Characterizing the Power of IP

Xin Li

lixints@cs.jhu.edu
Topics

• IP for coNP.

• IP vs PSPACE.
Graph Isomorphism

• Question: can GI be NP-complete?

• Theorem: If GI is NP-complete, then $PH=\Sigma_2^p$.

• The proof only uses the following two facts: (1) GNI \in AM. (2) If GI is NP-complete, then GNI is coNP-complete.

• So we have the following theorem: If $coNP \subseteq AM$, then $PH=\Sigma_2^p$.
Interactive Proof for ¬ 3SAT

• We know ¬ 3SAT is coNP-complete.

• From previous theorem ¬ 3SAT is unlikely to have constant round interactive proof.

• We give a public coin interactive proof for ¬ 3SAT with n rounds.

• n: # of variables in the given 3CNF formula Φ.
Interactive Proof for \(\neg \text{3SAT} \)

- How can the prover convince the verifier that \(\Phi \) has no satisfying assignment?

- We show how to prove something more general.

- Let \(\#\text{SAT}=\{< \Phi, k >, \Phi \text{ is a 3CNF formula that has exactly } k \text{ satisfying assignments}\} \).

- Show an interactive proof for \(\#\text{SAT} (\neg \text{3SAT} \text{ is a special case}) \).
Interactive Proof for \(\neg \text{3SAT} \)

- \#SAT=\{\langle \Phi, k \rangle, \Phi \text{ is a 3CNF formula that has exactly } k \text{ satisfying assignments}\}.
- The set lower bound protocol can be used to certify \(k \) approximately with 2 rounds.
- We design an \(n \)-round protocol that certifies \(k \) exactly.
- Idea: arithmetization.
Interactive Proof for \neg 3SAT

• Represent Boolean formulas by polynomials. True: 1, False: 0

• Example: $x_i \land x_j \Rightarrow x_i x_j$; $x_i \lor x_j \Rightarrow 1-(1-x_i)(1-x_j)$.

• Given any 3CNF formula $\Phi (x_1, \ldots, x_n)$ with m clauses and n variables, we introduce n field variables x_1, \ldots, x_n.

• For any clause of size 3 we write an equivalent degree 3 polynomial.
Interactive Proof for \(\neg 3\text{SAT} \)

• For any clause of size 3 we write an equivalent degree 3 polynomial.

• Denote the polynomial for the j’th clause by \(P_j (x_1, \ldots, x_n) \).

• For every 0, 1 assignment to \(x_1, \ldots, x_n \), we have \(P_j (x_1, \ldots, x_n) = 1 \) iff the assignment satisfies the j’th clause.

• Multiplying these polynomials, we get a multivariate polynomial \(P_\Phi (x_1, \ldots, x_n) = \prod_j P_j (x_1, \ldots, x_n) \).
Interactive Proof for \neg 3SAT

- Multivariate polynomial $P_\Phi(x_1, \ldots, x_n) = \prod_j P_j(x_1, \ldots, x_n)$.

- $P_\Phi(x_1, \ldots, x_n)$ is 1 iff the assignment satisfies Φ.

- The degree of P_Φ is at most $3m$.

- Always represent P_Φ as the product degree 3 polynomials, so P_Φ has size $O(m)$.
Interactive Proof for $\neg \text{3SAT}$

- **Arithmetization**: we have converted a Boolean formula Φ into a polynomial P_Φ.

- Now, we can substitute arbitrary values from the field F to P_Φ, instead of just 0, 1.

- This gives the verifier additional power.

- We can now give the interactive proof for #SAT.
Interactive Proof for ¬ 3SAT

• **Given input** \(< \Phi , k >\), both P and V construct the polynomial \(P_\Phi\).

• **The # of satisfying assignments** \(#\Phi\) of \(\Phi\) can be computed as
 \[#\Phi = \sum_{b_1 \in \{0, 1\}} \sum_{b_2 \in \{0, 1\}} \ldots \sum_{b_n \in \{0, 1\}} P_\Phi(b_1, b_2, \ldots, b_n) \]

• **The prover’s claim is that** \(#\Phi\) **is exactly equal to** \(k\).

• **From now on, forget about the Boolean formula and focus on this claim.**
Interactive Proof for \neg 3SAT

• To start, P sends V a prime number p in the range $(2^n, 2^{2n}]$.

• V can check p is indeed a prime number in polynomial time.

• Now we think of all variables x_1, \ldots, x_n to be in the field F_p. That is, \{0, 1, \ldots, p-1\} and all the operations are mod p.

• We give a general sumcheck protocol for verifying equations in F_p.
Sumcheck protocol

• Given a degree d polynomial \(g(x_1, \ldots, x_n) \), an integer \(k \) and a prime \(p \).

