]
∣∣∣

≥ 1

q(n)
− negl(n) >

1

2q(n)
,
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Note Y ′′ has min-entropy 0.9k thus f (g)(Y ′′) also has min-entropy 0.9k. Note f is one way

for 0.3k-sources and A3 runs in time poly(n, 1
ε ) = poly(nlogn), thus this contradicts Theorem 3.1.12.

Now, since the event that both TYPICAL and TYPICAL2 hold happens with probability

1− negl(n), by Lemma 2.4.4 we have

(⊕ti=gZi, {Zi}i∈[g−1], X, h(X), f t+1(Y )) ≈ (Um, {Zi}i∈[g−1], X, h(X), f t+1(Y )).

Note that Z = ⊕ti=1Zi, thus

(Z,X, h(X), f t+1(Y )) ≈ (Um, X, h(X), f t+1(Y )).

This proves the lemma.

proof of Theorem 6.1.2. Since we divide X into t = 4
α blocks, Lemma 2.3.6 says that X is 2−n

Ω(1)
-

close to being a convex combination of {Xj}j∈J such that for every j ∈ J , Xj satisfies the conditions

in Lemma 6.1.3. For every j ∈ J , let Zj = TExt(Xj , Y ), then

(Zj , Xj , h(Xj), f (t+1)(Y )) ≈ (Um, X
j , h(Xj), f (t+1)(Y )).

Thus, by Lemma 2.4.5, the theorem holds.

The computational two source extractor described above outputs random bits that are com-

putationally indistinguishable from being uniform, while assuming the existence of a one-way per-

mutation f s.t. for any (n, 0.3k) source X, any non-uniform adversary that runs in time poly(nlogn)

can only invert f(X) with negligible probability. Note that the running time of the adversary is

slightly super-polynomial. However, even if we only assume that any polynomial time adversary

can only invert f(X) with negligible error, we can still get a two-source extractor, but the error

will only be polynomially small.

Theorem 6.1.7. Let ε = 1
poly(n) and m = O(log n) in the construction of TExt. Keep all the other

parameters the same. Assume that there exists a permutation f : {0, 1}n → {0, 1}n such that for

any (n, 0.3k)-source Y , any non-uniform adversary that runs in time poly(n) can invert f(Y ) with

only negligible probability. Then TExt is a 2-source extractor such that for any (n, αn)-source X,

and any (n, k)-source Y that is independent of X,

|TExt(X,Y )− Um| < 3ε.
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Proof Sketch. The proof basically follows the same steps in the proof of Theorem 6.1.2. We first

prove that for a source X that satisfies the conditions of Lemma 6.1.3, and Z = TExt(X,Y ), we

have

|Z − Um| < 2.9ε. (6.2)

To this end, we prove that when both TYPICAL and TYPICAL2 hold, we have

|Z ′′ − Um| < 2.5ε. (6.3)

Assume for the sake of contradiction that |Z ′′ − Um| ≥ 2.5ε. Since m = O(log n), there

exists a non-uniform PPT adversary A(simply check all the 2m strings) s.t.

∣∣Pr[A(Z ′′) = 1]− Pr[A(Um) = 1]
∣∣ ≥ 2.5ε

Note Z ′′ = ⊕ti=1Z
′′
i . Since Z1, . . . , Zg−1 are fixed, and Z ′′g+1, · · · , Z ′′t can be computed from

(X ′′, fg+1(Y ′′)) in polynomial time, there exists another non-uniform PPT adversary A1 such that

∣∣Pr[A1(Z ′′g , R
′′
g , X

′′, fg+1(Y ′′)) = 1]− Pr[A1(Um, R
′′
g , X

′′, fg+1(Y ′′)) = 1]
∣∣ ≥ 2.5ε

Recall that Z ′′g = RExt(f (g)(Y ′′), R′′g), thus Lemma 3.1.13 implies that there exists another

non-uniform adversary A2 that runs in time 2d · n · poly(n) = poly(n, 1
ε ) · poly(n) = poly(n) such

that ∣∣Pr[A2(Z ′′g , R
′′
g , f

g+1(Y ′′)) = 1]− Pr[A2(Um, R
′′
g , f

g+1(Y ′′)) = 1
∣∣ ≥ 2.5ε.

Note that the fact that TYPICAL2 holds implies that (R′′g , Y
′′) ≡ (Ud, Y

′′). This, together

with Proposition 2.1.2 implies that∣∣∣Pr[A2(RExt(f (g)(Y ′′), Ud), Ud, f
g+1(Y ′′)) = 1]− Pr[A2(Um, Ud, f

g+1(Y ′′)) = 1
∣∣∣

≥ 2.5ε− negl(n) > 2ε,

Note f (g)(Y ′′) has min-entropy 0.9k since f is a permutation. Now a similar argument as in

the proof of Theorem 3.1.12 implies that there exists another non-uniform adversary A3 that runs

in time poly(n, 1
ε ) · poly(n) = poly(n) and an (n, 0.3k)-source Ȳ such that A3 inverts f(Ȳ ) with

probability at least ε/4. This contradicts our assumption on f .
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Thus Equation 6.3 does hold. Since the event that both TYPICAL and TYPICAL2 hold

happens with probability 1− negl(n), Equation 6.2 holds. Now by Lemma 2.3.6, X is 2−n
Ω(1)

-close

to being a convex combination of {Xj}j∈J such that for every j ∈ J , Xj satisfies the conditions in

Lemma 6.1.3. Thus the theorem holds.

6.2 Three Source Extractors

In this section we give our improved constructions of three source extractors. The problem

of constructing extractors for independent sources has a long history that dates back to more than

twenty years ago [SV86, Vaz85, CG88], where it was shown that the inner product function is

a two source extractor for two independent weak random sources with min-entropy rate > 1/2.

After that there was no progress on this problem until recently, with the help of powerful theorems

from additive combinatorics, a series of results appeared [BIW04, BKS+05, Raz05, Bou05, Rao06,

BRSW06]. Perviously, the best explicit extractor for two independent (n, k) sources only achieves

min-entropy k = 0.499n [Bou05], the best known extractor for three independent sources achieves

min-entropy k = n0.9 [Rao06], and the best explicit extractor for independent (n, nα) sources

requires O(1/α) sources [Rao06, BRSW06]. Here we give the following theorem that improves

previous three source extractors.

Theorem 6.2.1. For every constant 0 < δ < 1/2, there exists a polynomial time computable

function THExt : ({0, 1}n)3 → {0, 1}m such that if X,Y, Z are three independent (n, k) sources with

k = n1/2+δ, then

|THExt(X,Y, Z)− Um| < n−Ω(δ)

with m = Ω(k).

The following table summarizes recent results on extractors for independent sources.

6.2.1 Overview of the Construction

Here we give a brief description of our constructions and the techniques used. For clarity

and simplicity we shall be imprecise sometimes.

Our construction of the three source extractor mainly uses somewhere random sources and

the extractor for such sources in [Rao06]. Informally, a somewhere random source is a matrix

of random variables such that at least one of the rows is uniform. If we have two independent

somewhere random sources X = X1 ◦ · · · ◦Xt and Y = Y1 ◦ · · · ◦ Yt with the same number of rows
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Number of Sources Min-Entropy Output Error Ref

O(poly(1/δ)) δn Θ(n) 2−Ω(n) [BIW04]

3 δn, any constant δ Θ(1) O(1) [BKS+05]

3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(1) O(1) [Raz05]

2
One source: (1/2 + δ)n, any constant δ.
Other source may have k ≥ polylog(n)

Θ(k) 2−Ω(k) [Raz05]

2
(1/2− α0)n for some small universal
constant α0 > 0

Θ(n) 2−Ω(n) [Bou05]

O(1/δ) k = nδ Θ(k) k−Ω(1) [Rao06]

O(1/δ) k = nδ Θ(k) 2−k
Ω(1)

[BRSW06]

3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(k) 2−k
Ω(1)

[Rao06]

3
k = n1−α0 for some small universal
constant α0 > 0

Θ(k) 2−k
Ω(1)

[Rao06]

3 k = n1/2+δ, any constant δ Θ(k) k−Ω(1) This work

Table 6.1: Summary of Results on Extractors for Independent Sources.

t, and there exists an i such that both Xi and Yi are uniform, then we call X and Y independent

aligned somewhere random sources. In [Rao06] it is shown that if we have two independent aligned

somewhere random sources X,Y with t rows and each row has n bits, such that t < nγ for some

arbitrary constant 0 < γ < 1, then we can efficiently extract random bits from X and Y .

Now given three independent (n, k) sources X,Y, Z with k = n1/2+δ, our construction uses

X to convert Y and Z into two somewhere random sources, such that with high probability over

the fixing of X (and some additional random variables), they are independent aligned somewhere

random sources, and the number of rows is significantly smaller than the length of each row. Then

we will be done by using the extractor in [Rao06] described above.

To illustrate how we do this, first assume that we have a strong seeded extractor that only

uses log n additional random bits and can extract almost all the entropy from an (n, k)-source with

error 1/100. A strong seeded extractor is a seeded extractor such that with high probability over

the fixing of the seed, the output is still close to uniform. We now try this extractor on X,Y

and Z with all 2logn = n possibilities of the seed and output nδ/2 bits. Thus we obtain three

n × nδ/2 matrices. Now we divide each matrix into
√
n blocks with each block consisting of

√
n

rows. Therefore we get X1◦· · ·◦Xt, Y 1◦· · ·◦Y t and Z1◦· · ·◦Zt, where t =
√
n and each Xi, Y i, Zi

is a block. By a standard property of strong seeded extractors, with probability 1 − 1/10 = 9/10
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over the fixing of the seed, the output is 1/10-close to uniform. Therefore in each matrix, at least

9/10 fraction of the rows are close to uniform. We say a block is “good” if it contains at least one

such row. Thus in each matrix at least 9/10 fraction of the blocks are good.

Now it’s easy to see that there exists an i such that all Xi, Y i and Zi are good. In other

words, in some sense the matrices are already “aligned”. Next, for each i we compute an output

Ri from (Xi, Y i, X, Y ) and an output R′i from (Xi, Zi, X, Z), with the property that if Xi, Y i are

good, then Ri is (close to) uniform, and if Xi, Zi are good, then R′i is (close to) uniform. We then

concatenate {Ri} to form a matrix SRy and concatenate {R′i} to form a matrix SRz. Since there

exists an i such that all Xi, Y i and Zi are good, SRy and SRz are (close to) aligned somewhere

random sources.

In the analysis below we consider a particular i such that all Xi, Y i and Zi are good (though

we may not know what i is).

Now let’s consider computing Ri from (Xi, Y i, X, Y ) (R′i is computed the same way from

(Xi, Zi, X, Z)). Here we use a two-source extractor Raz in [Raz05]. This extractor is strong and

it works as long as one of the source has min-entropy rate (the ratio between min-entropy and the

length of the source) > 1/2, and even if the two sources have different lengths. We first apply Raz to

Y i and each row of Xi (note Y i is treated as a whole) to obtain a matrix M . Note that if Xi, Y i are

good then they are both somewhere random, and thus Y i has min-entropy at least nδ/2. Thus M

is also a somewhere random source. Since Raz is a strong two-source extractor, we can fix Xi, and

conditioned on this fixing M is still a somewhere random source. Moreover now M is a deterministic

function of Y i and is thus independent of X. Next note that the size of Xi is
√
n · nδ/2 = n1/2+δ/2

while the min-entropy of X is n1/2+δ. Thus with high probability over the fixings of Xi, X still has

min-entropy at least 0.9n1/2+δ. Therefore now we can apply a strong seeded extractor to X and

each row of M and output 0.8n1/2+δ bits. Thus we obtain a (
√
n× 0.8n1/2+δ) somewhere random

source X̄i. Furthermore, since we applied a strong seeded extractor and now M is a deterministic

function of Y i, we can further fix Y i and X̄i is still somewhere random, meanwhile it is now a

deterministic function of X.

Similarly, we can compute a somewhere random source Ȳ i. Specifically, Since Raz is a

strong two-source extractor, we can fix Y i, and conditioned on this fixing M is still a somewhere

random source. Moreover now M is a deterministic function of Xi and is thus independent of Y .

Next note that the size of Y i is
√
n · nδ/2 = n1/2+δ/2 while the min-entropy of Y is n1/2+δ. Thus

with high probability over the fixings of Y i, Y still has min-entropy at least 0.9n1/2+δ. Therefore

now we can apply a strong seeded extractor to Y and each row of M and output 0.8n1/2+δ bits.

Thus we obtain a (
√
n × 0.8n1/2+δ) somewhere random source Ȳ i. Furthermore, since we applied
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a strong seeded extractor and now M is a deterministic function of Xi, we can further fix Xi and

Ȳ i is still somewhere random, meanwhile it is now a deterministic function of X.

Therefore now after the fixings of (Xi, Y i), we get two independent (
√
n×0.8n1/2+δ) some-

where random sources (X̄i, Ȳ i). It is easy to check that they are aligned. Note that the number of

rows is significantly less than the length of each row, thus we can apply the extractor in [Rao06]

to get a random string Ri with say 0.7n1/2+δ bits. Further notice that the extractor in [Rao06] is

strong, thus we can fix X and Ri is still (close to) uniform. This means that we can fix X and

SRy is still somewhere random (recall that SRy is the concatenation of {Ri}), moreover it is now

a deterministic function of Y .

Similarly we can compute SRz, and by the same argument we can fix X and SRz is still

somewhere random, moreover it is now a deterministic function of Z. Therefore now after we fix

(X,Y i, Zi), we get two independent aligned (
√
n×0.7n1/2+δ) somewhere random sources, and again

the extractor in [Rao06] can be used to obtain an output that is (close to) uniform.

The above argument works even if the seed length of the strong seeded extractor that we

use on X,Y, Z (try all possibilities of the seed) is (1 + α) log n instead of log n, as long as α can be

an arbitrarily small constant. However, currently we don’t have such extractors for min-entropy

k = n1/2+δ. Fortunately, we have condensers with such short seed length. A (seeded) condenser

is a generalization of a seeded extractor, such that the output is close to having high min-entropy

instead of being uniform. In this paper we use the condenser built in [GUV09]. For any constant

α > 0 and any (n, k′) source, this condenser uses d = (1 + 1/α) · (log n+ log k′ + log(1/ε)) + O(1)

additional random bits to convert the source roughly into a ((1 +α)k′, k′) source with error ε. Now

we can take α to be a sufficiently large constant, say 10/δ, take k′ to be small, say nδ/10 (note that

an (n, n1/2+δ) source is also an (n, nδ/10) source), and take ε to be something like n−δ/10. This gives

us a small seed length, such that 2d = O(n1+δ/3). Therefore the number of blocks is O(n1/2+δ/3),

which is significantly less than n1/2+δ.

Now we can repeat the argument before. The condenser can also be shown to be strong, in

the sense that with probability 1− 2
√
ε over the fixing of the seed, the output is

√
ε-close to having

min-entropy k′ − d (intuitively, this is because the seed length is d, thus conditioned on the seed

the output can lose at most d bits of entropy). Now define a block to be “good” if it contains at

least one “good” row that is
√
ε-close to having min-entropy k′− d. Again we can show there is an

i such that all Xi, Y i and Zi are good.

To finish the argument, we need to apply Raz to Y i and each row of Xi. However now

the good row in Xi is not uniform, in fact it may not even have min-entropy rate > 1/2. On the
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other hand, it does have a constant min-entropy rate. Therefore we now first apply the somewhere

condenser from [BKS+05, Zuc07] to each row of Xi to boost the min-entropy rate to 0.9. The

somewhere condenser outputs another constant number of rows for each row of Xi, and if the row

of Xi is good, then one of the outputs is close to having min-entropy rate 0.9. Now we can apply

Raz to Y i and each output of the somewhere condenser, and proceed as before. Since this only

increases the number of rows in (X̄i, Ȳ i) by a constant factor, it does not affect our analysis. Thus

we obtain a three source extractor for min-entropy k = n1/2+δ.

6.2.2 The Construction

In this section we present our three source extractor. We have the following algorithm.
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Algorithm 6.2.2 (THExt(x, y, z)).

Input: x, y, z — a sample from three independent (n, k)-sources with k = n1/2+δ, for some
arbitrary constant 0 < δ < 1/2.
Output: w — an m bit string.

Sub-Routines and Parameters:
Let Cond be a (k1 → k1+d, ε1) condenser from Theorem 3.5.12, such that k1 = nδ/10, ε1 = n−δ/10

and α = 10/δ where α is the parameter α in Theorem 3.5.12.
Let Zuc be a rate-(0.09δ → 0.9, 2−Ω(n))-somewhere-condenser form Theorem 3.5.3.
Let Raz be the strong 2-source extractor from Theorem 3.5.7.
Let Ext be the strong extractor from Theorem 3.5.13.
Let 2SRExt be the extractor for two independent aligned SR-source from Theorem 3.5.8.

1. For every s ∈ {0, 1}d compute xs = Cond(x, s). Concatenate {xs} in the binary order
of s to form a matrix of 2d rows. Divide the rows of the matrix sequentially into blocks
x1, · · ·xt with each block consisting of

√
n rows. Do the same things to y and z and obtain

blocks y1, · · · , yt and z1, · · · , zt.

2. (Compute an SR-source from x and y). For i = 1 to t do the following.

• For each row xij in block xi (there are
√
n rows), apply Zuc to get a constant number

of outputs {xij`}.

• For each xij` compute vij` = Raz(xij`, yi) and output m2 = Ω(k1) bits.

• For each vij` compute Ext(x, vij`), output 0.9n1/2+δ bits and concatenate these strings

to form a matrix x̄i. Similarly for each vij` compute Ext(y, vij`), output 0.9n1/2+δ bits

and concatenate these strings to form a matrix ȳi.

• Compute ri = 2SRExt(x̄i, ȳi) and output m3 = 0.8n1/2+δ bits.

3. Concatenate {ri, i = 1, · · · , t} to form a matrix sry.

4. Repeat step 2 and step 3 above for x and z to obtain a matrix srz.

5. Output w = 2SRExt(sry, srz).
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6.2.3 Analysis of the Extractor

In this section we analyze the three source extractor. Specifically, we prove the following

theorem.

Theorem 6.2.3. For any constant 0 < δ < 1/2, let X,Y, Z be three independent (n, k) sources

with k = n1/2+δ. Then

|THExt(X,Y, Z)− Um| < n−Ω(δ)

with m = Ω(k).

Proof. Our goal is to show that SRy and SRz is (close to) a convex combination of independent

aligned SR-sources with few rows. Then we’ll be done by Theorem 3.5.8.

First note that k > k1, thus an (n, k)-source is also an (n, k1) source. Let S be the uniform

distribution over d bits independent of (X,Y, Z). By Theorem 3.5.12 we have that XS = Cond(X,S)

is ε1-close to being an (m1, k1 + d) source with m1 ≤ 2d + (1 + α)k1 < (2 + α)k1, since d =

(1 + 1/α) · (log n+ log k + log(1/ε)) +O(1) = O(log n) = O(log k1).

Now by Lemma 3.5.15, with probability 1−2
√
ε1 over the fixings of S = s, Xs is

√
ε1-close to

being an (m1, k1−d) source. We say that a row Xs is good if it is
√
ε1-close to being an (m1, k1−d)

source, and we say that a block Xi is good if it contains at least one good row. It’s easy to see

that the fraction of “bad” blocks in {Xi} is at most 2
√
ε1. Similarly this is also true for the blocks

{Y i} and {Zi}.

Now since 2
√
ε1 < 1/3, by the union bound there exists an i s.t. Xi, Y i and Zi are all good

blocks. Without loss of generality assume that X1, Y 1 and Z1 are all good blocks. We are going

to show that the first rows of SRy and SRz are close to uniform, thus SRy and SRz are aligned

somewhere random sources.

We first show this for SRy. Note that X1 is a good block and Y 1 is also a good block.

Therefore at least one row in X1 is good. Without loss of generality assume that X1
1 is a good row.

Thus X1
1 is
√
ε1-close to being an (m1, k1−d) source. Note that k1−d > 0.99k1 since d = O(log k1)

and m1 < (2 +α)k1. Thus X1
1 is close to having min-entropy rate 0.99/(2 +α) = 0.99/(2 + 10/δ) =

0.99δ/(10 + 2δ) > 0.09δ since δ < 1/2.

Therefore by Theorem 3.5.3, Zuc(X1
1 ) is

√
ε1 +2−Ω(m1) = n−Ω(δ)-close to being a somewhere

rate 0.9 source with O(1) rows, and the length of each row is Ω(m1) = Ω(k1).

We now have the following claim.
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Claim 6.2.4. With probability 1 − n−Ω(δ) over the fixings of X1 and Y 1, X̄1 is a deterministic

function of X, Ȳ 1 is a deterministic function of Y , and they are 2−n
Ω(1)

-close to being two aligned

(O(
√
n)× 0.9n1/2+δ) SR-sources.

proof of the claim. Note that Zuc(X1
1 ) is n−Ω(δ)-close to being a somewhere rate 0.9 source with

O(1) rows, and each row has length Ω(k1). For simplicity, consider the case where Zuc(X1
1 ) is

close to an elementary somewhere rate 0.9 source (since Zuc(X1
1 ) is n−Ω(δ)-close to being a convex

combination of such sources, this increases the error by at most n−Ω(δ)). Without loss of generality

assume that the first row X1
11 is n−Ω(δ)-close to having rate 0.9. Since Y 1 is a good block Y 1 is

√
ε1-close to having min-entropy at least k1 − d > 0.99k1, and Y 1 has length m1

√
n = poly(k1).

Therefore by Theorem 3.5.7 we have

|(V 1
11, X

1
11)− (Um2 , X

1
11)| < n−Ω(δ) + 2−Ω(k1) = n−Ω(δ)

and

|(V 1
11, Y

1)− (Um2 , Y
1)| < n−Ω(δ) + 2−Ω(k1) = n−Ω(δ).

