

# DEEP NEURAL NETWORKS IN RADIOLOGY: PREVENTATIVE AND PRECISION MEDICINE PERSPECTIVES

Le Lu, PhD, NIH-CC, Oct. 26th, 2016 (GTC DC Talk DCS16103)





### **OUTLINES**

What does they mean precisely for preventative and precision medicine perspectives in radiology or medical imaging?

Do deep learning and deep neural networks help in medical imaging or medical image analysis problems? (Yes)

Lymph node application package (52.9%  $\rightarrow$  85%, 83%)

Pancreas application package (~53% → 81.14% in Dice Similarity Coefficient)

Lung (Interstitial Lung Disease) application package + DL reading chest x-ray

Unsupervised category discovery using looped deep pseudo-task optimization (mapping large-scale radiology database with category meta-labels)



# COMPLEXITY & COMPOSABILITY




## The Partnership of the Future

Microsoft's CEO explores how humans and A.I. can work together to solve society's greatest challenges.



By Satya Nadella



http://www.slate.com/articles/technology/future\_tense/2016/06/microsoft\_ceo\_satya\_nadella\_humans\_and\_a\_i\_can\_work\_together\_to\_solve\_society.html



### **PERSPECTIVES**

Why the previous or current computer-aided diagnosis (CADx) systems are not particularly successful? Integrating machine decisions is not easy for human doctors: Good doctors hate to use; bad doctors are confused and do not know how to use? --> Human-machine collaborative decision making process

Make machine decision more interpretable is very critical for the collaborative system --> learning mid-level attributes or embedding?

Preventive medicine: what human doctors cannot do (in very large scales: millions of general population, at least not economical): → first-reader population risk profiling ...?

Precision Medicine: a), new imaging biomarker in precision medicine to better assist human doctors to make more precise decisions; b), patient level similarity retrieval system for diagnosis/therapy systems: show by examples!



### APPLICATION FOCUS: CANCER IMAGING

| Cancer Type            | Lung<br>(Bronchus) | Colorectal | Pancreatic | Breast<br>(Female-<br>Male) | Prostate |
|------------------------|--------------------|------------|------------|-----------------------------|----------|
| Estimated<br>New Cases | 224,390            | 134,490    | 53,070     | 246,660 -<br>2,600          | 180,890  |
| Estimated<br>Deaths    | 158,080            | 49,190     | 41,780     | 40,450 -<br>440             | 26,120   |

Cancer Facts and Figures 2016. Atlanta, Ga: American Cancer Society, 2016. Last accessed February 1, 2016.

http://www.cancer.gov/types/common-cancers



### OVERVIEW: THREE CATEGORIES OF KEY PROBLEMS (I)

Computer-aided Detection (CADe) and Diagnosis (CADx)

Lung, Colon pre-cancer detection; Bone and Vessel imaging (6 years of industrial R&D at Siemens Corporation and Healthcare, 10+ product transfer; 13 conference papers in CVPR/ECCV/ICCV/MICCAI/WACV/CIKM, 12 US/EU patents, 27 Inventions)

Lymph node, colon polyp, bone lesion detection using Deep CNN + Random View Aggregation (<a href="http://arxiv.org/abs/1505.03046">http://arxiv.org/abs/1505.03046</a>, TMI 2016a; MICCAI 2014a)

Empirical analysis on Lymph node detection and interstitial lung disease (ILD) classification using CNN (http://arxiv.org/abs/1602.03409, TMI 2016b)

Non-deep models for CADe using compositional representation (MICCAI 2014b) and +mid-level cues (MICCAI 2015b); deep regression based multi-label ILD prediction (*in submission*); missing label issue in ILD (ISBI 2016)

Clinical Impact: producing various high performance "second or first reader" CAD use cases and applications → effective imaging based prescreening tools on a cloud based platform for large population