• Show an interactive proof for the claim \(k=\sum_{b_1 \in \{0, 1\}} \sum_{b_2 \in \{0, 1\}} \ldots \sum_{b_n \in \{0, 1\}} g(b_1, b_2, \ldots, b_n) \mod p \).

• The only property \(V \) needs is that \(g \) has a poly(n) size representation, and thus \(V \) can compute \(g \) in poly-time.

• Note that this also solves \#SAT since \(\#\Phi \leq 2^n \) and \(p > 2^n \).
Sumcheck protocol

• An interactive proof for the claim $k = \sum_{b_1 \in \{0, 1\}} \sum_{b_2 \in \{0, 1\}} \ldots \sum_{b_n \in \{0, 1\}} g(b_1, b_2, \ldots, b_n) \mod p$.

• Observation: if fix $x_2 = b_2$, $x_3 = b_3$, ..., $x_n = b_n$, then $g(x_1, b_2, \ldots, b_n)$ is a degree d univariate polynomial in x_1.

• Thus, $h(x_1) = \sum_{b_2 \in \{0, 1\}} \ldots \sum_{b_n \in \{0, 1\}} g(x_1, b_2, \ldots, b_n)$ is also a degree d univariate polynomial in x_1.

• If the claim is true, then we must have $h(0) + h(1) = k$.
Sumcheck protocol

- An interactive proof for the claim $k = \sum_{b_1 \in \{0, 1\}} \sum_{b_2 \in \{0, 1\}} \ldots \sum_{b_n \in \{0, 1\}} g(b_1, b_2, \ldots, b_n) \mod p$.

- $h(x_1) = \sum_{b_2 \in \{0, 1\}} \ldots \sum_{b_n \in \{0, 1\}} g(x_1, b_2, \ldots, b_n)$.

- V: If $n=1$, directly check that $g(1)+g(0)=k$. If so accept; otherwise reject. If $n \geq 2$, ask P to send the description of $h(x_1)$ (d+1 coefficients).

- P: send some polynomial $s_1(x_1)$ that is supposed to be $h(x_1)$.
Sumcheck protocol

- $h(x_1) = \sum_{b_2 \in \{0, 1\} \ldots \sum_{b_n \in \{0, 1\}} g(x_1, b_2, \ldots, b_n)$.

- V: If $n=1$, directly check that $g(1)+g(0)=k$. If so accept; otherwise reject. If $n \geq 2$, ask P to send the description of $h(x_1)$ ($d+1$ coefficients).

- P: send some polynomial $s_1(x_1)$ that is supposed to be $h(x_1)$.

- V: Reject if $s_1(0)+s_1(1) \neq k$. Otherwise pick a random a in F_p and recursively use the same protocol to check $s_1(a) = \sum_{b_2 \in \{0, 1\} \ldots \sum_{b_n \in \{0, 1\}} g(a, b_2, \ldots, b_n)$.
Sumcheck protocol

- **Main idea:** V cannot compute the sum by himself, so ask P for help by requiring $h(x_1)$.

- However, P may cheat by sending some $s_1(x_1) \neq h(x_1)$.

- So V pick a random a in F_p and check $s_1(a) = h(a) = \sum_{b_2 \in \{0, 1\}} \ldots \sum_{b_n \in \{0, 1\}} g(a, b_2, \ldots, b_n)$.

- If P cheats, then each time there is some probability of catching P.
Sumcheck protocol

- **Claim:** $k = \sum_{b_1 \in \{0, 1\}} \sum_{b_2 \in \{0, 1\}} \ldots \sum_{b_n \in \{0, 1\}} g(b_1, b_2, \ldots, b_n) \mod p$ (*).

- If (*) holds, certainly P can convince V to accept by sending the correct polynomials.

- **Claim:** if (*) is false, then V rejects with probability $\geq (1-d/p)^n \geq 1- dn/p$.

- **Proof by induction.**
Sumcheck protocol

• Claim: if (*) is false, then V rejects with probability $\geq (1-d/p)^n \geq 1- \frac{dn}{p}$.

• Base case $n=1$: V rejects with probability 1.

• Assume the claim holds for degree d polynomials with $n-1$ variables.

• Consider the round where P sends $s_1(x_1)$. If $s_1(x_1) = h(x_1)$ and (*) is false, V will reject immediately.
Sumcheck protocol

• Claim: if (*) is false, then V rejects with probability $\geq (1-d/p)^n \geq 1- \frac{dn}{p}$.

• If P sends some $s_1(x_1) \neq h(x_1)$, then $s_1(x_1) - h(x_1) \neq 0$ and is a degree d polynomial. Thus it has at most d roots. That is, at most d choices of a s.t. $s_1(a) = h(a)$.