Therefore with probability 1−n−Ω(δ) over the fixing of X1
11, V 1

11 is n−Ω(δ)-close to uniform.

Since X1
11 is a deterministic function of X1, this also implies that with probability 1− n−Ω(δ) over

the fixing of X1, V 1
11 is n−Ω(δ)-close to uniform. Note that after this fixing, V 1

11 is a deterministic

function of Y 1, and is thus independent of X. Moreover, note that the length of X1 is m1
√
n =

O(k1
√
n) = O(n1/2+δ/10). Thus by Lemma 3.5.14, with probability 1 − 2−n

δ/10
over the fixing of

X1, X has min-entropy at least n1/2+δ −O(n1/2+δ/10)− nδ/10 > 0.99n1/2+δ.

Therefore, now by the strong extractor property of Ext from Theorem 3.5.13, with proba-

bility 1 − n−Ω(δ) over the fixing of V 1
11, Ext(X,V 1

11) is 2−n
Ω(1)

-close to uniform. Since now V 1
11 is a

deterministic function of Y 1, this also implies that with probability 1−n−Ω(δ) over the fixing of Y 1,

Ext(X,V 1
11) is 2−n

Ω(1)
-close to uniform. Note also that after this fixing Ext(X,V 1

11) is a deterministic

function of X. Therefore we have shown that with probability 1−n−Ω(δ) over the fixing of X1 and

Y 1, X̄1 is a deterministic function of X and is 2−n
Ω(1)

-close to an SR-source.

By symmetry we can also show that with probability 1− n−Ω(δ) over the fixing of X1 and

Y 1, Ȳ 1 is a deterministic function of Y and is 2−n
Ω(1)

-close to an SR-source.

Since both in X̄1 and Ȳ 1, the first row is close to uniform, they are close to being aligned

SR-sources.
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Now we have the following claim.

Claim 6.2.5. With probability 1 − n−Ω(δ) over the fixing of X,Y 1, Z1, SRy and SRz are two

independent aligned somewhere random sources.

proof of the claim. Note that X̄1 and Ȳ 1 each has
√
n rows, and each row has 0.9n1/2+δ bits. Thus

by Claim 6.3.18 and Theorem 3.5.8, we have

|(R1, X̄
1)− (Um3 , X̄

1)| < n−Ω(δ).

This means that with probability 1 − n−Ω(δ) over the fixing of X̄1, R1 is n−Ω(δ)-close to

uniform. Since we have fixed X1 and Y 1 before, now X̄1 is a deterministic function of X. Thus

this also implies that with probability 1 − n−Ω(δ) over the fixing of X, R1 is n−Ω(δ)-close to uni-

form. Moreover, now R1 (and all the other Ri’s) is a deterministic function of Y . Therefore with

probability 1 − n−Ω(δ) over the fixing of X, SRy is n−Ω(δ)-close to an SR-source. Moreover, after

this fixing SRy is a deterministic function of Y .

By the same argument, it follows that with probability 1−n−Ω(δ) over the fixings of X and

Z1, SRz is n−Ω(δ)-close to an SR-source, and SRz is a deterministic function of Z. Thus SRy and

SRz are independent.

Since both in SRy and SRz, the first row is close to uniform, they are close to being aligned

independent SR-sources.

Now note that

2d = O((nk1/ε1)1+1/α) = O(n(1+δ/5)(1+δ/10)) = O(n1+δ/3).

Thus SRy and SRz each has 2d/
√
n = O(n1/2+δ/3) rows, and each row has 0.8n1/2+δ bits.

Therefore again by Theorem 3.5.8 we have

|THExt(X,Y, Z)− Um| < n−Ω(δ) + 2−n
Ω(1)

= n−Ω(δ),

and m = Ω(k).
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6.3 Affine Extractors and Dispersers

In this section we present our constructions of affine extractors and dispersers. In the

case where the underlying field is F = GF(2), it is well known how to construct extractors for

affine sources with entropy rate greater than 1/2. However the problem becomes much harder as

the entropy rate drops to 1/2 and below 1/2. The best construction of affine extractors in this

case is due to Bourgain [Bou07], who gave an extractor for affine sources with arbitrarily linear

entropy that can output a constant fraction of the entropy with exponentially small error. Based

on Bourgain’s techniques, Yehudayoff [Yeh10] gave another construction in the same spirit that is

slightly simpler to analyze. The construction of [Yeh10] also slightly improves Bourgain’s result.

Rao [Rao09] constructed extractors for affine sources with entropy as small as polylog(n), as long

as the subspace of X has a basis of low-weight vectors.

The construction of [Bou07], and the slight modification of [Yeh10], are thus previously

the only known constructions for general affine sources over GF(2) with arbitrarily linear entropy.

However, both of these constructions make extensive use of inequality manipulations, and are quite

complicated to analyze. Also, both of these constructions need to choose a polynomial very carefully,

so that eventually the inequality manipulations would result in an estimate of exponential sums

in finite fields. The polynomial chosen thus determines the performance of the extractor. From

our point of view the choice of the polynomial is somewhat subtle and a bit unnatural. Thus one

may ask the natural question of whether there exist other constructions of affine extractors for

arbitrarily linear entropy sources.

Here we give a new construction of affine extractors that matches the results of [Bou07]

and [Yeh10]. Our construction is conceptually much cleaner than those of [Bou07] and [Yeh10]. It

mainly uses tools from previous constructions of extractors and produces the desired polynomial in

a very natural way. Our construction gives new insights into the nature of affine extractors, and we

believe that having two different constructions with the best known parameters more than double

the chances of achieving even better constructions.

In the case of constructing dispersers for affine sources over GF(2), Barak et al. [BKS+05]

gave an affine disperser for sources with arbitrarily linear entropy that outputs a constant number

of bits. Ben-Sasson and Kopparty [BSK09] constructed dispersers for affine sources with entropy

Ω(n4/5). However, their construction only outputs 1 bit. In this paper, we construct dispersers for

slightly sub-linear entropy affine sources that output nΩ(1) bits.

We have the following theorems.
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Theorem 6.3.1. For every δ > 0 there exists an efficient family of functions AExt : {0, 1}n →
{0, 1}m such that m = Ω(n) and for every affine source X with entropy δn, |AExt(X) − Um| =

2−Ω(n).

Theorem 6.3.2. There exists a constant c > 1 and an efficient family of functions AExt : {0, 1}n →
{0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn/

√
log logn, |AExt(X)−

Um| = 2−n
Ω(1)

.

Theorem 6.3.3. There exists a constant c > 1 and an efficient family of functions ADisp :

{0, 1}n → {0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn/
√

log n,

|Supp(ADisp(X))| = 2m.

6.3.1 Overview of Our Constructions

In some sense, our construction of affine extractors is similar in the spirit to our construction

of 2-source extractors above. There we constructed an extractor for two independent weak random

sources with linear entropy. The basic idea is that, when a source with linear entropy is divided

into some constant number of blocks, it becomes (up to a convex combination and a small error)

a somewhere block source. If we know the location of a good block (a block that contains high

entropy but not all the entropy of the source), then it is fairly easy to extract random bits with the

help of the other source. The problem is that we don’t know where the good block is, thus we have

to try all the possibilities and end up with a constant number of outputs such that one of them is

close to uniform. These outputs can be correlated. The authors then modified this procedure by

using computational assumptions to make the outputs “independent” of each other in some sense,

and thus the xor of the outputs is close to uniform.

Here, we would like to do something similar. It is still true that when we divide an affine

source with linear entropy into some constant number of blocks, it becomes an affine somewhere

block source. However, unlike the two-source extractor, we now have two problems. First, we have

only one affine source. Second, we do not rely on any computational assumptions. Thus we need

some new techniques to deal with these problems.

6.3.1.1 Extractors for one affine block source

An affine block source is an affine source that consists of two blocks, such that the first

block has some entropy, and the second block also has some entropy, even if conditioned on the

fixing of the first block. We first construct an extractor for an affine block source.
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To do this, we use special kinds of two-source extractors and seeded extractors: strong

linear two-source (or seeded) extractors. A two-source (or seeded) extractor is strong if for most

choices of one source (or the seed), the output is close to uniform. It is linear if for any fixing of one

source (or the seed), the output is a linear function of the other source. There are known strong

linear seeded and two-source extractors. For example, Trevisan’s extractor [Tre01] is a strong linear

seeded extractor, while the inner product function is a strong linear two-source extractor when the

sum of the entropy rates of the two sources is greater than 1.

Given these extractors, our extractor for an affine block source is simple. Assume (X1, X2)

is an affine block source with each block having entropy rate δ. We first use the condenser based

on sum-product theorems [BKS+05, Zuc07] to convert X1 into a somewhere rate-(1− δ/2) source,

which is a matrix that has a constant number of rows such that one of the rows has entropy rate

1− δ/2. Next we apply the inner product function to each row and X2. Although X1 and X2 are

correlated, note that X1 is a linear function of the source (X1, X2). Thus the structure of affine

sources (Lemma 2.3.22) and the properties of strong linear two-source extractors guarantee that

the output is close to a convex combination of affine somewhere random sources.

Note the affine somewhere random source has very few rows (a constant number), thus we

can now use Rao’s extractor for such sources [Rao09]. Rao’s extractor uses the strong linear seeded

extractor, and reduces the number of rows in the somewhere random source by a half each time.

Thus by repeating a constant number of times we get an output R that is close to uniform.

In the real construction, we use R as a seed and apply the strong linear seeded extractor

again to the source to get another output U that is close to uniform. The purpose is to make sure

that the output is a linear function of the source (when conditioned on the fixings of some random

variables), thus we can use the structure result in Lemma 2.3.22.

Again, the problem is that we don’t know where the good block is. Thus we try all the

possibilities and get a constant number of outputs {Ri, Ui} such that one of {Ui} is close to uniform.

6.3.1.2 Obtain one output

Similar to the two-source extractor construction, we need to find a way to make the outputs

somewhat “independent” of each other, so that we can take the xor of them and get a string that

is close to uniform. To do this, we use properties of polynomials over GF(2).

First of all, in the analysis we can fix the first good block Xg (though we don’t know

which block it is) and fix all random variables produced before this block. By restricting the

size of the random variables produced (so that they don’t steal much entropy), it is not hard to
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show that conditioned on all these fixings, with high probability Ug (the output of the affine block

source extractor applied to (Xg, X)) is uniform. Thus in particular this means that conditioned on

(U1, · · · , Ug−1), Ug is still uniform. The problem is that Ug+1, · · · , Ut (t is the number of blocks)

could be correlated with Ug.

Our key observation is that, when we fix all the random variables produced before Xg and

fix (Xg, Rg), Ug is a linear function L of the source X. Lemma 2.3.22 thus tells us that there

exists an affine function Lg and an affine source Bg independent of Ug such that X = Lg(Ug) +Bg.

Therefore, now conditioned on any fixing of Bg = b the source X is an affine function (degree 1

polynomial) of Ug!

Since the subsequent computations are all functions of X, the random variables Ug+1, · · · , Ut
are all functions of Ug. We note that any boolean function on {0, 1}n can be expressed as a

polynomial over GF(2), though the degree of the polynomial can be very high. On the other hand,

if we can ensure that each bit of Ug+1, · · · , Ut is a low degree (say degree d) polynomial of the

bits of Ug, then there is something natural to do–instead of just outputting Ui, we output a bit

Zi, which is a degree di polynomial of the bits of Ui. Now Zg+1, · · · , Zt are polynomials of degree

d · dg+1, · · · , d · dt of the bits of Ug. As long as dg > max{d · dg+1, · · · , d · dt}, the xor of the Zi’s

cannot be a constant. Thus we get a non-constant bit. In other words, we get a one-bit disperser.

In fact, in the construction we choose di > di+1 for all i. Thus as long as each bit of Ug+1, · · · , Ut
is a degree d polynomial of the bits of Ug, it suffices to have dg > d · dg+1. Since we don’t know the

position of the good block, we take di > d · di+1 for all i.

In the construction for linear entropy affine sources, the degree d is a constant. Thus we

can take all the di’s to be constants. The polynomial Zi we take is simple too: just take di bits of

Ui and compute the product. We show that each Ui has Ω(n) bits, thus we can take Ω(n) different

blocks of di bits. Therefore instead of just outputting one bit, we can output Ω(n) bits. The only

thing left now is to make sure each bit of Ug+1, · · · , Ut is a low degree polynomial of the bits of Ug.

6.3.1.3 Extractors that are low-degree polynomials

Let us examine how Ui is computed. First we convert a block Xi of X into a somewhere

rate-(1 − δ/2) source Yi, using the condenser based on sum-product theorems. In this step we

need to apply the condenser a constant number of times, while each time the output is a degree 2

polynomial of the inputs. Next we apply the inner product function to each row of Yi and X to

obtain an affine somewhere random source SRi. Again the output is a degree 2 polynomial of the

inputs. We then use the extractor for such a source from [Rao09] to get a random seed Ri. Finally
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we use Ri and apply a strong linear seeded extractor to X to obtain Ui. In these two steps, we

need to use a strong linear seeded extractor, which may not be a low-degree polynomial.

We note that in the above discussion some of the polynomials are over a finite field Fq.
However, in this paper all the finite fields Fq have size q = 2s for some integer s. Thus by mapping

a string in {0, 1}s to an element in Fq using the standard binary expression, we see that whenever

a function is a degree d polynomial over Fq, each bit of the output is also a degree d polynomial

(over GF(2)) of the input bits. Therefore all we need now is to construct a strong linear seeded

extractor such that each bit of the output is a constant degree polynomial of the input bits.

The starting point is the well-known leftover hash lemma [ILL89], which roughly says that

if R is uniformly distributed over a finite field F and X is a weak source over F, then the last several

bits of R ·X (the operation is in F) is a strong extractor. Note this is also a linear seeded extractor

and the output is a degree 2-polynomial of the inputs. The only thing bad about this extractor is

that it requires the seed to have as many bits as the source, which we cannot afford. Nevertheless,

we use this extractor as an ingredient in our construction.

Our actual construction of the strong linear seeded extractor consists of three steps. First,

we take a short seed and divide the source into many blocks with each block having the same

number of bits as the seed. We apply the extractor from the leftover hash lemma to the seed

and every block of the source, and concatenate the outputs. Thus we get a somewhere random

source. Next, we take another short seed and apply the strong linear merger from [LRVW03] to

the somewhere random source. We then get a short source with linear entropy. Finally, we take a

short seed and apply the extractor from the leftover hash lemma to the short source, and we obtain

bits that are close to uniform. It is easy to check that the extractor is a linear seeded extractor. It

is also strong because in each step the extractor or merger is strong. It can also be easily checked

that the output is a degree 4 polynomial of the inputs.

Once we use this extractor, it is fairly straight forward to check that each bit of Ui is a

constant degree polynomial of the bits of X, and thus the bits of Ug.

6.3.1.4 Affine Extractors

Above we discussed the techniques in our construction of affine dispersers. Next we discuss

how to get an affine extractor from the disperser.

Recall that in the above we take Zg to be a degree dg > d · dg+1 polynomial of the bits

of Ug (the product of some dg bits) and we argue that Zg xored with Zg+1, · · · , Zt cannot be a

constant. The key observation here is that this is not only true for Zg+1, · · · , Zt, but also true for
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any polynomial of degree at most dg − 1. In other words, let d′ = dg − 1 and let Pd′ stand for the

class of all polynomials of degree at most d′ of the bits of Ug, then the correlation between Zg and

Pd′ is at most 1− 1/2d
′
. Therefore if we take several independent blocks of Ug, each having dg bits,

and take the xor of the products of the bits in each block, the correlation with Pd′ will decrease

exponentially by the xor lemma from [VW08, BKS+10]. Since Ug has Ω(n) bits we can take Ω(n)

blocks and the correlation will decrease to 2−Ω(n). Thus we get an extractor that outputs one bit

with exponentially small error.

To output more bits, we divide the bits of Ug into Ω(n) blocks, each having dg bits. We

next take the generating matrix of a binary linear asymptotically good code, with the codeword

length equaling the number of blocks. For each row of the generating matrix we associate one bit.

The bit is computed by taking the xor of the products of the bits in the blocks that are indexed

by the 1’s in this row. By the properties of the asymptotically good linear code, the xor of any

non-empty subset of these bits, will be the xor of the products of the bits from Ω(n) blocks. Thus

it will be 2−Ω(n)-close to uniform. In other words, these bits form a 2−Ω(n)-biased space. Therefore

we can take Ω(n) bits that are 2−Ω(n)-close to uniform.

6.3.1.5 A word about the affine extractor for entropy rate 1/2

Our construction uses an affine extractor for entropy rate 1/2 as a black box when we

use Rao’s extractor [Rao09]. For our application we need this extractor to be a constant degree

polynomial and output a linear fraction of the entropy. In this paper we use a result in [Bou07]. A

potential alternative is a result in [BSK09]. There the authors showed that given any non-trivial

linear map π : F2n → F2, π(X7) is an extractor for any affine source X with entropy 2n/5 + 10 + d,

when X is viewed as an element in F2n . A recent work of Haramaty and Shpilka [HS10] shows

that the error of this extractor is 2−d
Ω(1)

. Combined with our techniques, this result already gives

an extractor for affine sources with entropy rate 1/2 that can output nΩ(1) bits with error 2−n
Ω(1)

.

Specifically, we interpret X7 as a string in {0, 1}n, and we take the generating matrix of a binary

linear asymptotically good code with codeword length n. For each codeword in the generating

matrix we compute a bit Zi which is the xor of the bits of X7 that are indexed by 1’s in this

codeword. Thus the xor of any subset of {Zi} is a non-trivial linear map from F2n to F2, and thus

is 2−n
Ω(1)

-close to uniform if X has entropy n/2. Therefore we can take nΩ(1) bits from {Zi} with

error 2−n
Ω(1)

. It is conjectured in [BSK09] that the error of the extractor should be 2−Ω(n). If this is

true then we can output Ω(n) bits with error 2−Ω(n), and this can replace the extractor in [Bou07]

completely.
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6.3.2 The Constructions

Before we present the construction, we first give the constructions of several ingredients.

6.3.2.1 Low Degree Strong Linear Seeded Extractors

In this section we describe our construction of a strong linear seeded extractor. The ex-

tractor has the property that each bit of the output is a degree 4 polynomial of the bits of the

input.

Theorem 6.3.4. There exists a constant 0 < β < 1 such that for every 0 < δ < 1 and any 1/
√
n <

α < 1 there exists a polynomial time computable function LSExt : {0, 1}n × {0, 1}d → {0, 1}m s.t.

• d ≤ αn,m ≥ βδαn.

• For any (n, δn)-affine source 1X, let R be the uniform distribution on {0, 1}d independent of

X. Then (LSExt(X,R), R) is 2−Ω(δα2n)-close to uniform.

• Each bit of the output is a degree 4 polynomial of the bits of the two inputs, and for any fixing

of r the output is a linear function of x.

Proof. The construction of the extractor consists of 3 steps:

Step 1: We take d1 = αn/3 random bits R1 and divide X into 3/α blocks of equal length2

X = X1 ◦ · · · ◦ Xt, where each Xi has αn/3 bits. We now apply the function Hash as in

Lemma 3.5.18 to every Xi and R1 and concatenate the output to be Y = Y1 ◦ · · · ◦ Yt, where

Yi = Hash(Xi, R1). We let each Yi output l1 = 0.9δαn/3 = 0.3δαn bits.

Claim 6.3.5. With probability 1− 2−Ω(δαn) over R1, Y is 2−Ω(δαn)-close to being a (l1, 3/α)-

somewhere random source.

Proof of the claim. By Lemma 2.3.23 there exist integers k1, · · · , kt such that for any fixing of

the previous blocks, Xi has entropy ki. Note
∑t

i=1 ki = δn. Thus there exists 1 ≤ i ≤ t such

1Generally we don’t need the source to be affine. However the analysis is simpler if the source is an affine source
(mainly because in this case we don’t need to go into convex combinations as in the case where the source is a general
weak source).

2For simplicity, we assume that 3/α is an integer, this does’t affect the analysis.
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that ki ≥ δαn/3. Now by Lemma 3.5.18 we know that (Yi, R1) is 2−Ω(δαn)-close to (U,R1).

Therefore with probability 1 − 2−Ω(δαn) over R1, Yi is 2−Ω(δαn)-close to uniform. Thus Y is

2−Ω(δαn)-close to being a (l1, 3/α)-somewhere random source.

Step 2: Let ε = 2−cδα
2n for a constant 0 < c < 1 to be chosen later. We take d2 random bits R2

and apply the merger as in Theorem 3.5.20 with parameter ε. Let W = Merg(Y,R2).

Claim 6.3.6. d2 ≤ αn/3 and with probability 1− 2−Ω(δα2n) over R2, W is 2−Ω(δα2n)-close to

having min-entropy 0.4l1.

Proof of the claim. By Theorem 3.5.20 the seed length d2 = O(cδα2n/α) = O(cδαn). Note

that l1 = 0.3δαn. Thus we can choose c s.t. d2 ≤ αn/3 and the output of the merger has

length m = l1/2 − O(d2) ≥ 0.4l1. Now by Theorem 3.5.20 we know that with probability

1− 2−Ω(δα2n) over R2, W is 2−Ω(δα2n)-close to having min-entropy 0.4l1.

Step 3: Now W is a random variable over l1 < αn/3 bits. Take d3 = l1 random bits R3 and apply

the function Hash as in Lemma 3.5.18 to W and R3 and output m = 0.3l1 bits. The final

output is Z = Hash(W,R3).

The number of random bits used is d = d1 + d2 + d3 ≤ αn. The number of bits of the

output is m = 0.3l1 ≥ βδαn for some constant 0 < β < 1. By Lemma 3.5.18 with probability

1− 2−Ω(δαn) over R3, Z is 2−Ω(δαn)-close to uniform. Thus with probability 1− 2−Ω(δα2n) over R,

Z is 2−Ω(δα2n)-close to uniform, which implies that (LSExt(X,R), R) is 2−Ω(δα2n)-close to uniform.