### OVERVIEW: THREE CATEGORIES OF KEY PROBLEMS (II)

2. Semantic Segmentation in Medical Image Analysis

"DeepOrgan" for pancreas segmentation (MICCAI 2015a) via scanning superpixels using multi-scale deep features ("Zoom-out") and probability map embedding <a href="http://arxiv.org/abs/1506.06448">http://arxiv.org/abs/1506.06448</a>

Deep segmentation on pancreas and lymph node clusters with HED (Holistically-nested neural networks, Xie & Tu, 2015) as building blocks to learn unary (segmentation mask) and pairwise (labeling segmentation boundary) CRF terms + spatial aggregation or + structured optimization (The focus of three MICCAI 2016 papers since this is a much needed task → Small datasets; (de-)compositional representation is still the key.)

CRF: conditional random fields

Clinical Impact: semantic segmentation can help compute clinically more accurate and desirable imaging bio-markers or precision measurement!



### OVERVIEW: THREE CATEGORIES OF KEY PROBLEMS (III)

3. Interleaved or Joint Text/Image Deep Mining on a Large-Scale Radiology Image Database → "large" datasets; no labels (~216K 2D key images/slices extracted from >60K unique patients)

Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database (CVPR 2015, a proof of concept study)

Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database for Automated Image Interpretation (its extension, JMLR, 17(107):1-31, 2016) http://arxiv.org/abs/1505.00670

Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image Annotation, (CVPR 2016) http://arxiv.org/abs/1603.08486

Unsupervised Category Discovery via Looped Deep Pseudo-Task Optimization Using a Large Scale Radiology Image Database, http://arxiv.org/abs/1603.07965

Clinical Impact: eventually to build an automated programmable mechanism to parse and learn from hospital scale PACS-RIS databases to derive semantics and knowledge ... has to be *deep learning* based since effective image features are very hard to be hand-crafted cross different diseases, imaging protocols and modalities.




### (A.0) Automated Lymph Node Detection

- Difficult due to large variations in appearance, location and pose.
- Plus low contrast against surrounding tissues.





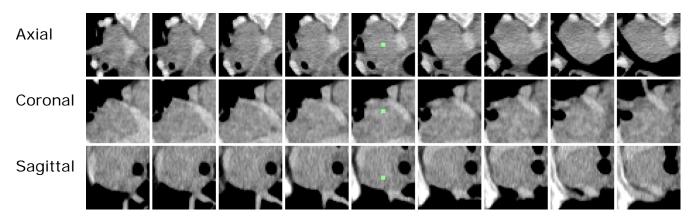


Abdominal lymph node in CT



### **Lymph Node Candidate Generation**

- •Mediastinum [J. Liu et al. 2014]
  - 388 lymph nodes in 90 patients
  - 3208 false-positives
    - 36 FPs per patient

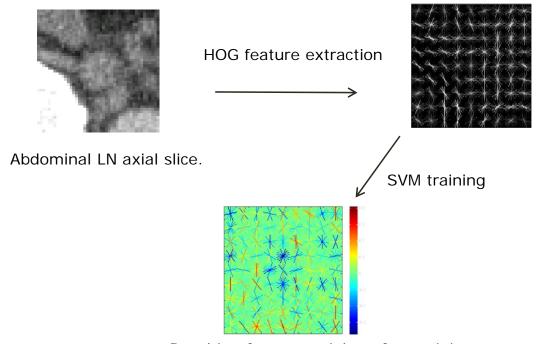

- Abdomen [K. Cherry et al. 2014]
  - 595 lymph nodes in 86 patients
  - 3484 false-positives
    - 41 FPs per patient






### Shallow Models: 2D View Aggregation Using a Two-Level Hierarchy of Linear Classifiers [Seff et al. MICCAI 2014]

- VOI candidates generated via a random forest classifier using voxellevel features (not the primary focus of this work), for high sensitivity but also high false positive rates.
- **2.5D:** 3 sequences of orthogonal 2D slices then extracted from each candidate VOI (9 x 3 = 27 views).

