1. (25 points) Show that HALT is NP-hard. Is it NP-complete?

2. (25 points) Let ϕ be a 3CNF. An \neq-assignment to the variables of ϕ is one where each clause contains two literals with unequal truth values.

 (a) Show that any \neq-assignment automatically satisfies ϕ, and the negation of any \neq-assignment to ϕ is also an \neq-assignment.

 (b) Let \neqSAT be the collection of 3CNFs that have an \neq-assignment. Show that we obtain a polynomial time reduction from 3SAT to \neqSAT by replacing each clause

 $$c_i = (y_1 \lor y_2 \lor y_3)$$

 with the two clauses

 $$(y_1 \lor y_2 \lor z_i) \text{ and } (\overline{z_i} \lor y_3 \lor b),$$

 where z_i is a new variable for each clause c_i and b is a single additional new variable.

 (c) Conclude that \neqSAT is NP-complete.

3. (25 points) Let DOUBLE-SAT = \{ ϕ | ϕ is a CNF that has at least two satisfying assignments \}. Show that DOUBLE-SAT is NP-complete.

4. (25 points) A subset of the nodes of a simple, undirected graph G is a dominating set if every other node of G is adjacent to some node in the subset. Let

 $$\text{DOMINATING-SET} = \{ (G, k) | G \text{ has a dominating set with } k \text{ nodes} \}.$$

 Show that it is NP-complete by giving a reduction from VERTEX-COVER. You can assume that G has no vertex with degree 0.

 Hint: First figure out the difference between a vertex cover and a dominating set. For example, is a vertex cover always a dominating set? Is a dominating set always a vertex-cover? Then, try to modify the first graph (e.g., add some corresponding vertices) so that a vertex cover in the first graph implies a dominating set in the second graph, and vice versa.