In each of the 3 steps the degree of the polynomial goes up by 1. Thus each bit of the

output is a degree 4 polynomial of the bits of the two inputs. Now observe in each step for any

fixing of Ri = r the output is a linear function, thus for any fixing of R = r the output is a linear

function of x.

In the special case where α and δ are constants, we get the following corollary:

Corollary 6.3.7. For all constants 0 < δ, α < 1 there exists a polynomial time computable function

LSExt : {0, 1}n × {0, 1}d → {0, 1}m and a constant 0 < β < 1 such that

• d ≤ αn,m ≥ βn.

• For any (n, δn)-affine source X, let R be the uniform distribution on {0, 1}d independent of

X. Then (LSExt(X,R), R) is 2−Ω(n)-close to uniform.
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• Each bit of the output is a degree 4 polynomial of the bits of the two inputs, and for any fixing

of r the output is a linear function of x.

6.3.2.2 Extractors for Affine Somewhere Random Sources with Few Rows

In this section we describe our extractor for an affine somewhere random source with few

rows. The construction is essentially the same as that in [Rao09], except that we use our low degree

strong linear seeded extractor in the construction.

We need the following definition about the slice of a concatenation of strings.

Definition 6.3.8. [Rao09] Given ` strings of length n, x = x1, · · · , x`, define Slice(x,w) to be the

string x′ = x′1, · · · , x′` such that for each i x′i is the prefix of xi of length w.

Algorithm 6.3.9 (AffineCondense(x)).

Input: x — a t× r matrix with t < 4
√
r.

Output: y — a dt/2e ×m matrix with m = Ω(r/t2).

Sub-Routines and Parameters:
Let w = r/(10t).
Let BAExt : {0, 1}n → {0, 1}d be the affine extractor from Theorem 3.5.21.
Let LSExt : {0, 1}n×{0, 1}d → {0, 1}m be the strong linear seeded extractor from Theorem 6.3.4.

1. Let z be the dt/2e× 2w matrix obtained by concatenating pairs of rows in Slice(x,w), i.e.,
the i’th row zi is Slice(x,w)2i−1 ◦ Slice(x,w)min{2i,t}.

2. Let s be the dt/2e × d matrix whose i’th row is BAExt(zi).

3. Let y be the dt/2e ×m matrix whose i’th row is LSExt(x, si).

147



Algorithm 6.3.10 (AffineSRExt(x)).

Input: x — a t× r matrix.
Output: z — an m bit string with m = r/tO(log t).

Sub-Routines and Parameters:

1. If x has one row, output x.

2. Else, set y to be the output of AffineCondense(x).

3. Set x = y and go to the first step.

Lemma 6.3.11. For any t×r affine somewhere random source X with t < 4
√
r, AffineCondense(X)

is 2−Ω(r/t4)-close to a convex combination of dt/2e × m affine somewhere random sources, where

m = Ω(r/t2). Moreover, each bit of the output is a constant degree polynomial of the input bits.

Proof. We essentially follow the proof in [Rao09], except that we use the specific strong linear

seeded extractor LSExt.

Let Z = Slice(X,w) as in the algorithm. Note that Slice(X,w) is a linear function of X.

Thus by Lemma 2.3.22, there exist independent affine sources A and B s.t. X = A + B, H(A) =

H(Slice(A,w)) and for every b ∈ Supp(B), Slice(b, w) = 0. This implies that Z = Slice(X,w) =

Slice(A,w) + Slice(B,w) = Slice(A,w) is independent of B and H(B) = H(X)−H(A) = H(X)−
H(Slice(X,w)) ≥ r − wt.

Note that Z is a linear function of X, thus conditioned on any fixing Z = z, X|Z = z is

an affine source. Moreover, conditioned on any fixing Z = z, Y is a linear function of X|Z = z

(because LSExt is a linear seeded extractor). Thus conditioned on any fixing Z = z, Y |Z = z is

affine. We next show that with high probability over z ←R Z, Y |Z = z is somewhere random.

Since X is somewhere random, there exists an index h s.t. Zh is an affine source with

entropy rate 1/2. Therefore by Theorem 3.5.21, sh has Ω(w) bits and

|Sh − Ud| ≤ 2−Ω(w). (6.4)

Note that Sh is a deterministic function of Z and is thus independent of B. Also sh has

d = Ω(w) = Ω(r/t) = Ω(1/t2 · tr) bits. Note that B has tr bits and H(B) ≥ r − wt ≥ 0.9r. Let
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Ud be the uniform distribution over d bits independent of B. Then by Theorem 6.3.4 we have that

LSExt(B,Sh) has m = Ω(1/t3 · tr) = Ω(r/t2) bits and

Pr
u←RUd

[|LSExt(B, u)− Um| > ε] < ε

where ε = 2−Ω(r/t4).

By Proposition 3.1.9 and equation 1 we thus have

Pr
s←RSh

[|LSExt(B, s)− Um| > 0] < ε+ 2−Ω(w) = 2−Ω(r/t4).

For any s ∈ {0, 1}d, we have LSExt(X, s) = LSExt(A + B, s) = LSExt(A, s) + LSExt(B, s).

Note that Sh is a deterministic function of Z, Z is a deterministic function of A and H(A) = H(Z).

Thus A is also completely determined by Z. Therefore whenever LSExt(B, s)|Z = z is uniform,

LSExt(X, s)|Z = z is also uniform.

Thus we get

Pr
z←RZ

[|LSExt(X|Z = z, sh)− Um| > 0] ≤ 2−Ω(r/t4).

This shows that Y is 2−Ω(r/t4)-close to being a convex combination of affine somewhere

random sources. Now note that both BAExt and LSExt are constant degree polynomials, thus each

bit of the output is a constant degree polynomial of the input bits.

Repeating the condenser for log t times, we get the following theorem:

Theorem 6.3.12. For every affine t × r somewhere random source X, AffineSRExt(X) outputs

m = r/tO(log t) bits that are 2−Ω(r/tO(log t))-close to uniform. Moreover, each bit of the output is a

degree tO(1) polynomial of the bits of the input.

In the special case where t is a constant, we get the following corollary.

Corollary 6.3.13. For every affine t×r somewhere random source X with t = O(1), AffineSRExt(X)

outputs m = Ω(r) bits that are 2−Ω(r)-close to uniform. Moreover, each bit of the output is a con-

stant degree polynomial of the bits of the input.
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6.3.2.3 Affine Dispersers for Linear Entropy Sources

Algorithm 6.3.14 (ADisp(x)).

Input: x — an n bit string.
Output: z — an m bit string with m = Ω(n).

Sub-Routines and Parameters:
Let Zuc : {0, 1}n → ({0, 1}Ω(n))O(1) be a rate-(δ/4→ 1−δ/4, 2−Ω(n))-somewhere-condenser form
Theorem 3.5.3.
Let Had : ({0, 1}n)2 → {0, 1}Ω(n) be the two-source extractor from Theorem 3.5.22, set up to
extract from two independent sources whose entropy rates sum up to more than 1 + δ/4.
Let LSExt : {0, 1}n×{0, 1}d → {0, 1}m′ be the strong linear seeded extractor from Theorem 6.3.4.
Let AffineSRExt be the extractor for affine somewhere random sources from Theorem 6.3.12.

Divide x into 10/δ blocks x = x1 ◦ · · · ◦ xt where t = 10/δ and each block has δn/10 bits.
For every i, 1 ≤ i ≤ t do the following.

1. Let yi1 ◦ · · · ◦ yi`1 = Zuc(xi), where yij is the j’th row of the matrix obtained by applying
Zuc to xi. Note `1 = O(1) and each yij has Ω(n) bits.

2. Divide x into `2 blocks of equal size x = x′1 ◦ · · · ◦ x′`2 , with each block having the same
number of bits as yij . Note `2 = O(1). Apply Had to every pair of x′j2 and yij1 , and output

δ3n/(3000`1`2) bits. Let sri be the matrix obtained by concatenating all the outputs
Had(x′j2 , yij1), i.e., each row of sri is Had(x′j2 , yij1) for a pair (x′j2 , yij1).

3. Let ri = AffineSRExt(sri).

4. Let ui = LSExt(x, ri), set up to output at most δ3n/(3000`1`2) bits.

5. Divide the bits of ui into si = Ω(n) blocks of equal size, with each block having ci number
of bits, for some constant ci to be chosen later. For every j = 1, · · · , si, compute one bit
vij by taking the product of all the bits in the j’th block, i.e., vij = Πjci

`=(j−1)ci+1ui`.

Finally, output Ω(n) bits {zj =
⊕t

i=1 vij}.

6.3.2.4 Affine Extractors for Linear Entropy Sources

Now we describe our construction of an affine extractor for linear entropy sources. First we

need the following definition.
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Definition 6.3.15. A linear binary code of length n and rank k is a linear subspace C with

dimension k of the vector space Fn2 . Let d be the distance of the code. C is asymptotically good if

there exist constants 0 < δ1, δ2 < 1 s.t. k ≥ δ1n and d ≥ δ2n.

Note that every linear binary code has an associated generating matrix G ∈ Fk×n2 , and

every codeword can be expressed as vG, for some vector v ∈ Fk2.

It is well known that we have explicit constructions of asymptotically good binary linear

code. For example, the Justensen codes constructed in [Jus72].

The affine extractor is now described as follows.

Algorithm 6.3.16 (AExt(x)).

Input: x — an n bit string.
Output: z — an m bit string with m = Ω(n).

Sub-Routines and Parameters:
Let ADisp : {0, 1}n → {0, 1}m1 be the affine disperser in Algorithm 6.3.14, where m1 = Ω(n).
Let G be the generating matrix of an asymptotically good linear binary code with codeword
length m1. Thus G is an αm1 ×m1 matrix for some constant α > 0. Let Gi stand for the i’th
row of the matrix.

1. Run Algorithm 6.3.14 and let the output be Z = (Z1, · · · , Zm1) where Zi is the i’th bit.

2. For each codeword Gi, let Si = {j ∈ [m1] : Gij = 1} be the set of index s.t. the bit of the
codeword Gi at that index is 1. Define

Wi =
⊕

Zj,j∈Si

to be the bit associated with Gi, i.e., Wi is the XOR of the Zj ’s whenever the j’th index
of the codeword Gi is 1.

3. Take a constant 0 < β ≤ α to be chosen later. Output W = (W1, · · · ,Wβm1).

6.3.3 Analysis of the Affine Disperser

We have the following theorem about the disperser.
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Theorem 6.3.17. For every δ > 0 there exists an efficient family of functions ADisp : {0, 1}n →
{0, 1}m such that m = Ω(n) and for every affine source X with entropy δn, |Supp(ADisp(X))| = 2m.

Proof. We show that Algorithm 6.3.14 is an efficient family of such functions. First, by Lemma 2.3.23,

when we divide X into t = 10/δ blocks of equal size, there exist positive integers k1, · · · , kt s.t. for

any fixing of the previous blocks, H(Xi) = ki and
∑t

i=1 ki = δn. Thus there must exist an i s.t.

ki ≥ δn/3t. Let Xg be the first such block, i.e., g is the smallest i s.t. ki ≥ δn/3t.

Lemma 6.3.18. Conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1}, X

is an affine source with H(Xg) ≥ δn/4t and H(X) ≥ 3δn/5.

Proof of the lemma. We first fix (Xi = xi)i∈{1,··· ,g−1}. Note since Xi is a linear function of X, after

this fixing X is still an affine source. Now by Lemma 2.3.23, after this fixing H(Xg) ≥ kg ≥ δn/3t
and H(X) ≥

∑t
i=g ki ≥ δn− t · δn/3t ≥ 2δn/3.

Note that conditioned on the fixing of (Xi = xi)i∈{1,··· ,g−1}, SRi is a linear function of X.

Thus we can further fix (SRi = sri)i∈{1,··· ,g−1} and X is still an affine source. Note that SRi has

`1`2 rows and each row has δ3n/(3000`1`2) bits, thus SRi has a total number of δ3n/3000 bits. Let

SR = SR1 ◦ · · · ◦ SRg−1 and abuse notation to let SR(X) stand for the linear function of X that

computes SR. Note SR has at most δ3n/3000 · t = δ2n/300 bits. By Lemma 2.3.22, there exist

independent affine sources A and B s.t. X = A + B, SR(X) = SR(A) and H(SR(A)) = H(A).

Thus conditioned on any fixing of SR,

H(X) ≥ H(B) ≥ 2δn/3−H(A)

= 2δn/3−H(SR(X)) ≥ 2δn/3− δ2n/300.

Next note that Xg is a linear function of X. Thus Xg(X) = Xg(A) + Xg(B). Therefore

H(Xg(B)) = H(Xg)−H(Xg(A)) ≥ H(Xg)−H(A) ≥ δn/3t− δ2n/300. Since SR(X) = SR(A) we

have that conditioned on any fixing of SR(X), H(Xg) ≥ H(Xg(B)) ≥ δn/3t− δ2n/300.

Note that after the fixing of (SRi = sri)i∈{1,··· ,g−1} , (Ri)i∈{1,··· ,g−1} is also fixed, and now

(Ui)i∈{1,··· ,g−1} is a linear function of X. Thus by the same analysis we have that conditioned on any

fixing of (Ui)i∈{1,··· ,g−1}, X is still an affine source. Moreover, H(X) ≥ 2δn/3−δ2n/300−δ2n/300 >

3δn/5 and H(Xg) ≥ δn/3t− δ2n/300− δ2n/300 > δn/4t.

Now consider X and Xg conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui =

ui)i∈{1,··· ,g−1}, we have the following lemma.
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Lemma 6.3.19. With probability 1−2−Ω(n) over the further fixings of Xg = xg, Rg is 2−Ω(n)-close

to uniform.

Proof of the lemma. First, note that H(Xg) ≥ δn/4t, thus Xg has entropy rate at least δ/4. There-

fore by Theorem 3.5.3 Zuc(Xg) is 2−Ω(n)-close to a somewhere-rate-(1− δ/4) source. Without loss

of generality assume that Yg1 has rate 1− δ/4. Since Xg is a linear function of X, by Lemma 2.3.22

there exist independent affine sources Ag and Bg such that X = Ag + Bg, Xg(X) = Xg(Ag) and

H(Ag) = H(Xg). Thus H(Bg) = H(X)−H(Ag) = H(X)−H(Xg) ≥ 3δn/5− δn/10 = δn/2. Note

that when we divide X into `2 blocks X = X ′1 ◦ · · · ◦X ′`2 , each X ′j is a linear function of X. Thus

X ′j(X) = X ′j(Ag) +X ′j(Bg). Let Agj = X ′j(Ag) and Bgj = X ′j(Bg). Since Bg is an affine source, by

Lemma 2.3.23 the sum of all H(Bgj) is at least H(Bg) ≥ δn/2. Thus at least one block must have

entropy rate at least δ/2. Let Bgj be such a block.

Note that Yg1 is a deterministic function of Xg, thus it is also a deterministic function of Ag

and is independent of Bgj . Note Yg1 has rate 1−δ/4 and Bgj has rate δ/2. Thus by Theorem 3.5.22

we have that with probability 1−2−Ω(n) over the fixings of Yg1 (and thus Ag and Xg), Had(Bgj , Yg1)

is 2−Ω(n)-close to uniform. Now note that for a fixed Yg1 = yg1, the function Had is a linear function.

Therefore

Had(X ′j , yg1) = Had(Agj , yg1) + Had(Bgj , yg1).

Note that once Ag (equivalently, Xg) is fixed, Had(Agj , yg1) is a fixed constant. Thus

whenever a fixed Ag makes Had(Bgj , yg1) uniform, it also makes Had(X ′j , yg1) uniform. Therefore

we have that with probability 1−2−Ω(n) over the fixings of Ag (and thus Xg), Had(X ′j , Yg1) is 2−Ω(n)-

close to uniform. When this happens, we have that SRg is 2−Ω(n)-close to an affine somewhere

random source (it is affine since for a fixed Xg = xg, SRg is a linear function of X). Thus by

Theorem 6.3.12 Rg is 2−Ω(n)-close to uniform.

Now considerX conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1},

and the event that the property in Lemma 6.3.19 is satisfied. We have the following lemma.

Lemma 6.3.20. With probability 1− 2−Ω(n) over the further fixings of SRg (and thus Rg), Ug is

uniform.

Proof of the lemma. First note that Xg is a linear function of X. Thus conditioned on any fixing

of Xg = xg, X is still an affine source. Now after this fixing, SRg is a linear function of X.

Thus by Lemma 2.3.22, there exist independent affine sources A′g and B′g s.t. X = A′g + B′g,
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SRg(X) = SRg(A
′
g) and H(SRg) = H(A′g). Thus H(B′g) = H(X)−H(A′g) = H(X)−H(SRg) ≥

3δn/5− δn/10− δ3n/3000 > δn/3.

Next, noteRg is a deterministic function of SRg and is 2−Ω(n)-close to uniform by Lemma 6.3.19.

Thus Rg is independent of B′g. Note LSExt is a strong linear seeded extractor with error 2−Ω(n) by

Theorem 6.3.4. Thus by Proposition 3.1.9 with probability 1− 2−Ω(n) over the fixings of Rg (and

thus SRg), LSExt(B′g, Rg) is uniform.

Finally note that for any fixing of SRg (and thus Rg), LSExt(X,Rg) is a linear function of

X. Thus by the same analysis as in Lemma 6.3.19 we have that with probability 1 − 2−Ω(n) over

the fixings of SRg (and thus Rg), Ug is uniform.

Now considerX conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1},

and the event that both properties in Lemma 6.3.19 and Lemma 6.3.20 hold. Note that even further

conditioned on the fixings of Xg = xg and SRg = srg, X is still an affine source. Now after this

fixing Ug is a linear function of X. Thus by Lemma 2.3.22 there exist independent affine sources

A′′g and B′′g s.t. X = A′′g +B′′g , Ug(X) = Ug(A
′′
g) and H(Ug) = H(A′′g). To prove the function ADisp

is a disperser, it suffices to prove that for some B′′g = b, it is a disperser. We actually can prove

that for any B′′g = b, ADisp is a disperser.

Lemma 6.3.21. For any integer m > 0, let Z ′ = (Z ′1, · · · , Z ′m) where Z ′j =
⊕t

i=g Vij. Then

conditioned on any fixing of B′′g = b, |Supp(Z ′)| = 2m.

Proof of the lemma. We first show that Z ′1 can take both values in {0, 1}. To see this, notice that

Z ′1 =
⊕t

i=g Vi1 while Vg1 = Π
cg
`=1Ug` is a polynomial of degree cg over the bits of the uniform string

Ug. Next, since now (conditioned on all the fixings) Ug is a linear function of X, by Lemma 2.3.22

there exists an affine function Lg s.t. A′′g = Lg(Ug). Thus X = A′′g +B′′g = Lg(Ug) +B′′g . Note Ug =

Ug(X) = Ug(A
′′
g) is independent of B′′g . Now conditioned on any fixing of B′′g = b, X = Lg(Ug) + b

is an affine function (degree 1 polynomial) of Ug.

Given this observation, the following computations and the outputs V(g+1)1, · · · , Vt1 are all

functions of Ug. If we can show that
⊕t

i=g+1 Vi1 is a polynomial of degree less than cg over the bits

of Ug, then we know that Z ′1 = Vg1 ⊕
⊕t

i=g+1 Vi1 cannot be a constant. In fact, this is exactly how

we choose the constants ci’s.

Let us see what conditions ci’s must satisfy. First, it’s easy to see that we need to choose

ci’s s.t. ci > ci+1 for every i. Next, we compute the degrees of each Vi1 for i > g. First X is an

affine function of Ug. Then by Theorem 3.5.3, each bit of Zuc(Xi) is a constant degree polynomial
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of the input bits. It’s easy to see the function Had is a degree 2 polynomial. Thus each bit of SRi

is a degree 2 polynomial of the input bits. By Theorem 6.3.12 each bit of Ri is a constant degree

polynomial of the input bits. By Theorem 6.3.4 each bit of Ui is a constant degree polynomial of

the input bits. Thus we conclude that for every i ≥ g + 1, each bit of Ui is a constant c(δ)-degree

polynomial of the bits of Ug. Note each Vi1 is a degree ci polynomial of the bits of Ui. Therefore

in order to make
⊕t

i=g+1 Vi1 a polynomial of degree less than cg, it suffices to take

ci > c(δ)ci+1

for every i. This ensures that Z ′1 is not a constant.

Now we consider outputting m > 1 bits. By induction it suffices to prove that for any

fixing of (Z ′1 = z1, · · · , Z ′i = zi), Z
′
i+1 can take both values in {0, 1}. For the sake of contradiction,

suppose for some (Z ′1 = z1, · · · , Z ′i = zi), Z
′
i+1 can only take the value zi+1. Then we have

Pg =(Z ′1 + z1 + 1)(Z ′2 + z2 + 1)

· · · (Z ′i + zi + 1)(Z ′i+1 + zi+1) ≡ 0.

However, note that Z ′j = Vgj ⊕
⊕t

i=g+1 Vij and Vgj is a monomial of degree cg of the bits of

Ug, while all the other Vij ’s are monomials of degree less than cg of the bits of Ug. Also note that

Vgj ’s are monomials of different bits for different j’s. Thus Pg is a polynomial of the bits of Ug and

has one monomial of degree (i + 1)cg (the highest degree monomial) with coefficient 1. Therefore

Pg cannot always be 0.

Note that once (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1} are fixed, (Vij)i∈{1,··· ,g−1}
are also fixed. The theorem now follows immediately from Lemma 6.3.18, Lemma 6.3.19, Lemma 6.3.20

and Lemma 6.3.21. Since t = O(1), all ci’s are constants. Thus the disperser outputs Ω(n) bits.