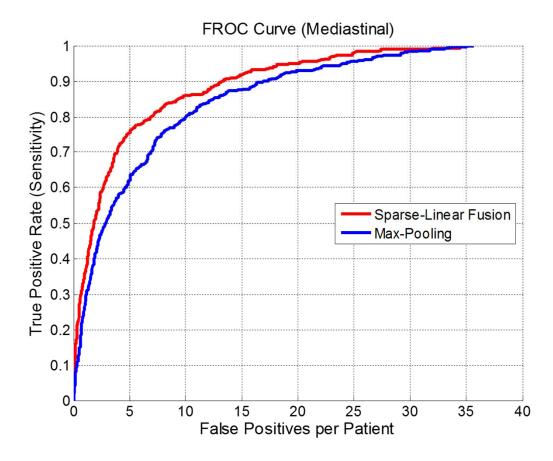





**NDSEG Fellowship** 

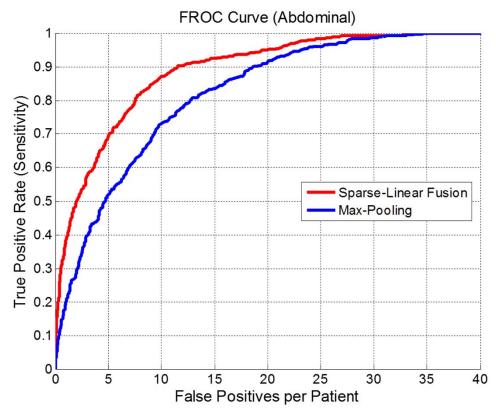


### HOG: Histogram of Oriented Gradients + LibLinear on recognizing 2D Views (state-of-the-art before DCNN)




Resulting feature weights after training.

Note that a unified, compact HOG model is trained, regardless of axial, coronal, or sagittal views, or unifying view orientations.




### **Lymph Node Detection FROC Performance**





### **Lymph Node Detection FROC Performance**











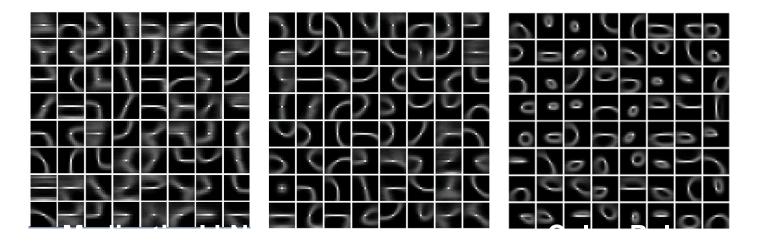
### MAKE SHALLOW TO GO DEEPER VIA MID-LEVEL CUES? [SEFF ET AL. MICCAI 2015]

We explore a learned transformation scheme for producing enhanced semantic input for HOG, based on LN-selective visual responses.

Mid-level semantic boundary cues learned from segmentation.

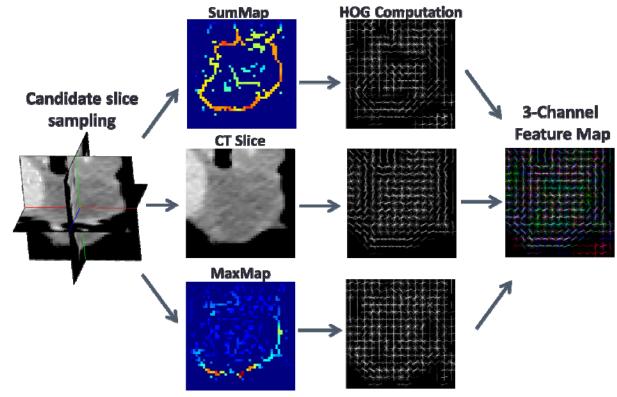
All LNs in both target regions are manually s

| Target region | # Patients | # LNs |
|---------------|------------|-------|
| Mediastinal   | 90         | 389   |
| Abdominal     | 86         | 595   |