• Thus, if V chooses a randomly from F_p, then $Pr[s_1(a) \neq h(a)] \geq 1- \frac{d}{p}$.

• In this case P is left with an incorrect claim to prove. By inductive hypothesis V rejects with probability $(1-d/p)^{n-1}$. Thus overall V rejects with probability $\geq (1-d/p)^n$.
Sumcheck protocol

- Recall, previously we designed a sumcheck protocol for \# SAT:

\[
\# \Phi = \sum_{b_1 \in \{0, 1\}} \sum_{b_2 \in \{0, 1\}} \ldots \sum_{b_n \in \{0, 1\}} P_\Phi(b_1, b_2, \ldots, b_n) = k.
\]

- This shows that \# SAT and \neg 3SAT \in IP.

- More generally, coNP \subseteq IP.
Generalize to TQBF

• Show a poly round interactive proof for TQBF.

• This implies that PASPACE \subseteq IP.

• Since we already showed that IP \subseteq PASPACE, we have IP = PASPACE.

• Idea: generalize the sumcheck protocol.
Protocol for TQBF

- TQBF: given a QBF $\psi = Q_1 x_1 \, Q_2 \, x_2 \ldots \, Q_n \, x_n \, \Phi(x_1, x_2, \ldots x_n)$ with n variables and size m, decide if ψ is True.

- Example: $\psi = \forall \, x_1 \, \exists \, x_2 \ldots \, \exists \, x_n \, \Phi(x_1, x_2, \ldots x_n)$.

- Use arithmetization to construct the polynomial P_Φ such that $\psi \in TQBF$ iff

- $\Pi_{b_1 \in \{0, 1\}} \sum_{b_2 \in \{0, 1\}} \ldots \, \sum_{b_n \in \{0, 1\}} P_\Phi(b_1, b_2, \ldots, b_n) \neq 0$.
Protocol for TQBF

• $\prod_{b_1 \in \{0, 1\}} \Sigma_{b_2 \in \{0, 1\}} \ldots \Sigma_{b_n \in \{0, 1\}} P_\Phi(b_1, b_2, \ldots, b_n) \neq 0$ (or $= k$).

• First thought: use the same protocol as for #SAT, except for x_1 (or any variable with \forall), need to check if $s_1(0) \cdot s_1(1) = k$.

• Problem: the degree of the polynomial can be as large as 2^n (due to Π).

• The polynomial V ask P to send can have 2^n coefficients.
Protocol for TQBF

- $\Pi_{b_1 \in \{0, 1\}} \Sigma_{b_2 \in \{0, 1\}} \ldots \Sigma_{b_n \in \{0, 1\}} P_{\Phi}(b_1, b_2, \ldots, b_n) \neq 0$ (or $=k$) (*)

- Need to find a way to reduce the degree.

- Key observation: (*) only uses 0,1 values, for $x=0/1$, $x^t=x$ for all t.

- Thus, can convert any polynomial $p(x_1, \ldots, x_n)$ into a multilinear polynomial $q(x_1, \ldots, x_n)$ that agrees with p on all $x_1, \ldots, x_n \in \{0,1\}$.
Protocol for TQBF

- Linearization operator: \(\forall \) polynomial \(p(.) \), let \(L_i (p) \) be the polynomial defined as follows

\[
L_i (p)(x_1, \ldots, x_n) = x_i p(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) + (1-x_i) p(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n).
\]

- \(L_i (p) \) is linear in \(x_i \) and agrees with \(p(.) \) on whenever \(x_i \in \{0,1\} \).

- \(L_1 (L_2 (\ldots (L_n (p) \ldots))) \) is a multilinear polynomial that agrees with \(p \) on all \(x_1, \ldots, x_n \in \{0,1\} \).
Protocol for TQBF

- We now view \(\forall \) and \(\exists \) as operators on polynomials as well:

- \(\forall x_i \, p(x_1, \ldots, x_n) = p(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) \times p(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n). \)

- \(\exists x_i \, p(x_1, \ldots, x_n) = p(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) + p(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n). \)

- We can now rephrase claim (*).
Protocol for TQBF

- \(\Pi_{b_1 \in \{0, 1\}} \Sigma_{b_2 \in \{0, 1\}} \ldots \Sigma_{b_n \in \{0, 1\}} P_\Phi(b_1, b_2, \ldots, b_n) = k \) (*)

- Rephrase: if we apply a sequence of operators \(\forall x_1 \exists x_2 \ldots \exists x_n \) on \(P_\Phi(x_1, x_2, \ldots, x_n) \) then we get a (non-zero) number \(k \).