6.3.4 Analysis of the Affine Extractor

In this section we analyze our affine extractor. We first show how to extract 1 bit that is

2−Ω(n)-close to uniform. For this we need the following definition.

Definition 6.3.22. For two functions f, p : {0, 1}n → {0, 1}, their correlation is defined as

Cor(f, p) =
∣∣∣Pr
x

[f(x) = p(x)]− Pr
x

[f(x) 6= p(x)]
∣∣∣ ,
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where the probability is over the uniform distribution. For a class C of functions, we denote by

Cor(f, C) the maximum of Cor(f, p) over all functions p ∈ C.

Theorem 6.3.23. [VW08, BKS+10] Let Pd stand for the class of all polynomials of degree at most

d over GF(2). Let f : {0, 1}n → {0, 1} be a function such that Cor(f, Pd) ≤ 1 − 1/2d and f×m be

the XOR of the value of f on m independent inputs. Then

Cor(f×m, Pd) ≤ exp(−Ω(m/(4d · d))).

Theorem 6.3.24. Let Z = (Z1, · · · , Zm) be the output of the affine disperser in Algorithm 6.3.14,

where m = Ω(n) and Zi is the i’th bit. Take any integer 0 < s < m and take any subset S ⊆ [m]

with |S| = s. Let W =
⊕
Zi,i∈S. Then

|W − U | = 2−Ω(s).

Remark 6.3.25. Note that if we take s = Ω(n) then we get 1 bit that is 2−Ω(n)-close to uniform.

Proof. Without loss of generality assume S = {1, · · · , s}. As in the proof of Theorem 6.3.17, we have

Lemma 6.3.18, Lemma 6.3.19 and Lemma 6.3.20. Now consider (U, V )g, · · · , (U, V )t conditioned

on the fixings of (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1} and Xg = xg, SRg = srg. Let

Wg =
⊕s

i=1 Z
′
i, where Z ′i =

⊕t
j=g Vji. Note that

Wg =
s⊕
i=1

Z ′i =
s⊕
i=1

(Vgi ⊕
t⊕

j=g+1

Vji)

=

s⊕
i=1

Vgi ⊕
s⊕
i=1

(

t⊕
j=g+1

Vji).

We know that Ug is uniform and each Vgi is a degree cg monomial on cg bits of Ug. We also

know that Pg =
⊕s

i=1(
⊕t

j=g+1 Vji) is a degree at most d = cg− 1 polynomial of the bits of Ug. Let

Pd stand for the class of all polynomials of degree at most d = cg − 1 over GF(2). Any polynomial

in Pd can equal Vgi with probability at most 1− 2−cg = 1− 2−(d+1), i.e.,

Cor(Vgi, Pd) ≤ 1− 1/2d.
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Note that Vgi’s are the same functions (degree cg monomial) on different and thus indepen-

dent bits of Ug (since Ug is uniform). Thus by Theorem 6.3.23,

Cor(
s⊕
i=1

Vgi, Pd) ≤ 2−Ω(s).

In particular, we have

Cor(
s⊕
i=1

Vgi,
s⊕
i=1

(
t⊕

j=g+1

Vji)) ≤ 2−Ω(s).

ThusWg is 2−Ω(s)-close to uniform. Now by Lemma 6.3.18, Lemma 6.3.19 and Lemma 6.3.20,

the error of W =
⊕s

i=1 Zi can go up by at most 2−Ω(n). Thus

|W − U | = 2−Ω(n) + 2−Ω(s) = 2−Ω(s)

since s = O(n).

Now we can prove the main theorem about our affine extractor. We first restate the theorem.

Theorem 6.3.26. For every δ > 0 there exists an efficient family of functions AExt : {0, 1}n →
{0, 1}m such that m = Ω(n) and for every affine source X with entropy δn, |AExt(X) − Um| =

2−Ω(n).

Proof. We show that Algorithm 6.3.16 is such a family of functions. First note that for any

nonempty set T ⊆ [αm1], the sum of the codewords Gi,i∈T is also a codeword CT . Let WT be the

bit associated with CT , i.e., WT is the XOR of the Zj ’s whenever the j’th index of the codeword

CT is 1. Observe that

WT =
⊕

Wi,i∈T .

Since T is nonempty, the codeword CT must have distance at least γm1 from the codeword

0, for some constant 0 < γ < 1. That is, CT must have at least γm1 1’s. Thus by Theorem 6.3.24

|WT − U | = 2−Ω(γm1). This implies that for every nonempty subset T ,

∣∣∣⊕Wi,i∈T − U
∣∣∣ ≤ 2−c0γm1
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for some constant c0 > 0. In other words, the random variables {Wi} form an ε-biased space for

ε = 2−c0γm1 . Thus by Lemma 3.5.24

|W − U | ≤ 2βm1/2 · 2−c0γm1 .

Choose 0 < β ≤ α s.t. β ≤ c0γ. Then

|W − U | ≤ 2−c0γm1/2.

Thus we have that (W1, · · · ,Wβm1) are Ω(n) bits that are 2−Ω(n)-close to uniform.

6.3.5 Affine Extractors and Dispersers for Sub-Linear Entropy Sources

In this section we briefly show how we can modify the affine extractors and dispersers above

to handle sources with slightly sub-linear entropy. The main observation is that in the construction

of affine extractors for linear entropy, the polynomials that we use only have constant degrees. For

an argument like the analysis of the extractor to hold, the degree of the polynomial can be close

to log n by Theorem 6.3.23. For an argument like the analysis of the disperser to hold, the degree

of the polynomial can be close to n (the degree cannot be larger than n since we can get at most n

uniform random bits). We’ll show that this will lead to an affine extractor for entropy n/
√

log log n

and an affine disperser for entropy n/
√

log n.

Theorem 6.3.27. There exists a constant c > 1 and an efficient family of functions ADisp :

{0, 1}n → {0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn/
√

log n,

|Supp(ADisp(X))| = 2m.

Proof Sketch. We essentially use the same algorithm as Algorithm 6.3.14, except the entropy rate

δ now is sub-constant. We examine the analysis to see how small δ can be. We focus on the first

good block Xg.

First we want to use the somewhere condenser from Theorem 3.5.3 to convert a rate-δ/4

source into a somewhere rate-(1 − δ/4) source. Note that now δ is sub-constant, so we do this

in two steps. First, we repeatedly use Theorem 3.5.2 to convert the source into a somewhere

rate-0.6 source. This will take O(log 1
δ ) times. Next, we repeatedly use Theorem 3.5.6 to convert

the source into a somewhere rate-(1 − δ/4) source. This will take O(1
δ ) times. Thus in step 1 of

Algorithm 6.3.14 we get that `1 = 2O( 1
δ

), and each Ygj has n/(2O( 1
δ

)) bits. The error is 2−n/2
O( 1

δ
)

.
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Now in step 2 of Algorithm 6.3.14, we get `2 = 2O( 1
δ

). Thus the total number of rows

in the matrix SRg is `1`2 = 2O( 1
δ

), with each row having δ3n/(3000`1`2) = n/(2O( 1
δ

)) bits. By

Theorem 3.5.22 the error is 2−n/2
O( 1

δ
)

.

In step 3, we apply AffineSRExt. By Theorem 6.3.12 we get each Rg has n/(2O( 1
δ2

)) bits,

with error 2−n/2
O( 1

δ2
)

. By Theorem 6.3.4 after applying LSExt, Ug has n/(2O( 1
δ2

)) bits with error

2−n/2
O( 1

δ2
)

.

The last thing to verify is that the degrees of the polynomials produced in step 5 satisfy

the requirements as in the analysis of Theorem 6.3.17. The analysis says that we need to have

ci > c(δ)ci+1 for all i. To see how this can be satisfied, we first estimate the quantity c(δ).

As in the analysis of Theorem 6.3.17, first X is an affine function of Ug. Now by Theo-

rem 3.5.2 and Theorem 3.5.6, each bit of Zuc(Xi) is a degree 2O( 1
δ

) polynomial of the input bits

(since we repeat the condenser O(1
δ ) times). The function Had is a degree 2 polynomial. Thus

each bit of SRi is a degree 2 polynomial of the input bits. Now we apply AffineSRExt, and by

Theorem 6.3.12 each bit of the output is a degree 2O( 1
δ

) polynomial of the input bits. Therefore

each bit of Ri is a degree 2O( 1
δ

) · 2O( 1
δ

) = 2O( 1
δ

) polynomial of the bits of Ug. By Theorem 6.3.4 in

LSExt each bit of Ui is a constant degree polynomial of the input bits. Thus we conclude that for

every i ≥ g + 1, each bit of Ui is a degree 2O( 1
δ

) polynomial of the bits of Ug.

Therefore we have

c(δ) = 2O( 1
δ

).

Note that we need ci > c(δ)ci+1 for every i, 1 ≤ i ≤ 10/δ. Thus the ci’s are bounded by

c(δ)10/δ = 2O( 1
δ2

).

Since each Ui has n/(2O( 1
δ2

)) bits, it suffices to have

n/(2O( 1
δ2

)) > 2O( 1
δ2

).

Thus by taking δ ≥ c/
√

log n for some constant c > 1 the disperser can output nΩ(1) bits.

Similarly, we get an affine extractor for sub-linear entropy sources. However, unlike in the

analysis of the affine disperser, the degree of the polynomial cannot be close to n, and can only be

close to log n by Theorem 6.3.23. Thus we only get δ = c/
√

log log n for some constant c > 1.
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Theorem 6.3.28. There exists a constant c > 1 and an efficient family of functions AExt :

{0, 1}n → {0, 1}m such that m = nΩ(1) and for every affine source X with entropy cn/
√

log log n,

|AExt(X)− Um| = 2−n
Ω(1)

.

Proof Sketch. We essentially use the same algorithm as Algorithm 6.3.16, except the entropy rate

δ now is sub-constant. We examine the analysis to see how small δ can be. We focus on the first

good block Xg.

As in the analysis of the affine disperser above, we get that in step 4 of Algorithm 6.3.14,

Ug has n/(2O( 1
δ2

)) bits, and the error is 2−n/2
O( 1

δ2
)

. We also get that

c(δ) = 2O( 1
δ

)

and thus the ci’s are bounded by

c(δ)10/δ = 2O( 1
δ2

).

For the xor lemma of Theorem 6.3.23 to give a non-trivial bound, it suffices to have

2O( 1
δ2

) ≤ α log n

for some constant 0 < α < 1. This gives that δ ≥ c/
√

log log n for some constant c > 1. Also, when

this happens, the XOR lemma of Theorem 6.3.23 gives a correlation upper bound of 2−n
Ω(1)

. The

error of Ug is 2−Ω(n/ logn). Thus by taking the generating matrix of a binary linear asymptotically

good code and choosing nΩ(1) rows, we see that the extractor outputs nΩ(1) bits that are 2−n
Ω(1)

-

close to uniform.

6.4 Non-malleable Extractors

In this section we give the first explicit construction of non-malleable extractors. We begin

with the formal definition.

Definition 6.4.1. A function nmExt : [N ] × [D] → [M ] is a (k, ε)-non-malleable extractor if, for

any source X with H∞(X) ≥ k and any function A : [D] → [D] such that A(y) 6= y for all y, the

following holds. When Y is chosen uniformly from [D] and independent of X,

(nmExt(X,Y ), nmExt(X,A(Y )), Y ) ≈ε (U[M ], nmExt(X,A(Y )), Y ).
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Note that this dramatically strengthens the definition of strong extractor. In a strong

extractor, the output must be indistinguishable from uniform, even given the random seed. For

a non-malleable extractor, a distinguisher is not only given a random seed, but also the out-

put of the extractor with the given input and an arbitrarily correlated random seed. Note that

nmExt(X,A(Y )) need not be close to uniform.

This kind of extractors is first proposed by Dodis and Wichs [DW09] to construct pro-

tocols for privacy amplification. They showed that non-malleable extractors exist with k >

2m + 3 log(1/ε) + log d + 9 and d > log(n − k + 1) + 2 log(1/ε) + 7, for N = 2n, M = 2m,

and D = 2d. However, they were not able to construct such non-malleable extractors.

Here we construct the first explicit non-malleable extractors.

6.4.1 The Construction of Non-malleable Extractors

We show that a specific near-Hadamard code that comes from the Paley graph works as

a non-malleable extractor for min-entropy k > n/2. The Paley graph function is nmExt(x, y) =

χ(x − y), where x and y are viewed as elements in a finite field F of odd order q and χ is the

quadratic character χ(x) = x(q−1)/2. (The output of χ is in {±1}, which we convert to an element

of {0, 1}.) The function nmExt(x, y) = χ(x+ y) works equally well. The proof involves estimating

a nontrivial character sum.

We can output m bits by computing the discrete logarithm logg(x + y) mod M . This

extractor was originally introduced by Chor and Goldreich [CG88] in the context of two-source

extractors. To make this efficient, we need M to divide q − 1. A widely-believed conjecture about

primes in arithmetic progressions implies that such a q is not too large (see Conjecture 3.2.2). Our

result is stated as follows.

Theorem 6.4.2. For any constants α, β, γ > 0 with β + γ < α/2, there is an explicit (k =

(1/2 + α)n, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m for ε = 2−γn and any

m ≤ βn. It runs in polynomial time if Conjecture 3.2.2 holds or m = O(log n).

Our basic extractor was introduced by Chor and Goldreich [CG88]. They showed that it

was a two-source extractor for entropy rates bigger than 1/2. Dodis and Oliveira [DO03] showed

that it was strong. Neither result implies anything about non-malleability.

To output m bits, we set M = 2m and choose a prime power q > M . In our basic extractor,

we require that M |(q − 1). Later, we remove this assumption. Fix a generator g of F×q . We define
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nmExt : F2
q → ZM by nmExt(x, y) = h(logg(x+ y)). Here logg z is the discrete logarithm of z with

respect to g, and h : Zq−1 → ZM is given by h(x) = x mod M .

In the special casem = 1, we only require that q is odd. In this case, nmExt(x, y) corresponds

to the quadratic character of x+ y, converted to {0, 1} output. This is efficient to compute. Since

there is no known efficient deterministic algorithm to find an n-bit prime, we may take q = 3`, with

3`−1 < 2n < 3`.

For general M , we use the Pohlig-Hellman algorithm to compute the discrete log mod M .

This runs in polynomial time in the largest prime factor of M . Since in our case M = 2m, this is

polynomial time.

We still need a prime or prime power q such that M |(q − 1). Unconditionally, we get

a polynomial-time algorithm to output m = c log n bits for any c > 0. To output more bits

efficiently, we rely on a widely believed conjecture. Under Conjecture 3.2.2, such a prime can be

found efficiently by testing M + 1, 2M + 1, 3M + 1, . . . in succession.

Now we prove that nmExt is a non-malleable extractor.

Theorem 6.4.3. The above function nmExt : F2
q → ZM is a (k, ε)-non-malleable extractor for

ε = Mq1/421−k/2.

Proof. The heart of our proof is a new character sum estimate, given in Theorem 6.4.8. We now

show how to deduce Theorem 6.4.3 from the character sum estimate and Lemma 3.4.1. Let X be

a distribution with H∞(X) ≥ k, and let Y be uniform on Fq. As is well-known, we may assume

without loss of generality that X is uniform on a set of size 2k. We set G = ZM , (W,W ′) =

(nmExt(X,Y ), nmExt(X,A(Y ))), and we condition on Y = y.

Note that for φ a character of G, the function χ(z) = φ(h(logg(z))) is a multiplicative

character of Fq. Therefore, Theorem 6.4.8 shows that ((W,W ′)|Y = y) satisfies the hypotheses

of Lemma 3.4.1 for some αy, where Ey←Y [αy] ≤ α for α < q1/421−k/2. Thus, by Lemma ??,

((W,W ′)|Y = y) is O(Mαy)-close to ((U, h(W ′))|Y = y) for every y. Since this expression is linear

in αy, we conclude that (W,W ′, Y ) is O(Mα)-close to (U, h(W ′), Y ), as required.

Note that this theorem assumes that the seed is chosen uniformly from Fq. However, this

may not be the case, as we are given the input length n and min-entropy k, and we need to find a

suitable m < k/2− n/4− 2 such that 2m|(q − 1). Thus, it could be that q is not close to a power

of 2. Instead, we may only assume that the seed has min-entropy at least log q− 1. We can handle

this, and in fact much lower min-entropy in the seed, as follows. First, we define a non-malleable

extractor with a weakly-random seed.
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Definition 6.4.4. A function nmExt : [N ] × [D] → [M ] is a (k, k′, ε)-non-malleable extractor if,

for any source X with H∞(X) ≥ k, any seed Y with H∞(Y ) ≥ k′, and any function A : [D]→ [D]

such that A(y) 6= y for all y, the following holds:

(nmExt(X,Y ), nmExt(X,A(Y )), Y ) ≈ε (U[M ], nmExt(X,A(Y )), Y ).

The following lemma shows that a non-malleable extractor with small error remains a non-

malleable extractor even if the seed is weakly random.

Lemma 6.4.5. A (k, ε)-non-malleable extractor nmExt : [N ]× [D]→ [M ] is also a (k, k′, ε′)-non-

malleable extractor with ε′ = (D/2k
′
)ε.

Proof. For y ∈ [D], let εy = ∆((nmExt(X, y), nmExt(X,A(y)), y), (U[M ], nmExt(X,A(y)), y)). Then

for Y chosen uniformly from [D],

ε ≥ ∆((nmExt(X,Y ), nmExt(X,A(Y )), Y ), (U[M ], nmExt(X,A(Y )), Y )) =
1

D

∑
y∈[D]

εy.

Thus, for Y ′ with H∞(Y ′) ≥ k′, we get

∆((nmExt(X,Y ′), nmExt(X,A(Y ′)),Y ′), (U[M ], nmExt(X,A(Y ′)), Y ′))

=
∑
y∈[D]

Pr[Y = y]εy ≤ 2−k
′ ∑
y∈[D]

εy ≤ (D/2k
′
)ε.

It is now simple to analyze our non-malleable extractor as a function nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m. Here we work over Fq, where q is the smallest prime (or prime power) congruent

to 1 modulo M = 2m. We let d = blog2 qc, which is n+ c log n+O(1) under Conjecture 3.2.2. We

could even let d = n and the error would only grow by nc.

Theorem 6.4.6. Under Conjecture 3.2.2 with constant c, for any n, k > n/2 + (c/2) log n, and

m < k/2−n/4−(c/4) log n, the above function nmExt : {0, 1}n×{0, 1}d → {0, 1}m is a polynomial-

time computable, (k, ε)-non-malleable extractor for ε = O(nc/42m+n/4−k/2).

Proof. Suppose that Conjecture 3.2.2 holds for the constant c. Then q = O(nc2n), and the seed

has min-entropy k′ = d. Applying Lemma 6.4.5, we obtain error

ε = (q/2d)Mq1/421−k/2 = O(nc/42m+n/4−k/2).
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6.4.2 A Character Sum Estimate

We now prove the necessary character sum estimate. We prove a somewhat more general

statement than is needed for the one-bit extractor, as the general statement is needed to output

many bits. Throughout this section, we take F = Fq to be a finite field with q elements. In addition,

we suppose that χ : F× → C× is a nontrivial character of order d = q−1, and we extend the domain

of χ to F by taking χ(0) = 0. Now we consider two arbitrary characters, where the first is nontrivial;

without loss of generality we may take these to be χa(x) = (χ(x))a and χb(x) = (χ(x))b, where

0 < a < q − 1 and 0 ≤ b < q − 1. The following lemma is a consequence of Weil’s resolution of the

Riemann Hypothesis for curves over finite fields (see [Wei48]).

Lemma 6.4.7. Suppose that f ∈ F[x] is a polynomial having m distinct roots which is not a dth

power in F[x]. Then ∣∣∣∑
x∈F

χ(f(x))
∣∣∣ 6 (m− 1)

√
q.

Proof. This is immediate from Theorem 2C′ of Schmidt [Sch76] (see page 43 of the latter source).

Now we establish the main character sum estimate. Note that we need the assumption that

a 6= 0: if a = 0 and b = (q−1)/2, we could take A(y) = 0 and let S be the set of quadratic residues,

and then one has no cancellation in the character sum.

Theorem 6.4.8. Suppose that S is a non-empty subset of F, and that A : F → F is any function

satisfying the property that A(y) 6= y for all y ∈ F. Then one has∑
y∈F

∣∣∣∑
s∈S

χa(s+ y)χb(s+A(y))
∣∣∣ 6 111/4q5/4|S|1/2.

Proof. Write Θ =
∑

y∈F

∣∣∣∑s∈S χa(s + y)χb(s + A(y))
∣∣∣. We begin by applying Cauchy’s inequality

to obtain

Θ2 6 q
∑
y∈F

∣∣∣∑
s∈S

χa(s+ y)χb(s+A(y))
∣∣∣2 = q

∑
s,t∈S

∑
y∈F

ψs,t(y),

in which we have written

ψs,t(y) = χa(s+ y)χb(s+A(y))χa(t+ y)χb(t+A(y)). (6.5)
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Applying Cauchy’s inequality a second time, we deduce that

Θ4 6 q2|S|2
∑
s,t∈S

∣∣∣∑
y∈F

ψs,t(y)
∣∣∣2.

By positivity, the sum over s and t may be extended from S to the entire set F, and thus we deduce

that

Θ4 6 q2|S|2
∑
s,t∈F

∑
y,z∈F

ψs,t(y)ψs,t(z). (6.6)

On recalling the definition (6.5), we may expand the right hand side of (6.6) to obtain the bound

Θ4 6 q2|S|2
∑
y,z∈F

|ν(y, z)|2, (6.7)

where

ν(y, z) =
∑
s∈F

χa(s+ y)χb(s+A(y))χa(s+ z)χb(s+A(z)).