### **LEARNING SUPERVISED BOUNDARY CUES VIA SKETCH TOKENS [CVPR'13]**

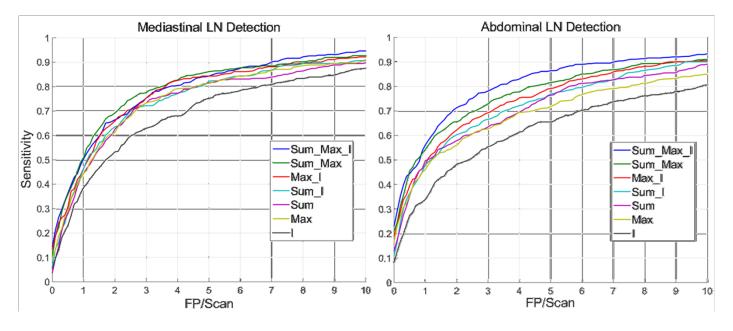
Extract all patches (radius = 7 voxels) centered on a boundary pixel


Cluster into "sketch token" classes using k-means with k = 150

A random forest is trained for sketch token classification for input CT patches



### MULTI-CHANNEL HOG FEATURE MAP CONSTRUCTION

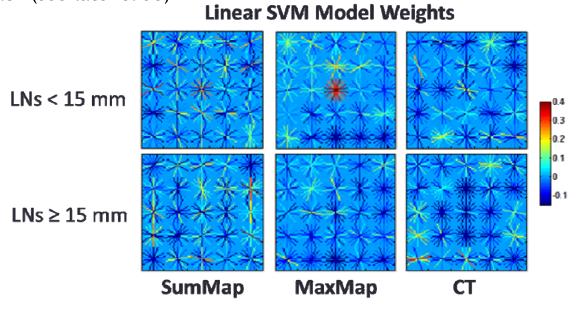

An enhanced, 3-channel feature map:



#### SINGLE TEMPLATE RESULTS

Top performing feature sets (Sum\_Max\_I and Sum\_Max) exhibit 15%-23% greater recall than the baseline HOG at low FP rates (e.g. 3/FP scan).

 Our system outperforms the state-of-the-art deep CNN system (Roth et al., 2014) in the mediastinum, e.g. 78% vs. 70% at 3 FP/scan.




Six-fold Cross-Validation FROC curves are shown for the two body regions

### **CLASSIFICATION**

A linear SVM is trained using the new feature set; A HOG cell size of 9x9 pixels gives optimal performance.

Separate models are trained for specific LN size ranges to form a mixture-of-templates-approach (see later slide)

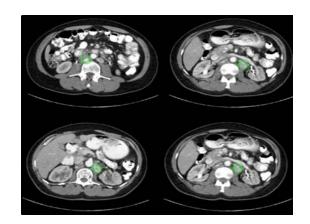


Visualization of linear SVM weights for the abdominal LN detection models

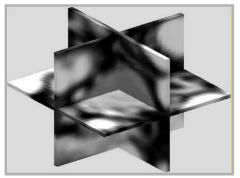


#### **Mixture Model Detection Results**

Wide distribution of LN sizes invites the application of size-specific models trained separately.

