- 1. (25 points) Prove that the following languages are not regular.
 - (a) $\{0^n 1^m 0^{nm} | m, n \ge 0\}.$
 - (b) $\{w|w\in\{0,1\}^* \text{ is not a palindrome}\}$. Here a palindrome is a string that reads the same forward and backward, i.e., w is a palindrome if $w=w^R$.
- 2. (25 points)
 - (a) Let $B = \{1^k y | y \in \{0, 1\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for any } k \geq 1\}$. Is B a regular language? Prove your answer.
 - (b) Let $C = \{1^k y | y \in \{0,1\}^* \text{ and } y \text{ contains at most } k \text{ 1s, for any } k \geq 1\}$. Is C a regular language? Prove your answer.
- 3. (25 points) Consider the language $F = \{a^i b^j c^k | i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k\}$, where $\Sigma = \{a, b, c\}$.
 - (a) Show that F is not regular. **Hint:** Assume F is regular, use the closure properties of regular languages to convert F into another language, and show that language is not regular.
 - (b) Show that F acts like a regular language in the pumping lemma. In other words, give a pumping length p and demonstrate that F satisfies the three conditions of the pumping lemma for this value of p.
 - (c) Explain why parts (a) and (b) do not contradict the pumping lemma.
- 4. (25 points) Let the alphabet $\Sigma = \{0,1\}$. For any string $w \in \Sigma^*$ with length at least 2, define the operation $C_2(w)$ to be a cyclic shift of size 2 on w. That is, let $w = w_1 w_2 \cdots w_n$ with $n \geq 2$ and each $w_i \in \Sigma$, then $C_2(w) = w_3 \cdots w_n w_1 w_2$ if $n \geq 3$, and $C_2(w) = w$ if n = 2. Recall that w^R means w written backwards.

Give a context-free grammar that generates the following language:

$$\{w|w \text{ has length at least 2 and } C_2(w)=w^R\}.$$

Briefly explain (informally) why your grammar generates the correct language. You don't need a formal proof here (in particular, you don't need to prove both directions).