Recall now the hypothesis that y 6= A(y). It follows that, considered as an element of F[x],

the polynomial

hy,z(x) = (x+ y)a(x+A(y))b(x+ z)q−1−a(x+A(z))q−1−b

can be a dth power only when y = z, or when y = A(z), a = b and z = A(y). In order to confirm

this assertion, observe first that when y 6= z and y 6= A(z), then hy,z has a zero of multiplicity a

at −y. Next, when y = A(z), one has z 6= y, and so when a 6= b the polynomial hy,z has a zero of

multiplicity q − 1 + a − b at −y. Finally, when y = A(z) and a = b, then provided that z 6= A(y)

one finds that hy,z has a zero of multiplicity q−1−a at −z. In all of these situations it follows that

hy,z has a zero of multiplicity not divisible by d = q − 1. When y 6= z, and (y, z) 6= (A(z),A(y)),

therefore, the polynomial hy,z(x) is not a dth power in F[x], and has at most 4 distinct roots. In

such a situation, it therefore follows from Lemma 6.4.7 that

ν(y, z) =
∑
s∈F

χ(hy,z(s))

is bounded in absolute value by 3
√
q. Meanwhile, irrespective of the values of y and z, the expression

ν(y, z) is trivially bounded in absolute value by q. Substituting these estimates into (6.7), we arrive

at the upper bound

Θ4 6 q2|S|2
∑
y∈F

(
|ν(y, y)|2 + |ν(y,A(y))|2 +

∑
z∈F\{y,A(y)}

|ν(y, z)|2
)

6 q2|S|2
∑
y∈F

(q2 + q2 + q(3
√
q)2) = 11q5|S|2.
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We may thus conclude that Θ 6 111/4q5/4|S|1/2.

A direct computation yields the following corollary.

Corollary 6.4.9. Let α be a positive number with α 6 1. Then under the hypotheses of the

statement of Theorem 6.4.8, one has∑
y∈F

∣∣∣∑
s∈S

χa(s+ y)χb(s+A(y))
∣∣∣ < αq|S|

whenever |S| >
√

11q/α2.
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Chapter 7

Privacy Amplification with an Active Adversary

In this chapter we present our results on privacy amplification with an active adversary.

As mentioned in the introduction, the basic setting of this problem is that two parties, Alice

and Bob, share a weak random source W and they want to obtain private random bits through

communications to each other. The communication is over a public channel where an adversary Eve

is present. In this thesis, we consider the case where Eve is active and has unlimited computational

resources. In other words, Eve can see whatever messages sent in this channel and he can modify

the messages in an arbitrary way. The goal is to design a protocol such that despite the presence

of Eve, with high probability Alice and Bob still end up with private random bits that are close to

uniform.

Below we give the definition of a privacy amplification protocol (PA, PB), executed by two

parties Alice and Bob sharing a secret X ∈ {0, 1}n, in the presence of an active, computation-

ally unbounded adversary Eve, who might have some partial information E about X satisfying

H∞(X|E) > k. Informally, this means that whenever a party (Alice or Bob) does not reject, the

key R output by this party is random and statistically independent of Eve’s view. Moreover, if both

parties do not reject, they must output the same keys RA = RB with overwhelming probability.

More formally, we assume that Eve is in full control of the communication channel between

Alice and Bob, and can arbitrarily insert, delete, reorder or modify messages sent by Alice and

Bob to each other. In particular, Eve’s strategy PE actually defines two correlated executions

(PA, PE) and (PE , PB) between Alice and Eve, and Eve and Bob, called “left execution” and “right

execution”, respectively. We stress that the message scheduling for both of these executions is

completely under Eve’s control, and Eve might attempt to execute a run with one party for several

rounds before resuming the execution with another party. However, Alice and Bob are assumed

to have fresh, private and independent random tapes Y and W , respectively, which are not known

to Eve (who, by virtue of being unbounded, can be assumed deterministic). At the end of the

left execution (PA(X,Y ), PE(E)), Alice outputs a key RA ∈ {0, 1}m ∪ {⊥}, where ⊥ is a special

symbol indicating rejection. Similarly, Bob outputs a key RB ∈ {0, 1}m ∪ {⊥} at the end of the

right execution (PE(E), PB(X,W )). We let E′ denote the final view of Eve, which includes E and
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the communication transcripts of both executions (PA(X,Y ), PE(E)) and (PE(E), PB(X,W ). We

can now define the security of (PA, PB).

Definition 7.0.10. [KR09b] An interactive protocol (PA, PB), executed by Alice and Bob on a

communication channel fully controlled by an active adversary Eve, is a (k,m, ε)-privacy amplifi-

cation protocol if it satisfies the following properties whenever H∞(X|E) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB ∧RA 6=⊥ ∧RB 6=⊥] = 1.

2. Robustness. We start by defining the notion of pre-application robustness, which states that

even if Eve is active, Pr[RA 6= RB ∧RA 6=⊥ ∧RB 6=⊥] 6 ε.

The stronger notion of post-application robustness is defined similarly, except Eve is addition-

ally given the key RA the moment she completed the left execution (PA, PE), and the key

RB the moment she completed the right execution (PE , PB). For example, if Eve completed

the left execution before the right execution, she may try to use RA to force Bob to output

a different key RB 6∈ {RA,⊥}, and vice versa.

3. Extraction. Given a string r ∈ {0, 1}m∪{⊥}, let purify(r) be ⊥ if r =⊥, and otherwise replace

r 6=⊥ by a fresh m-bit random string Um: purify(r) ← Um. Letting E′ denote Eve’s view of

the protocol, we require that

∆((RA, E
′), (purify(RA), E′)) ≤ ε and ∆((RB, E

′), (purify(RB), E′)) ≤ ε

Namely, whenever a party does not reject, its key looks like a fresh random string to Eve.

The quantity k − m is called the entropy loss and the quantity log(1/ε) is called the security

parameter of the protocol.

Previously, Maurer and Wolf [MW97b] gave a one-round protocol which works when the

entropy rate of the weakly-random secret X is bigger than 2/3. This was later improved by Dodis,

Katz, Reyzin, and Smith [DKRS06] to work for entropy rate bigger than 1/2. However in both

cases the resulting nearly-uniform secret key R is significantly shorter than the min-entropy of X.

Dodis and Wichs [DW09] showed that there is no one-round protocol for entropy rate less than 1/2.

Renner and Wolf [RW03] gave the first protocol which works for entropy rate below 1/2. Kanukurthi

and Reyzin [KR09b] simplified their protocol and showed that the protocol can run in O(s) rounds

and achieve entropy loss O(s2) to achieve security parameter s. Dodis and Wichs [DW09] improved

the number of rounds to 2 but did not improve the entropy loss. Chandran, Kanukurthi, Ostrovsky,
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and Reyzin [CKOR10] improved the entropy loss to O(s) but the number of rounds remained O(s).

On the other hand, it was shown in [DW09] that non-constructively there exists a 2-round protocol

with entropy loss O(s). We also note that all the results above assume that each party has access

to local uniform random bits.

Here we give two improvements over previous results. First, we show how to construct a

privacy amplification protocol even if Alice and Bob only have access to local weak random sources,

while all previous results assume that they have access to local uniform random bits. Second, In

the case where Alice and Bob have access to local uniform random bits, we give protocols that

improve various parameters, such as round complexity and entropy loss.

7.1 Some Previous Results that We Need

For the results in this chapter, we need the following lemma.

Lemma 7.1.1. Assume we have 3 random variables X1, Y1, Y2 such that |Y1−Y2| ≤ ε. Then there

exists a random variable X2 with the same support of X1, such that

|(X1, Y1)− (X2, Y2)| ≤ ε.

Proof. We construct the random variable X2 and the distribution (X2, Y2) as follows. For any y,

consider Pr[Y1 = y], Pr[Y2 = y] and the distribution (X1, Y1 = y). Let δ = Pr[Y1 = y]−Pr[Y2 = y].

If δ ≥ 0, then we do the following:

1. Define an arbitrary order on the set of the support of X1.

2. While δ > 0, pick a new x from the support according to the above order and let p = Pr[X1 =

x, Y1 = y].

3. Let Pr[X2 = x, Y2 = y] = p−min(p, δ).

4. Let δ = δ −min(p, δ).

5. When δ = 0, for all the rest x, let Pr[X2 = x, Y2 = y] = Pr[X1 = x, Y1 = y].

If δ < 0, then we do the following:

1. Pick an arbitrary x from the support of X1 and let p = Pr[X1 = x, Y1 = y].
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2. Let Pr[X2 = x, Y2 = y] = p− δ.

3. For all the other x in the support of X1, let Pr[X2 = x, Y2 = y] = Pr[X1 = x, Y1 = y].

It is easy to see that the distribution (X2, Y2) has marginal distribution Y2 and |(X1, Y1)−
(X2, Y2)| = |Y1 − Y2| ≤ ε.

We also need the definition of an interactive authentication protocol. In such a protocol,

Alice takes a message m as input and tries to authenticate the message to Bob over the channel.

Bob obtains message mB at the end of the protocol. We now give the formal definition of such a

protocol.

Definition 7.1.2. [KR09a, CKOR10] An interactive protocol (PA, PB) played by Alice and Bob

on a communication channel fully controlled by an active adversary Eve, is a (k, `)-interactive

authentication protocol if it satisfies the following properties whenever H∞(W ) ≥ k:

1. Correctness. If Eve is passive, then Pr[mB = m] = 1.

2. Robustness. The probability that the following experiment outputs “Eve wins” is at most

2−`: sample w from W ; let va, vb be the communication upon execution of (PA, PB) with

Eve actively controlling the channel, and let mB = PB(w, vb, y). Output “Eve wins” if

(mB 6= m ∧mB 6=⊥).

Again ` is called the security parameter of the protocol.

In [KR09a], it is shown an interactive authentication protocol can be used to construct a

privacy amplification protocol. Specifically, we have the following theorem.

Theorem 7.1.3 ([KR09a]). Suppose there exists an efficient (k, `) interactive authentication proto-

col for messages of length Θ(`+log n), then there exits an efficient (k, λk, 2
−`) privacy amplification

protocol.

7.2 Privacy Amplification with Local Weak Random Sources

In this section we construct protocols for privacy amplification where Alice and Bob only

have access to local weak random sources. We show that
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1. Non constructively, we can do as good as if Alice and Bob have access to local random

bits. Specifically, if Alice and Bob have two independent (n, k) sources and they share an

independent (n, k) source, then there is a (possibly inefficient) protocol that achieves privacy

amplification up to security parameter Ω(k).

2. If Alice and Bob have two independent (n, (1
2 + δ)n) sources and they share an independent

(n, k) source, then there is an explicit protocol that achieves privacy amplification up to

security parameter kΩ(1).

3. If Alice and Bob have two independent (n, δn) sources and they share an independent (n, k)

source, then there is an explicit protocol that achieves privacy amplification up to security

parameter Ω(log k).

Specifically, we have the following theorems.

Theorem 7.2.1. For all positive integers n, k where k > log(n), assume that Alice and Bob have

two independent local (n, k) sources, and they share an independent (n, k) source W . Then non-

constructively there exists a (k, k −O(log n+ log(1/ε)), ε) privacy amplification protocol.

Theorem 7.2.2. For all positive integers n, k where k ≥ polylog(n) and any constant 0 < δ < 1,

assume that Alice and Bob have two independent local (n, (1/2 + δ)n) sources, and they share an

independent (n, k) source W . Then there exists an efficient (k, k − kΩ(1), 2−k
Ω(1)

, 2−k
Ω(1)

) privacy

amplification protocol.

Theorem 7.2.3. For all positive integers n, k where k ≥ polylog(n) and any constant 0 < δ < 1,

assume that Alice and Bob have two independent local (n, δn) sources, and they share an inde-

pendent (n, k) source W . Then there exists an efficient (k, k − kΩ(1), 1/poly(k), 1/poly(k)) privacy

amplification protocol.

Our results are the first results to give protocols that achieve privacy amplification when

Alice and Bob only have access to local weak random sources.

7.2.1 Overview of the Constructions

Here what we do is to try to reduce the case to where Alice and Bob have access to local

private random bits. In other words, we want to design a protocol such that at the end of the

protocol, Alice and Bob end up with nearly private and random bits, while their shared secret W

still has a lot of entropy left. Non-constructively, this is simple, because non-constructively there
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exists strong two-source extractors for min-entropy as small as k > log n. If we have a strong

two-source extractor, then Alice and Bob just each applies this extractor to his or her own source

and W . By the property of the strong two-source extractor, even conditioned on W , their outputs

are close to uniform. Moreover, conditioned on W their outputs are deterministic functions of

their own sources, and are thus independent. Eve also knows nothing about their outputs since all

computations are private. Thus we are done. In another case where Alice and Bob each has an

independent source with entropy k = (1/2 + δ)n, a construction of Raz [Raz05] serves as a strong

two source extractor. Thus in this case we have an explicit protocol.

The hard case is where Alice and Bob only have independent sources with entropy k = δn.

Our starting point here is how we can construct an extractor for these three sources X,Y and

W . In other words, let’s first forget about the communication problem and see how we can get a

3-source extractor.

Since X has linear min-entropy, a standard approach would be to convert X into a some-

where high entropy (say entropy rate 0.9) source X̄, using the condenser based on the sum-product

theorem [BKS+05, Zuc07]. X̄ is a matrix with a constant number of rows such that at least one

of the rows has entropy rate 0.9. Once we have this, we can apply Raz’s extractor to each row of

X̄ and W , and we get a somewhere random source with a constant number of rows. Now we can

extract from such a source and an independent weak random source using the two-source extractor

in [BRSW06].

So now how do we use these ideas in the case where Alice and Bob are separated by a

channel controlled by an active adversary Eve? As a first step, we still convert X and Y into

somewhere high entropy (say entropy rate 0.9) sources X̄ and Ȳ with D = O(1) rows. Next we

apply Raz’s extractor to each row of X̄ and W , and each row of Ȳ and W . Thus we get two

somewhere random sources SRx and SRy. Note that since Raz’s extractor is a strong two-source

extractor, the random rows in SRx and SRy are close to being independent of W . This is important

for us.

Next, we have Alice authenticate a string to Bob. To do this, we want to use the authenti-

cation protocol we discussed in the previous section. However, now Alice and Bob don’t have access

to random bits. The important observation here is that they have somewhere random sources. In

particular, the random rows of SRx and SRy can be used as seeds for a strong seeded extractor

in the authentication protocol (since they are independent of W ). Of course we don’t know which

row is the random row, thus we take a slice from the somewhere random sources with small width

(so that X and Y don’t lose much entropy) and use these slices in the authentication protocol. We

call these slices X1 and Y1. How do we use them? We have Alice and Bob announce their slices to
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each other and each time they communicate, they compute prefixes of the outputs of an extractor.

They then check if the prefixes they received match the prefixes they compute locally. Only this

time we apply the extractor to W using each row of the slice as a seed. Thus the output of the

extractor is also a matrix of D rows. Since the random row of the slice is close to being independent

of W , the output of the extractor is also somewhere random. Next, we increase the length of the

prefix by a factor of 2D, because each time Alice or Bob reveals a matrix of D rows. Now it can

be shown that to answer a challenge, Eve has to come up with the random row in the output of

the extractor, whose length is larger than the total number of bits revealed so far. Therefore Eve

can only succeed with a small probability. Given this protocol, Alice uses it to send another small

slice of SRx to Bob, and Bob uses this slice to extract random bits from his own source. We call

this slice X2.

There are two problems with the above discussion. First, the small slice X2 sent by Alice

may not be independent of W or the random row of the extractor output. Second, since each time

the length of the prefix increases by a factor of 2D and each time we want fresh entropy in the

extractor output, Alice can only send α log k bits with some α < 1, where k is the entropy of W .

With this small number of bits it’s not clear how Bob can extract random bits from his own source.

For the first problem, we show that although the small slice X2 sent by Alice may not

be independent of W or the random row of the extractor output, with high probability over the

fixings of X2, the random row of the extractor output has very high min-entropy. This is mainly

because the length of X2 is very small compared to the extractor output. Thus a typical fixing of it

doesn’t reduce the entropy of the random row of the extractor output by much. Now we can show

that with correct parameters, the high min-entropy row of the extractor output still suffices for

authentication. Thus for a typical value of the small slice, the success probability of Eve changing

it is still small. Note now Eve may be able to actually change a small probability mass of the slice

sent by Alice, but that doesn’t hurt us much. This is different from the case where Alice and Bob

have local random bits. For the second problem, luckily Bob also has a somewhere random source

SRy. Thus we can take a small slice Y2 of SRy so that the two-source extractor from [BRSW06]

can be used to extract random bits from these two sources.

Now suppose that Bob correctly received the small slice X2 sent by Alice, and Bob takes a

small slice Y2 of his somewhere random source. Let the output of the [BRSW06] extractor be R.

We first fix W and now X2 and Y2 are deterministic functions of X and Y respectively, and are

thus independent. Moreover X2 is somewhere random. Thus R is close to uniform. Furthermore,

since the two source extractor from [BRSW06] is strong, we can now fix Y2 and conditioned on

this fixing, R is still close to uniform. Now R is a deterministic function of X. Note that now all
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strings revealed by Bob are functions of Y1 and X1 (since W is fixed), and Y1 is a deterministic

function of Y and has small size. Thus we can further fix Y1 and conditioned on this fixing, R

is still close to uniform and is independent of Y . Moreover Y has a lot of entropy left and all

the strings revealed by Bob are now deterministic functions of X1. Therefore now we can apply a

strong seeded extractor to Y and R and Bob obtains Sy. Note that we can condition on R and

Sy is still close to uniform by the strong extractor property. Now Sy is a deterministic function of

Y and is thus independent of all the transcripts revealed so far, and X. Thus Bob has obtained

random bits that are close to uniform and private.

We actually cheated a little bit above, because again the size of R is very small compared

to Y . Thus we won’t be able to apply a seeded extractor to Y and R. However we can fix this

problem by taking a slice Y3 of SRy. The size of Y3 is much larger compared to the length of the

transcript, but much smaller compared to Y . It is actually a slice with width kΩ(1) (R will have

size Ω(log k)). Since in the analysis we fix W , Y3 is a deterministic function of Y , and the random

row of Y3 still has a lot of entropy left conditioned on the fixings of the transcript. Therefore we

can apply the strong seeded extractor to Y3 and R, and the above analysis about Bob obtaining

private random bits still holds.

By symmetry Alice can also take a slice X3 of SRx and apply a strong seeded extractor

to X3 and R, and the above argument would also work for Alice. Therefore now Bob can use the

authentication protocol to send R to Alice, and Alice applies the extractor to X3 and R. By the

same discussion above Eve may be able to change only a small probability mass of R, and this

doesn’t hurt us much. Thus at the end of the protocol Alice and Bob end up with nearly private

and uniform random bits, while their shared secret W still has a lot of entropy left. Thus we have

reduced the problem to the case where Alice and Bob have access to local uniform random bits, and

previous results can be used to construct a privacy amplification protocol. However since we only

manage to send Ω(log k) bits from Alice to Bob, the error of the extractor and thus the security

parameter of the protocol is Ω(log k).

7.2.2 The Constructions and the Analysis

In this section we present the protocols and the formal analysis.

7.2.2.1 Non Constructive Results

First we show that non-constructively, this can be done. In fact, we can essentially reduce

the problem to the case where Alice and Bob have local random bits. First we have the following
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theorem, that can be easily proved by the probabilistic method:

Theorem 7.2.4. (Two source extractor) For all positive integers n, k such that k > log n, there

exists a function TExt : {0, 1}n × {0, 1}n → {0, 1}m and 0 < ε < 1 such that m = Ω(k), ε = 2−Ω(k)

and if X,Y are two independent (n, k)-sources, then

|(X,TExt(X,Y ))− (X,Um)| ≤ ε

and

|(Y,TExt(X,Y ))− (Y, Um)| ≤ ε

Now we have the following protocol.

Protocol NExtract(x, y, w):

• Alice has a weak random source X, Bob has an independent weak random source Y , and

they share an independent weak random source W . All these sources have min-entropy

k > polylog(n).

• Let TExt be the strong two source extractor from Theorem 7.2.4.

1. Alice and Bob each applies TExt to his or her own source and W .

2. Alice obtains Sx = TExt(X,W ) and Bob obtains Sy = TExt(Y,W ), each outputting Ω(k)

bits.

Now we have the following theorem.

Theorem 7.2.5.

|(Sx, Sy,W )− (Ux, Uy,W )| ≤ 2−Ω(k),

where here (Ux, Uy) is the uniform distribution independent of W .

Proof. By Theorem 7.2.4 and a standard averaging argument, with probability 1 −
√
ε over the

fixings of W , Sx is
√
ε-close to uniform, where ε = 2−Ω(k). Similarly, with probability 1−

√
ε over

the fixings of W , Sy is
√
ε-close to uniform. Thus with probability 1− 2

√
ε over the fixings of W ,

both Sx and Sy are
√
ε-close to uniform. Note that after fixing W , Sx is a function of X and Sy is

a function of Y . Thus they are independent. Therefore with probability 1 − 2
√
ε over the fixings

of W , (Sx, Sy) is 2
√
ε-close to uniform. Thus we have
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|(Sx, Sy,W )− (Ux, Uy,W )| ≤ 2−Ω(k).

Now all we need to do is to plug in the non-explicit optimal privacy amplification in [DW09]

to obtain Theorem 7.2.1.

7.2.2.2 Weak random sources with entropy rate > 1/2

Now we study a simple case where Alice and Bob’s weak random sources have entropy rate

> 1/2. In this case, we show that we can also reduce the problem to the case where Alice and Bob

have local random bits. The reason is that we have strong two-source extractors for such sources,

namely Raz’s extractor from Theorem 3.5.7.

First we have the following protocol.

Protocol ExtractH(x, y, w):

• Alice has a weak random source X, Bob has an independent weak random source Y , and they

share an independent weak random source W . Both X and Y have min-entropy (1/2 + δ)n

and W has min-entropy k > polylog(n).

