1. (25 points) Give an NFA (both a state diagram and a formal description) recognizing the language $0^*1^*0^+$ with three states. The alphabet is $\{0, 1\}$. You don’t need to have a formal proof.

2. (25 points) This question studies the number of states in a DFA equivalent to an NFA. Recall that in class we showed an NFA with 4 states that recognizes the language which consists of all binary strings that have a 1 in the third position from the end. For any integer k, it is easy to generalize this construction to an NFA with $k + 1$ states that recognizes the language which consists of all binary strings that have a 1 in the k'th position from the end. The general transformation from an NFA to a DFA will give us a DFA with at most 2^{k+1} states recognizing the same language.

Show that, any DFA that recognizes the same language must have at least 2^k states.

Hint: start by looking at the following two strings: 10^{k-1} and 0^k. Observe that when a DFA takes them as inputs, it must end up at different states, since one string is accepted and the other is rejected.

3. (25 points) Say that string x is a prefix of string y if a string z exists where $xz = y$ and that x is a proper prefix of y if in addition $x \neq y$. Let A be a regular language. Show that the class of regular languages is closed under the following operation.

$$\text{NOEXTEND}(A) = \{w \in A | w \text{ is not the proper prefix of any string in } A\}$$

Hint: Think about when a string $w \in A$ can be the proper prefix of another string in A, then modify the states of the machine to avoid this.

4. (25 points) Let $\Sigma = \{0, 1\}$.

(a) Write a regular expression for the language L consisting of all strings in Σ^* with exactly one occurrence of the substring 111.

(b) Write a regular expression for the language L consisting of all strings in Σ^* that do not end with 10.

You don’t need to have a formal proof.