- We can insert any arbitrary sequence of linearization operators into this sequence to make sure all intermediate polynomials have low degree.

- Use \(Q= \forall x_1 \ L_1 \exists x_2 \ldots L_1 \ L_2 \ldots L_{n-1} \exists x_n \ L_1 \ L_2 \ldots L_n \ P_\Phi(x_1, x_2, \ldots, x_n) \). Size=\(O(m+n^2) \)
Protocol for TQBF

- $Q = \forall x_1 L_1 \exists x_2 \ldots L_1 L_2 \ldots L_{n-1} \exists x_n L_1 L_2 \ldots L_n g(x_1, x_2, \ldots, x_n) = k \ (*)$

- V: If $n=1$, directly check the equality. If it holds accept; otherwise reject

- V: If $n \geq 2$, use recursion.

- Notice that whenever we have a $\forall x_i$ or $\exists x_i$, all variables after x_i will disappear after the operator.
Protocol for TQBF

\[Q = \forall x_1 L_1 \exists x_2 \ldots L_2 \ldots \exists x_{n-1} L_1 L_2 \ldots L_n g(x_1, x_2, \ldots, x_n) \]

- **Variables fixed in previous rounds**
- **Look at this operator in this round**
- **The rest is a polynomial in**
 \[x_1, x_2, \ldots, x_t \text{ for some } t. \]
Protocol for TQBF

• Suppose at some level of recursion, we have $U(x_1, x_2, \ldots, x_l) = O(g(x_1, x_2, \ldots, x_l))$, where O is $\forall x_t, \exists x_t$ or L_i.

• P tries to convince V that $U(a_1, a_2, \ldots, a_l) = c$. Let $d \leq \text{poly}(n)$ be the degree of each x_i in U.

• $\exists x_t$: in this case $l = t - 1$. P sends a degree d polynomial $s(x_t)$ supposed to be $g(a_1, a_2, \ldots, a_t, x_t)$.

• V checks if $s(0) + s(1) = c$. If not reject; otherwise pick a random a in F_p and ask P to prove $s(a) = g(a_1, a_2, \ldots, a_{t-1}, a)$.
Protocol for TQBF

• Suppose at some level of recursion, we have $U(x_1, x_2, \ldots, x_l) = O(g(x_1, x_2, \ldots, x_l))$, where O is $\forall x_t, \exists x_t$ or L_i.

• P tries to convince V that $U(a_1, a_2, \ldots, a_l) = c$. Let $d \leq \text{poly}(n)$ be the degree of each x_i in U.

• $\forall x_t$: in this case $l = t - 1$. P sends a degree d polynomial $s(x_t)$ supposed to be $g(a_1, a_2, \ldots, a_{t-1}, x_t)$.

• V checks if $s(0) \cdot s(1) = c$. If not reject; otherwise pick a random a in F_p and ask P to prove $s(a) = g(a_1, a_2, \ldots, a_{t-1}, a)$.
Protocol for TQBF

• Suppose at some level of recursion, we have $U(x_1, x_2, \ldots, x_l) = O(g(x_1, x_2, \ldots, x_t))$, where O is $\forall x_t \forall x_t \exists x_t$ or L_i.

• P tries to convince V that $U(a_1, a_2, \ldots, a_l) = c$. Let $d \leq \text{poly}(n)$ be the degree of each x_i in U.

• L_i : in this case $l=t$. P sends a degree d polynomial $s(x_i)$ supposed to be $g(a_1, a_2, \ldots, x_i, \ldots, a_l)$.

• V checks if $a_i s(1) + (1-a_i) s(0) = c$. If not reject; otherwise pick a random a in F_p and ask P to prove $s(a) = g(a_1, a_2, \ldots, a, \ldots, a_l)$.
Protocol for TQBF

• The proof follows the same argument of induction as in #SAT.

• Completeness=1

• Soundness: each time P cheats, V can catch that with probability $\geq (1-d/p)$. So soundness $\leq 1-(1-d/p)^{n^2} \leq dn^2/p$.

• Notice that in the recursion, the assignments to x_1, x_2, \ldots, x_n keep changing.
Multi-Prover Interactive Proof

- Previously, there is one prover and one verifier.

- Can generalize to more than one prover.

- Provers may communicate before the protocol to fix a strategy, but cannot communicate during the protocol (cannot collaborate).

- Similar to interrogating two suspects in separate rooms.
Multi-Prover Interactive Proof

- This leads to the class MIP.

- Turns out for MIP, two provers is equivalent to poly(n) provers.

- MIP=\text{NEXP}

- V can ensure the answer of a prover to a question q is a function only of q, and does not depend on previous ones, by asking another prover of the same question, and accept only if both answers agree.