• Let Raz be the strong two source extractor from Theorem 3.5.7.

1. Alice and Bob each applies Raz to his or her own source and W .

2. Alice obtains Sx = Raz(X,W ) and Bob obtains Sy = Raz(Y,W ), each outputting Ω(k) bits.

Now we have the following theorem.

Theorem 7.2.6.

|(Sx, Sy,W )− (Ux, Uy,W )| ≤ 2−Ω(k),

where here (Ux, Uy) is the uniform distribution independent of W .

Proof. Essentially repeat the proof in the previous section.

Again, all we need to do now is to plug in any privacy amplification protocol in [RW03,

KR09a, DW09, CKOR10] to obtain Theorem 7.2.2.
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7.2.2.3 Weak random sources with linear min-entropy

In this section we relax the assumption and only require Alice and Bob have weak random

sources with arbitrarily linear min-entropy. More specifically, we assume that Alice and Bob each

has a local (n, δn) source for some constant 0 < δ < 1. We assume the shared source is an (n, k)

source with k ≥ polylog(n). Actually we can also deal with the case where the shared source has

linear min-entropy but the local weak sources only have poly logarithmic entropy. This case is quite

similar, and thus omitted.

The protocol

Here we give a protocol for Alice and Bob to extract private local random bits. That is,

in the end of the protocol, both Alice and Bob obtain local random bits that are close to uniform

and independent of the shared weak random source, even in Eve’s view. Moreover the shared weak

source still has most of its entropy left.

We need the following definition about the slice of a concatenation of strings.

Definition 7.2.7. [Rao09] Given ` strings of length n, x = x1, · · · , x`, define Slice(x, s) to be the

string x′ = x′1, · · · , x′` such that for each i x′i is the prefix of xi of length s.

Now we can describe our protocol. In this protocol when a party is authenticating a message

to the other party, we do not use the error correcting code. Instead, we just convert the message

to a string with a fixed number of 1’s. One simple way to do this is map each bit 0 to 01 and map

each bit 1 to 10. Thus the number of 1’s in the authenticated message is known to both parties

before they execute the protocol.

Protocol Extract(x, y, w):

• Alice has a weak random source X, Bob has an independent weak random source Y , and

they share an independent weak random source W . Both X and Y have min-entropy δn and

W has min-entropy k > polylog(n).

• Let Zuc be the somewhere condenser from Theorem 3.5.3.

• Let Raz be the strong two source extractor from Theorem 3.5.7.

• Let SRGExt be the two source extractor from Theorem 3.5.11.

• Let Ext be a strong extractor as in Theorem 3.5.13.
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• Let 0 < γ < 1 be some constant.

1. Alice uses Zuc to convert X into a somewhere rate-.9 source X̄, with D rows for some constant

D > 1. Similarly Bob also converts Y into a somewhere rate-.9 source Ȳ with D rows.

2. Alice applies Raz to each row of X̄ and W and obtains a somewhere random source SRx,

with each row outputting kγ bits. Similarly Bob also applies Raz to each row of Ȳ and W

and obtains a somewhere random source SRy, with each row outputting kγ bits.

3. Alice produces 3 strings: X1 = Slice(SRx, c log n), X2 = Slice(SRx, µ log k) and X3 =

Slice(SRx, k
β) for some parameters c > 1, 0 < µ < 1 and 0 < β < 1 to be chosen

later. Bob also produces 3 strings: Y1 = Slice(SRy, c log n), Y2 = Slice(SRy, µ log k) and

Y3 = Slice(SRy, k
β).

4. Alice announces x1 to Bob and Bob announces y1 to Alice. Alice then computes ry =

Ext(w, y1) and Bob computes rx = Ext(w, x1), where the function Ext is applied to w and

each row of x1, y1, and each output string has length kγ .

5. Alice converts x2 to a string mx with a fixed number of 1’s. Let the length of the string be t

(note t = O(log k)). Alice then authenticates mx to Bob by doing the following:

6. Define three set of integers as C1i = (4D)3i−2c log n,C2i = (4D)3i−1c log n,C3i = (4D)3ic log n,

where i = 1, · · · , 2t.

7. For i = 1 to t do (authenticate x2 to Bob):

• If mxi = 0, Alice sends (0,Slice(ry, C1i)). Otherwise she sends (1, Slice(ry, C2i)).

• Bob receives the message and verifies Slice(ry, C1i) = Slice(Ext(w, y1), C1i) in the 0 case

and Slice(ry, C2i) = Slice(Ext(w, y1), C2i) in the 1 case. If the verification does not go

through, abort. Bob then sends Slice(rx, C3i) to Alice.

• Alice receives the message and verifies Slice(rx, C3i) = Slice(Ext(w, x1), C3i).

8. When received t bits, Bob verifies that the number of ones in the received string is wt(mx);

aborts otherwise. Bob recovers x2 from mx.

9. Bob computes r3 = SRGExt(y2, x2), outputting Ω(log k) bits. Bob then computes sy =

Ext(y3, r3), outputting kΩ(1) bits.
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10. Bob converts r3 to a string my with a fixed number of 1’s. The length of the string is t′. Bob

then authenticates my to Alice by doing the following:

11. For i = t+ 1 to t+ t′ do (authenticate r3 to Alice):

• If my(i−t) = 0, Bob sends (0,Slice(rx, C1i)). Otherwise he sends (1, Slice(rx, C2i)).

• Alice receives the message and verifies Slice(rx, C1i) = Slice(Ext(w, x1), C1i) in the 0 case

and Slice(rx, C2i) = Slice(Ext(w, x1), C2i) in the 1 case. If the verification does not go

through, abort. Alice then sends Slice(ry, C3i) to Bob.

• Bob receives the message and verifies Slice(ry, C3i) = Slice(Ext(w, y1), C3i).

12. When received t′ bits, Alice verifies that the number of ones in the received string is wt(my);

aborts otherwise. Alice recovers r3 from my.

13. Alice computes sx = Ext(x3, r3), outputting kΩ(1) bits.

Analysis of the protocol

We claim that Sx and Sy can now be treated as local private random bits of Alice and Bob.

That is , they are close to being independent and uniform and independent of W , even in Eve’s

view. Specifically, we have the following theorem.

Theorem 7.2.8. Let V denote the transcript of the whole protocol in Eve’s view. Then if Sx 6=⊥
and Sy 6=⊥ (the protocol doesn’t abort), we have

|(Sx, Sy,W, V )− (Ux, Uy,W, V )| ≤ 1/poly(k),

where here (Ux, Uy) is the uniform distribution independent of (W,V ). Moreover, with probability

1− 2−k
Ω(1)

over the fixings of V = v, W has min-entropy k − kΩ(1).

Proof. Without loss of generality assume that the first row of X̄ and the first row of Ȳ have entropy

rate 0.9. Let the two rows be X̄1 and Ȳ1. Thus by Theorem 3.5.7 we have

|(SRx1,W )− (Ux,W )| = 2−Ω(k)

and

|(SRy1,W )− (Uy,W )| = 2−Ω(k),
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where SRx1 and SRy1 stand for the first rows of SRx and SRy respectively. Since conditioned on

any fixing of W = w, SRx1 and SRy1 are functions of X and Y and are thus independent, we have

|(SRx1, SRy1,W )− (Ux, Uy,W )| = 2−Ω(k). (7.1)

Note that the length of r3 is less than the length of x2. Thus t′ < t and therefore the

protocol runs for at most 2t = O(log k) rounds. Also in the protocol Ext(W,X11) and Ext(W,Y11)

output at most (4D)6tc log n = kΩ(1) log n bits. We choose µ s.t. this number is at most kγ , thus

we have enough entropy in W for the outputs. Therefore by Equation 7.1,

|(Ext(W,X11),Ext(W,Y11))− (U ′x, U
′
y)| = 2−Ω(k) + 1/poly(n) = 1/poly(n).

Note that now the random variable that Alice is trying to send to Bob, X2, and the ran-

dom variables X1, Y1 that have already been revealed, may not be (close to) independent of

(Ext(W,X11),Ext(W,Y11)). We first show in this case the probability that Eve can successfully

change a string x2 to a different string is small. To show this, we have the following lemma.

Lemma 7.2.9. Assume that (Ext(W,X11),Ext(W,Y11)) is ε0-close to uniform. Let X1 and Y1 be

as in the protocol. Let M be any random variable with at most D log n bits and Alice uses the

protocol to authenticate M to Bob. Then the probability that Eve can successfully change a string

m to a different string is bounded above by 1/poly(n) + ε0, where the probability is over M and the

random variables used to transfer M .

Proof. Let R̄x = Ext(W,X1), R̄y = Ext(W,Y1) and R̄x1, R̄y1 be the first rows of R̄x, R̄y respectively.

Thus R̄x1 = Ext(W,X11) and R̄y1 = Ext(W,Y11). Let Rx and Ry be the actual random variables

computed by Bob and Alice respectively. We want to deal with the ideal case where R̄x1, R̄y1 is

uniform instead of ε0-close to uniform. Note that (M,X1, Y1, R̄x, R̄y, Rx, Ry) are all the random

variables used by Alice to authenticate M to Bob. Thus by Lemma 7.1.1 we first construct another

distribution (M ′, X ′1, Y
′

1 , R̄
′
x, R̄

′
y, R

′
x, R

′
y, R̄

′
x1, R̄

′
y1) where (R̄′x1, R̄

′
y1) is uniform and

|(M,X1, Y1, R̄x, R̄y, Rx, Ry, R̄x1, R̄y1)− (M ′, X ′1, Y
′

1 , R̄
′
x, R̄

′
y, R

′
x, R

′
y, R̄

′
x1, R̄

′
y1)| ≤ ε0.

From now on we will continue the discussion as if (M,X1, Y1, R̄x, R̄y, Rx, Ry, R̄x1, R̄y1) =

(M ′, X ′1, Y
′

1 , R̄
′
x, R̄

′
y, R

′
x, R

′
y, R̄

′
x1, R̄

′
y1). We can do this because in the analysis all we use are the sizes
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ofM ′, X ′1, Y
′

1 , R̄
′
x, R̄

′
y, R

′
x, R

′
y, R̄

′
x1, R̄

′
y1, which are the same as those ofM,X1, Y1, R̄x, R̄y, Rx, Ry, R̄x1, R̄y1

by Lemma 7.1.1. Thus the success probability of Eve can only differ by at most ε0.

Now note that the length of m is at most D log n. Thus by Lemma 3.5.14 we have

Pr
M

[H∞(Ext(W,X11)|M = m) ≥ (4D)6tc log n−D log n−D log n] ≥ 1− 2−D logn.

That is,

Pr
M

[H∞(Ext(W,X11)|M = m) ≥ (4D)6tc log n− 2D log n] ≥ 1− 1/poly(n).

Similarly

Pr
M

[H∞(Ext(W,Y11)|M = m) ≥ (4D)6tc log n− 2D log n] ≥ 1− 1/poly(n).

We show that when m is a string s.t. both (Ext(W,X11)|M = m) and (Ext(W,Y11)|M = m)

have min-entropy at least (4D)6tc log n − 2D log n, the success probability that Eve can change

m without being detected is 1/poly(n). By the union bound this happens with probability 1 −
1/poly(n).

To see this, we first prove the following lemma.

Lemma 7.2.10. In order to change m to a different string, Eve has to come up with at least one

challenge.

Proof. To change m to a different string, Eve must take a series of operations. We consider two

cases.

• Case 1: The operations that Eve made include insertion or deletion. In this case the first

such operation must incur a challenge. To see this, let j be the round right before the

insertion or deletion. Thus at the end of round j, Alice has announced at most a total of

DC2j + cD log n = C3j/4 + cD log n bits. Similarly Bob has announced at most a total of

DC3j + cD log n = C1(j+1)/4 + cD log n bits. If it’s an insertion, Eve has to come up with at

least C1(j+1) = (4D)3j+1c log n random bits to avoid detection, and we see that

C1(j+1) − (C3j/4 + cD log n)− (C1(j+1)/4 + cD log n)−D log n > 4cD log n.
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If it’s a deletion, then Alice has announced at most a total ofDC2(j+1)+cD log n = C3(j+1)/4+

cD log n bits and Bob has announced a total of DC3j + cD log n = C1(j+1)/4 + cD log n bits.

Eve has to come up with at least C3(j+1) = (4D)3j+3c log n random bits to avoid detection,

and we see that

C3(j+1) − (C3(j+1)/4 + cD log n)− (C1(j+1)/4 + cD log n)−D log n > 4cD log n.

• Case 2: The operations that Eve made do not include insertion or deletion. In this case, since

the number of 1’s in the message is known to Bob, Eve must make at least one operation of

changing 0 to 1 and at least one operation of changing 1 to 0. Then the operation of changing

0 to 1 will incur a challenge. To see this, let j be the current round(since Eve does not make

operations of insertion and deletion, the round number is the same for Alice, Bob and Eve).

Thus now Alice has announced a total of DC1j + cD log n = C2j/4 + cD log n bits while Bob

has announced a total of DC3(j−1) + cD log n = C1j/4 + cD log n bits. Eve has to come up

with at least C2j = (4D)3j−1c log n random bits to avoid detection, and we see that

C2j − (C2j/4 + cD log n)− (C1j/4 + cD log n)−D log n > 4cD log n.

Now let j be the round that Eve has to answer the first challenge. Let Bj stand for the

random variable of all the strings that have been revealed by Alice and Bob till now, and let lb be

the length of the string bj . Let Aj denote the random variable that Eve is trying to come up with,

and let la be the length of the string a. Thus we have just shown that la ≥ lb + 4cD log n.

Since both Ext(W,X11)|M = m) and Ext(W,Y11)|M = m) have min-entropy at least

(4D)6tc log n− 2D log n, A has min-entropy la − 2D log n. Thus by Lemma 3.5.14,

Pr
B

[H∞(A|B = b) ≥ la − 2D log n− lb −D log n] ≥ 1− 2−D logn.

Thus

Pr
B

[H∞(A|B = b) ≥ D log n] ≥ 1− 1/poly(n).

Therefore the probability that Eve can successfully change the string is bounded from above

by 1/poly(n) + 2−D logn = 1/poly(n).
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Thus, going back to the case where (Ext(W,X11),Ext(W,Y11)) is ε0-close to uniform, the

success probability of Eve is bounded from above by 1/poly(n) + ε0.

Thus the success probability of Eve changing x2 to a different string is bounded from

above by 1/poly(n) + 1/poly(n) = 1/poly(n). Note this probability is also over X2. By a standard

averaging argument, with probability 1−1/poly(n) over X2, the success probability of Eve changing

x2 to a different string is at most 1/poly(n).

Now Bob obtains a random variable X ′2. Note that X ′2 is not exactly X2 since Eve may

be able to change X2 for a probability mass of ε = 1/poly(n). Assume for now that Bob obtains

X2 instead of X ′2. Now we fix W = w. Note that after this fixing, X1, X2 are functions of X and

Y1, Y2 are functions of Y . By Theorem 3.5.7, with probability 1−2−Ω(k) over the fixings of W = w,

X2 is 2−Ω(k)-close to being a somewhere random source, and so is Y2. Moreover X2 and Y2 are

independent. Thus by Theorem 3.5.11, we have that for a typical fixing of W = w,

|(X2, R3)− (X2, Um)| < ε1 (7.2)

and

|(Y2, R3)− (Y2, Um)| < ε1, (7.3)

where ε1 = 2−Ω(k) + 2−Ω(log k) = 1/poly(k).

We then further fix Y2 = y2. By Equation 7.3 with probability 1 − √ε1 over the fixings

of Y2 = y2, R3 is
√
ε1-close to uniform. Further note that after this fixing R3 is a deterministic

function of X, and Y1 is a deterministic function of Y . Thus we can further fix Y1 = y1 and R3

is still
√
ε1-close to uniform. Note that y1 has length cD log n and Y3 has min-entropy kβ. Thus

by Lemma 3.5.14 we have that with probability 1 − 1/poly(n) over the fixings of Y1 = y1, Y3 has

min-entropy 0.9kβ. Thus we have shown that

[Condition 1] With probability 1 − 2−Ω(k) − √ε1 − 1/poly(n) = 1 − 1/poly(k) over the

fixings of W = w, Y2 = y2, Y1 = y1, R3 is
√
ε1-close to uniform, Y3 has min-entropy kβ and R3 and

Y3 are independent.

Now let’s consider the case where Bob obtains X ′2 instead of X2 and Bob computes R′3
instead of R3. Note that Eve can only change a ε = 1/poly(n) probability mass of X2. For a fixed

W = w, Y1 = y1(note that y2 is a slice of y1), let Ew,y1 denote the event that Eve changes a
√
ε

probability mass of X2|(W = w, Y1 = y1). By a standard averaging argument we have
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Pr
W,Y1

[Ew,y1 ] ≤
√
ε.

Now consider a typical fixing of W = w, Y1 = y1 where the event Ew,y1 does not happen and

Condition 1 holds. This happens with probability 1−1/poly(k)−
√
ε = 1−1/poly(k). Note since

Condition 1 holds, after this fixing R3 and Y3 are independent and R3 is a deterministic function

of X2 (and X). Now Eve can change a probability mass of
√
ε here, but all strings revealed by

Bob are fixed and W are fixed. Thus whatever Eve does, the resulting R′3 is a function of X and

is still independent of Y3. Moreover since Eve can only change a probability mass of
√
ε, R′3 is

√
ε1 +

√
ε = 1/poly(k)-close to uniform. Therefore we have shown that

[Condition 2] With probability 1− 1/poly(k) over the fixings of W = w, Y2 = y2, Y1 = y1,

R′3 is 1/poly(k)-close to uniform, Y3 has min-entropy 0.9kβ and R′3 and Y3 are independent.

Therefore by the property of the strong extractor Ext, we have

|(Sy, R′3)− (U,R′3)| < 1/poly(k).

Note that we have fixed W = w, Y2 = y2, Y1 = y1, and we can now further fix R′3 = r′3.

After this fixing Sy is just a function of Y and is independent of X. Thus we have fixed all possible

information that Eve could know about Y and Sy is still close to uniform. Therefore Sy can be

treated as local private random bits of Bob.

Now again by Lemma 7.2.9 Bob can authenticate R′3 to Alice such that Eve can only

successfully change a probability mass of ε = 1/poly(n) of R′3. Suppose Alice obtains R′′3 . Now we

fix W = w and let Ew stand for the event that Eve changes a
√
ε probability mass of X2|(W = w).

By a standard averaging argument we have

Pr
W

[Ew] ≤
√
ε.

Now for a typical fixing of W = w where both X2 and Y2 are close to a somewhere random

source and Eve changes less than a
√
ε probability mass of X2|(W = w), X2 is a function of X,

Y2 is a function of Y and are thus independent. By Equation 7.2 with probability 1 − √ε1 over

the fixings of X2 = x2, R3 is
√
e1-close to uniform. Thus for a further typical fixing of X2 = x2

where X2 is not changed by Eve and R3 is close to uniform, R3(and R′3) is a function of Y and

is independent of X. Therefore we can further fix X1 = x1 and R′3 is still close to uniform. Note
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that x1 has length cD log n and X3 has min-entropy kβ. Thus by Lemma 3.5.14 we have that with

probability 1− 1/poly(n) over the fixings of X1 = x1, X3 has min-entropy 0.9kβ.

Now Eve can change a ε = 1/poly(n) probability mass of R′3. Let Ew,x2 stand for the

event that Eve changes a
√
ε probability mass of R′3|(W = w,X2 = x2). By a standard averaging

argument we have

Pr
W,X2

[Ew,x2 ] ≤
√
ε.

Thus for a typical fixing of (W = w,X2 = x2), Eve changes less than
√
ε probability mass

of R′3|(W = w,X2 = x2). Since now all strings revealed by Alice and W are fixed, no matter what

Eve does, the resulting R′′3 is a function of Y and is still independent of X3. Moreover since Eve

can only change a probability mass of
√
ε, R′′3 is

√
ε1 +

√
ε = 1/poly(k)-close to uniform. Note the

probability of typical fixings of (W = w,X2 = x2) is at least 1−
√
ε−√ε1−

√
ε−
√
ε = 1−1/poly(k).

Therefore we have shown that

[Condition 3] With probability 1−1/poly(k) over the fixings of W = w,X2 = x2, X1 = x1,

R′′3 is 1/poly(k)-close to uniform, X3 has min-entropy 0.9kβ and R′′3 and X3 are independent.

Therefore by the property of the strong extractor Ext, we have

|(Sx, R′′3)− (U,R′′3)| < 1/poly(k).

Note that we have fixed W = w,X2 = x2, X1 = x1, and we can now further fix R′′3 = r′′3 .

After this fixing Sx is just a function of X and is independent of Y , and is thus also independent

of Sy (which now is a function of Y ). Thus we have fixed all possible information that Eve could

know about X and Sx is still close to uniform. Therefore Sx can be treated as local private random

bits of Bob.

Therefore, we have eventually shown that

|(Sx, Sy, X1, Y1,W )− (Ux, Uy, X1, Y1,W )| ≤ 1/poly(k).

Note that now the entire transcript V up till now is a deterministic functions of W,X1, Y1.

Therefore we also have

|(Sx, Sy, V,W )− (Ux, Uy, V,W )| ≤ 1/poly(k).
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Note that the transcript has length at most kγ . Therefore by Lemma 3.5.14 with probability

1− 2−k
Ω(1)

over the fixings of the transcript, W still has min-entropy at least k − kΩ(1). Thus the

theorem is proved.

Now all we need to do is to plug in any privacy amplification protocol in [RW03, KR09a,

DW09, CKOR10] to obtain Theorem 7.2.3.

7.3 Privacy Amplification with Local Uniform Random Bits

In this section we show how to improve previous results in various settings. Our improve-

ments rely on the construction of non-malleable extractors in Section 6.4.

Dodis and Wichs [DW09] showed that such extractors imply privacy amplification protocols

with 2 rounds and optimal entropy loss. As a direct corollary of Theorem 6.4.2 and the protocol

of Dodis and Wichs, we obtain a 2-round protocol for privacy amplification with optimal entropy

loss, when the entropy rate is 1/2 + α for any α > 0. This improves the significant entropy loss in

the one-round protocols of Dodis, Katz, Reyzin, and Smith [DKRS06] and Kanukurthi and Reyzin

[KR08].

Next, we use our non-malleable extractor to give a constant-round privacy amplification

protocol with optimal entropy loss, when the entropy rate is δ for any constant δ > 0. This signifi-

cantly improves the round complexity of [KR09b] and [CKOR10]. It also significantly improves the

entropy loss of [DW09], at the price of a slightly larger but comparable round complexity (O(1) vs.

2). Our result is stated as follows.

Theorem 7.3.1. Under conjecture 3.2.2, for any constant 0 < δ < 1 and error 2−Ω(δn) < ε <

1/n, there exists a polynomial-time, constant-round (δn, δn − O(log(1/ε)), ε)-secure protocol for

privacy amplification. More specifically, the protocol takes number of rounds poly(1/δ), and achieves

entropy loss poly(1/δ) log(1/ε).

7.3.1 Overview of the Protocol for Privacy Amplification

We first describe Dodis and Wichs’ optimal two-round protocol using a non-malleable ex-

tractor. The protocol also uses a cryptographic primitive: a one-time message authentication code

(MAC). Roughly speaking, a MAC uses a private uniformly random key R to produce a tag T for

a message m, such that without knowing the key, the probability that an adversary can guess the

correct tag T ′ for another message m′ 6= m is small, even given m and T .
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Now assume that we have a non-malleable extractor nmExt that works for any (n, k)-

source X. Then there is a very natural two-round privacy amplification protocol. In the first

round Alice chooses a fresh random string Y and sends it to Bob. Bob receives a possibly modified

string Y ′. They then compute R = nmExt(X,Y ) and R′ = nmExt(X,Y ′) respectively. In the second

round, Bob chooses a fresh random string W ′ and sends it to Alice, together with T ′ = MACR′(W
′)

by using R′ as the MAC key. Alice receives a possibly modified version (W,T ), and she checks if

T = MACR(W ). If not, then Alice aborts; otherwise they compute outputs Z = Ext(X,W ) and

Z ′ = Ext(X,W ′) respectively, where Ext is a seeded strong extractor.

The analysis of the above protocol is also simple. If Eve does not change Y , then R = R′

and is (close to) uniform. Therefore by the property of the MAC the probability that Eve can

change W ′ without being detected is very small. On the other hand if Eve changes Y , then by the

property of the non-malleable extractor, one finds that R′ is (close to) independent of R. Thus in

this case, again the probability that Eve can change W ′ without being detected is very small. In

fact, in this case Eve cannot even guess the correct MAC for W ′ with a significant probability.

The above protocol is nice, except that we only have non-malleable extractors for entropy

rate > 1/2. As a direct corollary this gives our 2-round privacy amplification protocol for entropy

rate > 1/2. To get a protocol for arbitrary positive entropy rate, we have to do more work.

We start by converting the shared weak random source X into a somewhere high min-

entropy rate source. The conversion uses recent condensers built from sum-product theorems.

Specifically, any n-bit weak random source with linear min-entropy can be converted into a matrix

with a constant number of rows, such that at least one row has entropy rate 0.9.1 Moreover each

row still has Θ(n) bits. Note that since Alice and Bob apply the same function to the shared weak

random source, they now also share the same rows.

Now it is natural to try the two-round protocol for each row and hope that it works on the

row with high min-entropy rate. More specifically, for each row i we have a two round protocol that

produces Ri, R
′
i in the first round and Zi, Z

′
i in the second round. Now let g be the first row that

has min-entropy rate 0.9. We hope that Zg = Z ′g with high probability, and further that Zg, Z
′
g

are close to uniform and private. This is indeed the case if we run the two round protocol for each

row sequentially (namely we run it for the first row, and then the second row, the third row, and

so on), and we can argue as follows.

1In fact, the result is (close to) a convex combination of such matrices. For simplicity, however, we can assume
that the result is just one such matrix, since it does not affect the analysis.
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Assume the security parameter we need to achieve is s, so each of Ri, R
′
i has O(log n + s)

bits by the property of the MAC. As long as s is not too large, we can fix all these random variables

up to row g − 1, and argue that row g still has min-entropy rate > 1/2 (since each row has Θ(n)

bits we can actually achieve a security parameter up to s = Ω(n)). Note that we have essentially

fixed all the information about X that can be leaked to Eve. Therefore now for row g the protocol

succeeds and thus Zg = Z ′g with high probability, and Zg, Z
′
g are close to uniform and private.

However, we don’t know which row is the good row. We now modify the above protocol to

ensure that, once we reach the first good row g, for all subsequent rows i, with i > g, we will have

that Zi = Z ′i with high probability, and further Zi, Z
′
i are close to uniform and private. If this is

true then we can just use the output for the last row as the final output.

To achieve this, the crucial observation is that once we reach a row i− 1 such that Zi−1 =

Z ′i−1, and Zi−1, Z
′
i−1 are close to uniform and private, then Zi−1 can be used as a MAC key to

authenticate W ′i for the next row. Now if W ′i = Wi for row i, then Zi = Z ′i and Zi, Z
′
i will also

be close to uniform and private. Therefore, we modify the two-round protocol so that in the

second round for row i, not only do we use T ′i1 = MACR′i(W
′
i ) to authenticate W ′i , but also we use

T ′i2 = MACZ′i−1
(W ′i ) to authenticate W ′i .

This would have worked given that Zi−1 = Z ′i−1, and Zi−1, Z
′
i−1 are close to uniform and

private, except for another complication. The problem is that now T ′i1 = MACR′i(W
′
i ) could leak

information about Zi−1 to Eve, so Zi−1 is no longer private. Fortunately, there are known con-

structions of MACs that work even when the key is not uniform, but instead only has large enough

average conditional min-entropy in the adversary’s view. Specifically, Theorem 7.3.3 indicates that

the security parameter of this MAC is roughly the average conditional min-entropy of the key

minus half the key length, and the key length is roughly twice as long as the length of the tag.

Therefore, we can choose a small tag length for T ′i1 = MACR′i(W
′
i ), and a large tag length for

T ′i2 = MACZ′i−1
(W ′i ). For example, if the tag length for T ′i1 is 2s, and the tag length for T ′i2 is

4s, then the key length for T ′i2 is 8s. Thus the average min-entropy of Zi−1 conditioned on T ′i1 is

8s− 2s = 6s, and we can still achieve a security parameter of 6s− 4s = 2s.

Finally, the discussion so far implicitly assumed that Eve follows a natural “synchronous”

scheduling, where she never tries to get one party out-of-sync with another party. To solve this

problem, after each Phase i Bob performs a “liveness” test, where Alice has to respond to a fresh

extractor challenge from Bob to convince Bob that Alice is still “present” in this round. This

ensures that if Bob completes the protocol, Alice was “in-sync” with Bob throughout. However,

Eve might be able to make Alice be out-of-sync with Bob, causing Alice to output a non-random
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key (and Bob reject). To solve this last problem, we add one more round at the end which ensures

that Alice always outputs a random key (and Bob either outputs the same key or rejects).

With this modification, the complete protocol is depicted in Figure 7.2. Essentially, for the

first good row, the property of the non-malleable extractor guarantees that Eve cannot change W ′g
with significant probability. For all subsequent rows, by using the output Z ′i−1 from the previous row

as the MAC key, the property of the MAC guarantees that Eve cannot change W ′i with significant

probability. Therefore, the output for the last row can be used to authenticate the last seed of the

extractor chosen by Alice (for the reason mentioned above) to produce the final output.

Finally, we note that our final protocol has O(1) rounds and achieves asymptotically optimal

entropy loss is O(s+ log n), for security parameter s.

7.3.2 The Construction and the Analysis

First we need the definition of a MAC. One-time message authentication codes (MACs) use

a shared random key to authenticate a message in the information-theoretic setting.

Definition 7.3.2. [KR09b] A function family {MACR : {0, 1}` → {0, 1}v} is a ε-secure one-time

MAC for messages of length ` with tags of length v if for any M ∈ {0, 1}` and any function

(adversary) A : {0, 1}v → {0, 1}` × {0, 1}v,

Pr
R

[MACR(M ′) = T ′ ∧M ′ 6= M |(M ′, T ′) = A(MACR(M))] ≤ ε,

where R is the uniform distribution over {0, 1}n.

Theorem 7.3.3 ([KR09b]). For any message length d and tag length v, there exists an efficient

family of (ddv e2
−v)-secure MACs with key length ` = 2v. In particular, this MAC is ε-secure when

v = log d+ log(1/ε).

More generally, this MAC is also enjoys the following security guarantee, even if Eve has partial

information E about its key R. Let (R,E) be any joint distribution. Then, for all attackers A1 and

A2,

Pr
(R,E)

[MACR(W ′) = T ′ ∧W ′ 6= W |W = A1(E), (W ′, T ′) = A2(MACR(W ), E)] ≤
⌈
d

v

⌉
2v−H∞(R|E).

(In the special case when R ≡ U2v and independent of E, we get the original bound.)

Finally, we will also need to use any strong (k, ε)-extractor with with optimal entropy loss

O(log(1/ε)). In principle, the seed length d of such an extractor can be sub-linear in the source
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length n, which will reduce the communication complexity of our protocol. However, since our final

protocol will also use a non-malleable extractor nmExt, and our construction of the latter has linear-

length seed, using a small-seed for Ext will not result in any asymptotic savings in communication

complexity. In particular, we might as well use extremely simple extractors from the leftover hash

lemma, having optimal entropy loss 2 log(1/ε) and a linear-length seed.

Case of k > n/2 Given a security parameter s, Dodis and Wichs showed that a non-malleable

extractor which extracts at least 2 log n + 2s + 4 number of bits with error ε = 2−s−2 yields a

two-round protocol for privacy amplification with optimal entropy loss. The protocol is depicted

in Figure 7.1.

Alice: X Eve: E Bob: X

Sample random Y .
Y −−−−−−−−→ Y ′

Sample random W ′.
R′ = nmExt(X;Y ′).
T ′ = MACR′(W

′).
Set final RB = Ext(X;W ′).

(W,T )←−−−−−−−− (W ′, T ′)

R = nmExt(X;Y )
If T 6= MACR(W ) reject.
Set final RA = Ext(X;W ).

Figure 7.1: 2-round Privacy Amplification Protocol for H∞(X|E) > n/2.

Using the bound from Theorem 6.4.6 and setting ε = 2−s and m = s, we get the following

theorem.

Theorem 7.3.4. Under Conjecture 3.2.2 with constant c, for any s > 0 there is a polynomial

time computable (k, ε)-non-malleable extractor with m = s and ε = 2−s, as long as k ≥ n/2 +

(c/2) log n+ 4s+ b, where b is a large enough constant.

Using this theorem, we obtain the following.

Theorem 7.3.5. Under Conjecture 3.2.2 with constant c, there is a polynomial-time two-round

protocol for privacy amplification with security parameter s and entropy loss O(log n + s), when

the min-entropy k of the n-bit secret satisfies k ≥ n/2 + (c/2 + 8) log n+ 8s+ b, where b is a large

enough constant.
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Case of k = δn Now we give our privacy amplification protocol for the case of arbitrarily linear

min-entropy.

Now we give our privacy amplification protocol for the setting when H∞(X|E) = k > δn.

We assume that the error ε we seek satisfies 2−Ω(δn) < ε < 1/n. In the description below, it

will be convenient to introduce an “auxiliary” security parameter s. Eventually, we will set s =

log(C/ε) + O(1) = log(1/ε) + O(1), so that O(C)/2s < ε, for a sufficiently large O(C) constant

related to the number of “bad” events we will need to account for. We will need the following

building blocks:

• Let Cond : {0, 1}n → ({0, 1}n′)C be a rate-(δ → 0.9, 2−s)-somewhere-condenser. Specifically,

we will use the one from Theorem 3.5.3, where C = poly(1/δ) = O(1), n′ = poly(δ)n = Ω(n)

and 2−s � 2−Ω(δn).

• Let nmExt : {0, 1}n′ × {0, 1}d′ → {0, 1}m′ be a (0.9n′, 2−s)-non-malleable extractor. Specifi-

cally, we will use the one from Theorem 7.3.4 (which is legal since 0.9n′ � n′/2 +O(log n′) +

8s + O(1)) and set the output length m′ = 4s) (see the description of MAC below for more

on m′.)

• Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a (k′, 2−s)-extractor with optimal entropy loss k′−m =

O(s). Specifically, we will set k′ = k− (7C+11)s = k−O(s), which means that m = k−O(s)

as well. We will use the notation Exta..b(X;W ), where 1 6 a 6 b 6 m, to denote the sub-

string of extracted bits from bit position a to bit position b. We assume the seed length

d 6 n (e.g., by using a universal hash function, but more seed-efficient extractors will work

too, reducing the communication complexity).

• Let MAC be the one-time, 2−s-secure MAC for d-bit messages, whose key length `′ = m′

(the output length of nmExt). Using the construction from Theorem 7.3.3, we set the tag

length v′ = s + log d 6 2s (since d 6 n 6 1/ε 6 2s), which means that the key length

`′ = m′ = 2v′ 6 4s.

• Let lrMAC be the another one-time (“leakage-resilient”) MAC for d-bit messages, but with

tag length v = 2v′ 6 4s and key length ` = 2v 6 8s. We will later use the second part of

Theorem 7.3.3 to argue good security of this MAC even when v′ bits of partial information

about its key is leaked to the attacker. To not confuse the two MACs, we will use Z (instead

of R) to denote the key of lrMAC and L (instead of T ) to denote the tag of lrMAC.
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Using the above building blocks, the protocol in given in Figure 7.2. To emphasize the presence

of Eve, we will use ‘prime’ to denote all the protocol values seen or generated by Bob; e.g., Bob

picks W ′1, but Alice sees potentially different W1, etc. Also, for any random variable G used in

describing our protocol, we use the notation G =⊥ to indicate that G was never assigned any value,

because the party who was supposed to assign G rejected earlier. The case of final keys RA and

RB becomes a special case of this convention.

Our protocol proceeds in C + 1 Phases. During the first C Phases, we run C sequential

copies of the two-round protocol for the entropy-rate greater than 1/2 case (see Figure 7.1), but

use the derived secret Xi (output by the somewhere-condenser) instead of X during the i-th run.

Intuitively, since one of the values Xi is expected to have entropy rate above 1/2, we hope that the

key Zi extracted in this Phase is secret and uniform. However, there are several complications we

must resolve to complete this template into a secure protocol.

The first complication is that Eve might not choose to execute its run with Alice in a

“synchronous” manner with its execution with Bob. We prevent such behavior of Eve by introducing

“liveness tests”, where after each Phase Alice has to prove that she participated during that Phase.

Such tests were implicit in the original paper of Renner and Wolf [RW03], and made explicit by

Khanakurthi and Reyzin [KR09b]. Each liveness test (except for the last one in Phase C + 1,

to be discussed) consists of Bob sending Alice a seed W ′i for the extractor Ext (which is anyway

sent during the i-th Phase), and Alice responding with the first s bits of the extracted output.

Intuitively, although Eve may choose to maul the extracted seed (which might be possible for all

Phases, where the entropy rate of Xi is below 1/2), Eve cannot predict the correct output without

asking Alice something. And since Bob does uses a new liveness test between every two Phases,

this effectively forces Eve to follow a natural “synchronous” interleaving between the left and the

right executions.

The second complication comes from the fact that after a “good” (rate above 1/2) Phase

i is completed, the remaining phases might use low-rate sources Xi+1, . . . , XC . Hence, one needs

a mechanism to make sure that once a good key is extracted in some a-priori unknown phase,

good keys will be extracted in future phases as well, even if the remaining derived sources Xi have

low entropy-rate. This is done by using a second message authentication code lrMAC, keyed by a

value Z ′i−1 extracted by Bob in the previous Phase (i − 1), to authenticated the seed W ′i sent in

Phase i. The only subtlety is that Bob still sends the original MAC of W ′i , and this MAC might

be correlated with the previous extracted key Zi−1 (especially if the Phase i uses “bad-rate” Xi).

Luckily, by using the “leakage-resilient” property of our second MAC (stated in Theorem 7.3.3),
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Alice: X Eve: E Bob: X

(X1, . . . XC) = Cond(X). Phase 1 (X1, . . . XC) = Cond(X).
Sample random Y1.

Y1 −−−−−−−−→ Y ′1

Sample random W ′1.
R′1 = nmExt(X1;Y ′1).
T ′1 = MACR′1

(W ′1).
(W1, T1)←−−−−−−−− (W ′1, T

′
1)

R1 = nmExt(X1;Y1)
If T1 6= MACR1(W1) reject.
Z1 = Exts+1..s+`(X;W1).

Phases 2..C
For i = 2 to C For i = 2 to C

Sample random Yi. Sample random W ′i .
Si−1 = Ext1..s(X;Wi−1).

(Si−1, Yi) −−−−−−−−→ (S′i−1, Y
′
i )

If S′i−1 6= Ext1..s(X;W ′i−1) reject.
Z ′i−1 = Exts+1..s+`(X;W ′i−1).
L′i = lrMACZ′i−1

(W ′i ).

R′i = nmExt(Xi;Y
′
i ).

T ′i = MACR′i
(W ′i ).

(Wi, Ti, Li)←−−−−−−−− (W ′i , T
′
i , L
′
i)

If Li 6= lrMACZi−1
(Wi)

reject.
Ri = nmExt(Xi;Yi).
If Ti 6= MACRi

(Wi)
reject.
Zi = Exts+1..s+`(X;Wi).

EndFor EndFor

Phase C + 1

Re-assign
ZC = Ext1..m′(X;WC). Z ′C = Ext1..m′(X;W ′C)
Sample random WC+1.
SC = MACZC

(WC+1)
(SC ,WC+1) −−−−−−−−→ (S′C ,W

′
C+1)

If S′C 6= MACZ′C
(W ′C+1) reject.

Set final Set final
RA = Ext(X;WC+1). RB = Ext(X;W ′C+1).

Figure 7.2: (2C + 1)-round Privacy Amplification Protocol for H∞(X|E) > δn.
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and setting the parameters accordingly), we can ensure that Z ′i−1 has enough entropy to withstand

the “leakage” of the original MAC of W ′i .

The template above already ensures the robustness of the protocol, if we were to extract

the key ZC (or Z ′C for Bob) derived at the end of Phase C. Unfortunately, it does not necessarily

ensure that Alice outputs a random key (i.e., it does not guarantee the extraction property for

Alice). Specifically, by making Alice’s execution run faster than Bob’s execution, it might be

possible for Eve to make Alice successfully accept a non-random seed WC , resulting in non-random

key ZC . Intuitively, since all the Xi’s except for one might have low entropy rate, our only hope to

argue security should come from the non-malleability on nmExt in the “good” Phase i. However,

since Bob is behind (say, at Phase j < i) Alice during the good Phase i, Bob will use a wrong source

Xj for the non-malleable extractor, and we cannot use the non-malleability of nmExt to argue that

Eve cannot fool Alice into accepting a wrong seed Wi (and, then, wrong Wi+1, . . . ,WC). Of course,

in this case we know Bob will eventually reject, since Eve won’t be able to answer the remaining

liveness tests. However, Alice’s key ZC is still non-random, violating extraction.

This is the reason for introducing the last Phase C + 1. During this phase Alice (rather

than Bob) picks the last seed WC+1 and uses it to extract her the final key RA. Therefore, RA

is now guaranteed to be random. However, now we need to show how to preserve robustness and

Bob’s extraction. This is done by Alice sending the MAC of WC+1 using they key ZC she extracted

during the previous round. (We call this MAC SC rather than TC+1, since it also serves as a

liveness test for Alice during Phase (C + 1).) From the previous discussion, we know that, with

high probability, (a) either ZC is non-random from Eve’s perspective, but then Bob will almost

certainly reject (ensuring robustness and preserving Bob’s extraction); or (b) ZC = Z ′C is random

and secret from Eve, in which case the standard MAC security suffices to ensure both robustness

and Bob’s extraction.

We detail the formal proof following the above intuition in the next section, which also

establishes the desired parameters promised by Theorem 7.3.1.

7.3.2.1 Security Proof of Our Protocol (Proof of Theorem 7.3.1)

We start by noticing that our protocol takes 2C + 1 = poly(1/δ) = O(1) rounds and

achieves entropy loss k − m = O(Cs) = O(poly(1/δ) log(1/ε)), as claimed. Also, the protocol

obviously satisfies the correctness requirement.

We will also assume that the side information E is empty (or fixed to a constant), since

by Lemma 2.3.16, with probability 1 − 2−s, H∞(X|E = e) > δn − s, which will not affect any of
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our bounds. Before proving robustness and extraction properties of our protocol, we start with the

following simple observation.

Lemma 7.3.6. Let E′ be Eve’s view at the end of her attack (without the keys RA and RB used

in the post-application robustness experiment). Then, for any deterministic functions f and g, we

have

H∞(f(X) | g(E′)) > H∞(f(X))− (7C − 3)s

In particular, recalling that k′ = H∞(X)− (7C + 11)s, we have H∞(X|g(E′)) > k′ + 14s.

Proof. Clearly, if it sufficient to prove the claim for g being identity, as it gives the predictor the

most information to guess f(X). Also notice that, at best, if neither party rejects, Eve’s view

E′ = (~Y , ~S, ~W ′, ~T ′, ~L′,WC+1), where ~Y = {Y1, . . . , YC}, ~S = {S1, . . . , SC}, ~W ′ = {W ′1, . . . ,W ′C},
~T ′ = {T ′1, . . . , T ′C} and ~L′ = {L′2, . . . , L′C}. Since ~Y , ~W ′ and WC+1 are independent of X (and, thus,

f(X)), using Lemma 2.3.17 and recalling |Si| = s for i < C, |SC | = |T ′i | = v′ 6 2s, |L′i| = v 6 4s,

we have

H∞(f(X)|E′) > H∞(f(X)|(~Y , ~W ′,WC+1))− |~S| − | ~T ′| − |~L′|
= H∞(f(X))− (C − 1)s− v′ − Cv′ − (C − 1)v

> H∞(f(X))− (C − 1)s− 2(C + 1)s− (C − 1)4s

= H∞(f(X))− (7C − 3)s

Next, we will argue the extraction property for Alice.

Lemma 7.3.7.

∆((RA, E
′), (purify(RA), E′)) 6 2−s+1

Proof. Since purify(RA) = RA when Alice rejects (i.e., RA =⊥), it is sufficient to show that Alice’s

key is close to uniform conditioned on Alice not rejecting, i.e.

∆((Ext(X;WC+1), E′), (Um, E
′)) 6 2−s+1 (7.4)

By Lemma 7.3.6, H∞(X|E′) > k′ + 14s. Using Lemma 2.3.16, we get that

Pr
e′←E′

[H∞(X|E′ = e′) > k′] > 1− 2−s.
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Since Ext is (k′, 2−s)-extractor, Equation (7.4) immediately follows the triangle inequality

and the security of the extractor, by conditioning on whether or not H∞(X|E′ = e′) > k′.

Next, we notice that in order to violate either robustness of Bob’s extraction, Eve must

make Bob accept (i.e., RB 6=⊥). Therefore, we start by examining how Eve might cause Bob to

accept. Notice, since Alice sends C + 1 messages, including the first and the last message, Eve

can make C + 1 calls to Alice, which we call Alice1, . . . , AliceC+1, where, for each call Alicei,

1 6 i 6 C + 1, Eve gets back the message sent by Alice during Phase i. Additionally, Alice

also computes her key RA in response to AliceC+1 (and gives RA to Eve, in addition to SC and

WC+1, for post-application robustness). Similarly, Eve can also make C + 1 calls to Bob, denoted

Bob1, . . . , BobC+1, where each call Bobi expects as input the message that Alice supposedly sent

to Bob in Phase i. When i 6 C, Bob responds to such a message with his own message in Phase i.

When i = C + 1, Bob computes his key RB (and gives RB to Eve for post-application robustness).

Clearly, the (C + 1) calls to Alice must be made in order, and the same the (C + 1) calls to Bob.

However, a malicious Eve might attempt to interleave the calls in some adversarial manner to make

Bob accept. We say that Eve is synchronous if he makes his oracle calls in the (“synchronous”)

order Alice1, Bob1, Alice2, Bob2, . . . , AliceC+1, BobC+1. We notice that, without loss of generality,

Eve always starts by making the Alice1() call, since this call has no inputs Eve needs to provide.

Namely, Eve must as well find out the values Y1 first, and, if she wants, delay using this value until

later. With this convention in mind, we show that Eve must be synchronous in order to make Bob

accept.

Lemma 7.3.8.

Pr[RB 6=⊥ ∧ Eve is not synchronous] 6
3C

2s
(7.5)

Proof. As we said, we assume Eve always makes the call Alice1 first. After that, Eve makes C + 1

calls to Bob and C calls to Alice in some order. We claim that for every 1 6 i 6 C, Eve must

make at least one call to some Alicej in between two successive calls Bobi and Bobi+1. If we

show this (with total failure probability from Equation (7.5)), Eve must be synchronous, since the

synchronous scheduling is the only scheduling that starts with Alice1 and has a fresh call to Alice

between Bob1 and Bob2, Bob2 and Bob3, . . ., BobC and BobC+1.

Given 1 6 i 6 C, let Fi denote the event that Eve’s scheduling of calls made two successive

calls Bobi and Bobi+1 without a fresh call to some Alicej , and Bob does not reject after the call

Bobi+1. We claim that Pr[Fi] 6 3/2s. The bound from Equation (7.5) then follows by simply

taking the union bound over all i. We consider two cases:
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Case 1: 1 6 i < C. In this case, after the call Bobi(·, ·) is made, Bob picks a fresh seed W ′i ,

and returns it as part of the output. By assumption, Eve immediately makes a call Bobi+1(S′i, ·),
without any intermediate calls to Alice, and Bob rejects if S′i 6= Ext1...s(X;W ′i ). Thus, to establish

our claim it is sufficient to show that Pr[S′i 6= Ext1...s(X;W ′i )] 6 3/2s. Intuitively, the bound on

Pr[Fi] now follows from the fact that Ext is a good (strong) (k′, 2−s)-extractor, since, conditioned

on Eve’s information so far, the s-bit value Ext1...s(X;W ′i ) is 2−s-close to random, and, hence,

cannot be predicted with probability better that 2−s + 2−s (the third 2−s is due to Lemma 2.3.16,

since our extractor is assumed to be worst case, and is not needed for universal hash function

extractors [DORS08]).

A bit more formally, let Ei be Eve’s view before the call to Bobi is made, and E′i =

(Ei,W
′
i , T

′
i , L
′
i) be Eve’s view after the call to Bobi is made. We notice that E′i is a deterministic

function of E∗i = (Ei, Z
′
i−1, R

′
i) and W ′i , since L′i = lrMACZ′i−1

(W ′i ) and T ′i = MACR′i(Wi). Moreover,

W ′i is freshly chosen even conditioned on E∗i . Thus, Pr[Fi] 6 Pr[Eve(E∗i ,W
′
i ) = Ext1..s(X;W ′i )],

whereW ′i is independent of (X,E∗i ). We also note thatH∞(X|Ei)) > k′+14s, by Lemma 7.3.6, since

Ei is a function of E′. Thus, H∞(X|E∗i ) > H∞(X|Ei)−|Z ′i−1|− |R′i| > k′+ 14s−4s−8s = k′+ 2s.

Using Lemma 2.3.16, Pre∗i [H∞(X|E∗i = e∗i ) > k′] > 1− 2−s, and the rest follows from the fact that

in this case (W ′i ,Ext1..s(X;W ′i )) is 2−s-close to (W ′i , Us), as mentioned earlier.

Case 2: i = C. In this case, after the call BobC(·, ·) is made, Bob picks a fresh seed W ′C , and

returns it as part of the output. By assumption, Eve immediately makes a call Bobi+1(S′C ,W
′
C+1),

without any intermediate calls to Alice, and Bob rejects if S′C 6= MACZ′C (W ′C+1), where Z ′C =

Ext1...m′(X;W ′i ). Thus, to establish our claim it is sufficient to show that Pr[S′C 6= MACZ′C (W ′C+1)] 6

3/2s. Completely similar to the previous case, we can argue that the value Z ′C used by Bob is 21−s-

close to Um′ conditioned on Eve’s view so far. Moreover, the 2−s-security of MAC ensures that,

when the key Z ′C is truly uniform, Eve cannot successfully forge a valid tag MACZ′C (W ′C+1) of any

(even adversarially chosen) message W ′C+1 with probability greater than 2−s, completing the proof

of this case as well.

Therefore, from now on we assume that Eve is indeed synchronous. Moreover, since Eve

must make Bob accept, we assume Eve finishes the both left and right execution (with the last call

to BobC+1, hoping that Bob will accept). Also, by Theorem 3.5.3, we have that (X1, · · · , XC)

is 2−Ω(δn)-close to a somewhere rate-0.9 source. Thus, we will ignore the error and think of

(X1, · · · , XC) as indeed being a somewhere rate-0.9 source, as it only adds 2−Ω(δn) � 2−s to

the total probability of error. Also, it is sufficient to show robustness and extraction for Bob prop-

erties assuming that (X1, · · · , XC) is an elementary somewhere rate-0.9 source, since (X1, · · · , XC)
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is a convex combination of elementary somewhere rate-0.9 sources. Hence, from now one we as-

sume that some “good” index 1 6 g 6 C satisfies H∞(Xg) > 0.9n′. We stress that this index g

is not known to Alice and Bob, but could be known to Eve. We start by showing that, with high

probability, Eve must forward a correct seed Wg = W ′g to Alice in the “good” Phase g.

Lemma 7.3.9. Assuming Eve is synchronous,

Pr[RB 6=⊥ ∧Wg 6= W ′g] 6
3

2s
(7.6)

Proof. Let E′g−1 be Eve’s view before the call to Aliceg. Note that Xg is a deterministic function of

X, and (E′g−1, Sg−1, L
′
g) is a deterministic function of Eve’s transcript E′. Thus, by Lemma 7.3.6,

H∞(Xg|(E′g−1, Sg−1, L
′
g)) > H∞(Xg)− (7C − 3)s

> 0.9n′ − (7C − 3)s

= (n′/2 +O(log n′) + 8s+O(1)) + s− (0.4n′ −O(Cs+ log n))

> (n′/2 +O(log n′) + 8s+O(1)) + s

where the last inequality follows since n′ = poly(1/δ)n� O(Cs+ log n)). By Lemma 2.3.16, with

probability 1− 2−s over the fixings of E′g−1, Sg−1, L
′
g, the min-entropy of Xg conditioned on these

fixings is at least n′/2 + O(log n′) + 8s + O(1). Notice also that the seed Yg is independent of

E′g−1, Sg−1, L
′
g. Moreover, for the argument in this lemma, we will “prematurely” give Eve the

value L′g already after the call to Aliceg (instead of waiting to get it from the call to Bobg). Let us

now summarize the resulting task of Eve in order to make Wg 6= W ′g, and argue that Eve is unlikely

to succeed.

After the call to Aliceg, with high probability the min-entropy of Xg conditioned on Eve’s

view is greater than n′/2+O(log n′)+8s+O(1), so that we can apply the non-malleability guarantees

of nmExt given by Theorem 7.3.4. Alice then picks a random seed Yg for nmExt and gives it to Eve.

(Synchronous) Eve then forwards some related seed Y ′g to Bobg (and another value S′g−1 that we

ignore here), and learns some message W ′g and the tag T ′g of W ′g, under key R′g = nmExt(Xg;Y
′
g)

(recall, we assume Eve already knows L′g from before). To win the game, Eve must produce a value

Wg 6= W ′g and a valid tag Tg of Wg under the original key Rg = nmExt(Xg;Yg).

We consider two cases. First, if Eve sets Y ′g = Yg, then Rg = R′g is 2−s-close to uniform

by Theorem 7.3.4. Now, if Rg was truly uniform, by the one-time unforgeability of MAC, the

probability that Eve can produce a valid tag Tg of a new message Wg 6= W ′g is at most 2−s. Hence,

Eve cannot succeed with probability more that 2−s+1 even with Rg which is 2−s-close to uniform,
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implying the bound stated in the lemma (since we also lost 2−s by using Lemma 2.3.16 at the

beginning).

On the other hand, if Eve makes Y ′g 6= Yg, Theorem 7.3.4 implies that ∆((Rg, R
′
g),

(Um′ , R
′
g)) 6 2−s. Thus, the tag T ′g under R′g is almost completely useless in predicting the tag of

Wg under (nearly random) Rg. Therefore, by 2−s security of MAC, once again the probability that

Eve can successfully change W ′g without being detected is at most 2−s+1 (giving again the final

bound 3/2s).

Now, we want to show that, once Eve forwards correct Wg = W ′g to Alice in Phase g, Eve

must forward correct seeds Wi = W ′i in all future phases i = g+1, . . . , C. We start by the following

observation, which states that the derived keys Z ′i−1 used by Bob in lrMAC look random to Eve

whenever Eve forwards a correct key Wi−1 = W ′i−1 to Alice.

Lemma 7.3.10. Assume Eve is synchronous, 2 6 i 6 C, and Eve forwards a correct value Wi−1 =

W ′i−1 to Alice during her call to Alicei. Also, let Ei be Eve’s view after the call to Alicei(Wi−1, ·, ·).
Then

∆((Z ′i−1, Ei), (U`, Ei)) 6
3

2s
(7.7)

Proof. Notice that Ei = (Ei−1,W
′
i−1, T

′
i−1, L

′
i−1, Si−1, Yi), where Ei−1 is Eve’s view after the call

to Alicei−1. For convenience, we replace the two tags T ′i−1, L
′
i−1 of W ′i−1 by the corresponding

MAC keys R′i−1, Z
′
i−2, respectively, since this gives Eve only more information. Also, since Wi−1 =

W ′i−1, we know that the value Si−1 = Ext1..s(X;Wi−1) = Ext1..s(X;W ′i−1). Recalling that Z ′i−1 =

Exts+1..s+`(X;W ′i−1), and denoting “side information” by E∗i = (Ei−1, R
′
i−1, Z

′
i−2, Yi), it is enough

to argue

∆((E∗i ,W
′
i−1,Ext1..s(X;W ′i−1),Exts+1..s+`(X;W ′i−1)) , (E∗i ,W

′
i−1,Ext1..s(X;W ′i−1), U`)) 6

3

2s
(7.8)

where we notice that E∗i is independent of the choice of randomW ′i−1. In turn, Equation (7.8) follows

from the fact that Ext is (k′, 2−s)-extractor provided we can show that H∞(X|E∗i ) > k+s. Indeed,

the first error term 2−s comes from Lemma 2.3.16 to argue that Pre∗i [H∞(X|E∗i = e∗i ) > k] > 1−2−s,

and the other two error terms follow from the triangle inequality and the security of the extractor

(first time applies on the first s extracted bits, and then on all s+ ` extracted bits).
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So we show that H∞(X|E∗i ) > k + s.

H∞(X|E∗i ) = H∞(X|Ei−1, R
′
i−1, Z

′
i−2, Yi)

> H∞(X|Ei−1, Yi)− |R′i−1| − |Z ′i−2|
= H∞(X|Ei−1)−m′ − `
> k′ + 14s− 4s− 8s

= k′ + 2s

where the first inequality used Lemma 2.3.17, the second equality used the fact that Yi is indepen-

dent of (X,Ei−1), and the second inequality used Lemma 7.3.6, since Ei−1 is deterministic function

of E′.

Next, we use Lemma 7.3.9 and Lemma 7.3.10 to show that, with high probability, Alice and

Bob must agree on the same key ZC = Z ′C when they reach the last Phase (C + 1).

Lemma 7.3.11. Assuming Eve is synchronous,

Pr[RB 6=⊥ ∧ ZC 6= Z ′C ] 6
4C

2s
(7.9)

Proof. Since ZC = Ext1...m′(X;WC) and Z ′C = Ext1...m′(X;W ′C), we get

Pr[RB 6=⊥ ∧ ZC 6= Z ′C ] 6 Pr[RB 6=⊥ ∧WC 6= W ′C ]

6 Pr[RB 6=⊥ ∧ Wg 6= W ′g] +

C∑
i=g+1

Pr[RB 6=⊥ ∧ Wi−1 = W ′i−1 ∧ Wi 6= W ′i ]

6
3

2s
+ (C − 1) ·max

i>g
Pr[RB 6=⊥ ∧ Wi−1 = W ′i−1 ∧ Wi 6= W ′i ]

where the second inequality states that in order for WC 6= W ′C , either we must already have

Wg 6= W ′g (which, by Lemma 7.3.9, happens with probability at most 3/2s), or there must be some

initial Phase i > g where Wi−1 = W ′i−1 still, but Wi 6= W ′i . Thus, to establish Equation (7.9), it

suffices to show that, for any Phase g < i 6 C,

Pr[RB 6=⊥ ∧ Wi−1 = W ′i−1 ∧ Wi 6= W ′i ] 6
4

2s
(7.10)

Intuitively, this property follows from the unforgeability of lrMAC, since Eve must be able to

forge a valid tag Li of Wi 6= W ′i , given a valid tag of W ′i (under the same Zi−1 = Z ′i−1 since Wi−1 =
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W ′i−1). The subtlety comes from the fact that Eve also learns the v′-bit value T ′i = MACR′i(W
′
i ),

which could conceivably be correlated with the key Z ′i−1 for lrMAC. Luckily, since the tag length

v of lrMAC is twice as large as v′, Theorem 7.3.3 states that lrMAC is still unforgeable despite this

potential “key leakage”.

More formally, if Eve forwards a correct value Wi−1 = W ′i−1, both Alice and Bob use

the same key Z ′i−1 = Zi−1 = Exts+1..s+`(X;W ′i−1) to lrMAC during Phase i. Moreover, by

Lemma 7.3.10, we know that this key Zi−1 looks random to Eve right before the call to Bobi:

∆((Z ′i−1, Ei), (U`, Ei)) 6
3
2s , where Ei is Eve’s view after the call to Alicei(Wi−1, ·, ·). After the call

to Bobi, Eve learns the tag L′i of W ′i , and also a v′-bit value T ′, which, for all we know, might be

correlated with the key Z ′i−1. Therefore, to argue the bound in Equation (7.10), it is sufficient to

argue that Eve can succeed with probability at most 2−s in the following “truncated” experiment.

After the call to Alicei, the actual key Z ′i−1 is replaced by uniform Z∗i−1 ← U`. Then a random

message W ′i is chosen, its tag L′i is given to Eve, and Eve is also allowed to obtain arbitrary v′

bits of information about Z∗i−1. Eve succeeds if she can produce a valid tag Li (under Z∗i−1) of a

different message Wi 6= W ′i . This is precisely the precondition of the second part of Theorem 7.3.3,

where H∞(Z∗i−1|E) > ` − v′ = 2v − v/2 = 3v/2. Hence, Eve’s probability of success is at most

d2v−3v/2 = d2−v/2 = d2−v
′
6 2−s.

We need one more observation before we can finally argue Bob’s extraction and robust-

ness. Namely, at the end of Phase C, (synchronous) Eve has almost no information about the

authentication key Z ′C used by the Bob (and Alice, by Lemma 7.3.11) in the final Phase C + 1.

Lemma 7.3.12. Assume Eve is synchronous, and let E′C be Eve’s view after the call to BobC .

Then

∆((Z ′C , E
′
C | RB 6=⊥), (Um′ , E

′
C | RB 6=⊥)) 6

2

2s
(7.11)

Additionally, H∞(X|(E′C , Z ′C)) > k′ + 10s.

Proof. The proof is similar to, but simpler than, the proof of Lemma 7.3.10. We notice that

E′C = (EC ,W
′
C , T

′
C , L

′
C), where EC is Eve’s view after the call to AliceC . For convenience, we

replace the two tags T ′C , L
′
C of W ′C by the corresponding MAC keys R′C , Z

′
C−1, respectively, since

this gives Eve only more information. Recalling that Z ′C = Ext1..m′(X;W ′C), and denoting “side

information” by E∗C = (EC , R
′
C , Z

′
C−1), it is enough to argue

∆((E∗C ,W
′
C ,Ext1..m′(X;W ′C)) , (E∗C ,W

′
C , Um′)) 6

2

2s
(7.12)
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where we notice that E∗C is independent of the choice of randomW ′C . In turn, Equation (7.12) follows

from the fact that Ext is (k′, 2−s)-extractor provided we can show thatH∞(X|E∗C) > k+s, where the

extra error term 2−s comes from Lemma 2.3.16 to argue that Pre∗C [H∞(X|E∗C = e∗C) > k] > 1−2−s.

So we show that H∞(X|E∗C) > k + s.

H∞(X|E∗C) = H∞(X|EC , R′C , Z ′C−1)

> H∞(X|EC)− |R′C | − |Z ′C−2|
= H∞(X|EC)−m′ − `
> k′ + 14s− 4s− 8s

= k′ + 2s

where the first inequality used Lemma 2.3.17, and the second inequality used Lemma 7.3.6, since

EC is deterministic function of E′.

The final claim H∞(X|(E′C , Z ′C)) > k′ + 10s follows from Lemma 2.3.17 and fact that

H∞(X|E′C) > k′ + 14s (Lemma 7.3.6) and |Z ′C | = m′ 6 4s.

Lemma 7.3.11 and Lemma 7.3.12 imply that, in order for the synchronous Eve to have a

non-trivial chance to make Bob accept, at the end of Phase C Alice and Bob must agree on a key

ZC = Z ′C which looks random to Eve. Moreover, X still has a lot of entropy given Z ′C and Eve’s

view so far. Thus, to show both (post-application) robustness and extraction for Bob, it is sufficient

to show these properties for a very simply one-round key agreement protocol, which emulates the

final Phase (C + 1) of our protocol with Alice and Bob sharing a key ZC = Z ′C which is assumed

to be random and independent from Eve’s view so far. We start with post-application robustness.

Post-Application Robustness: To cause Bob output a different key than Alice in Phase

(C + 1), Eve must modify Alice seed WC+1 to W ′C+1 6= WC+1, and then forge a valid tag S′C
of W ′C+1 under the shared key ZC = Z ′C . For pre-application robustness, the unforgeability of

MAC immediately implies that Eve’s probability of success is at most 2−s. However, in the post-

application robustness experiment, Eve is additionally given Alice’s final key RA = Ext(X;WC+1).

Luckily, since X has more than k′ + s bits of min-entropy even conditioned of the MAC key ZC ,

security of the extractor implies that that the joint distribution of ZC and RA looks like a pair of

independent random strings. In particular, Eve still cannot change the value of the seed WC+1 in

Phase (C + 1), despite being additionally given Alice’s key RA, since that key looks random and

independent of the MAC key ZC = Z ′C .
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Extraction for Bob: We just argued (pre-application) robustness of our protocol, which

— for synchronous Eve — means that if Bob does not reject, then, with high probability, he outputs

the same key RB = Ext(X;W ′C+1) as Alice’s key RA = Ext(X;WC+1). Thus, Bob’s extraction is

implied by Alice’s extraction, which was already argued in Lemma 7.3.7. Alternatively, Alice’s

extraction can be seen directly, as she chooses a fresh seed WC+1 and H∞(X|E′C , ZC) > k′ + 10s.

This concludes the proof of Theorem 7.3.1.
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