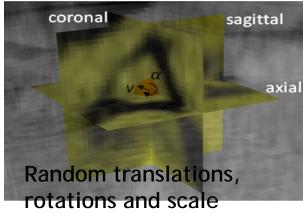

LNs > 20 mm are especially clinically relevant

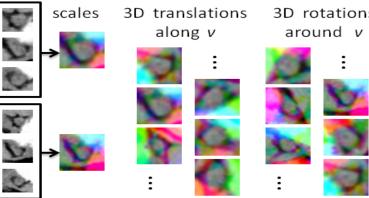



Single template and mixture model performance for abdominal models

### (A.1) Deep models: Random Sets of Convolutional Neural Network Predictions via Compositional Representation

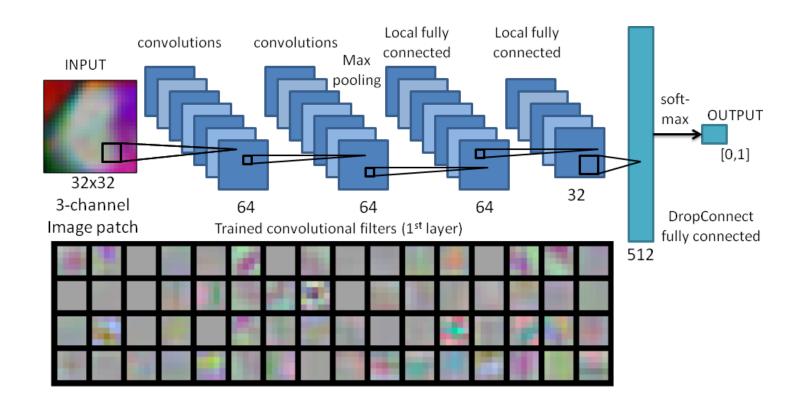
[Roth et al. MICCAI 2014, Shin et al. TMI 2016; Roth et al. TMI 2016]





Application to appearance modeling and detecting lymph node

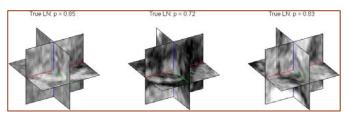


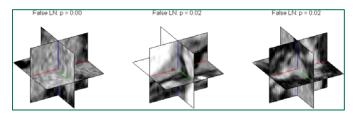



Asst. Prof. Nagoya
3D rotations University (now)

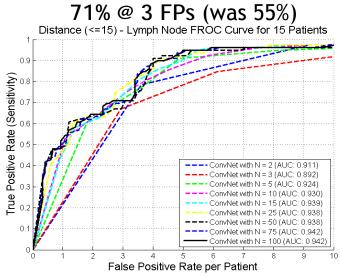






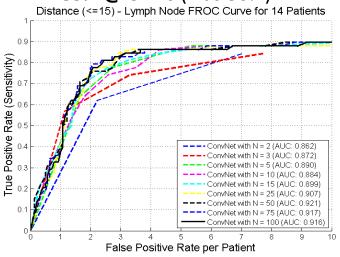


### **Convolutional Neural Network Architecture**






### Experimental Results (~100% sensitivity but ~40 FPs/patient at candidate generation step; then 3-fold CV with data augmentation)





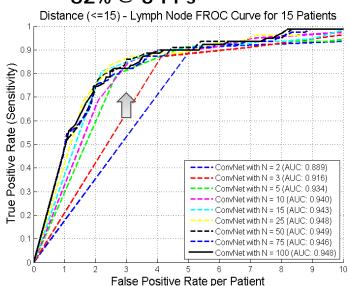

#### Mediastinum



#### Abdomen

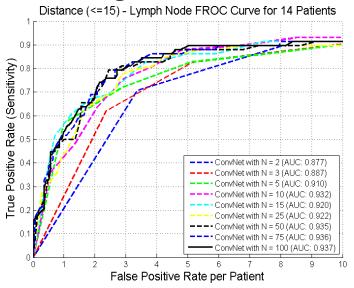
**83% @ 3 FPs** (was 30%)






### **Experimental Results (cont.)**

### Training mediastinum and abdomen Jointly!


#### Mediastinum

82% @ 3 FPs

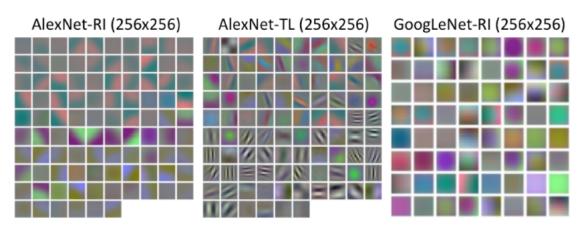


#### Abdomen

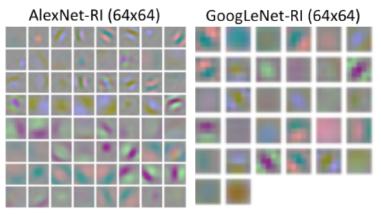
80% @ 3 FPs






### WHERE ARE WE? COMPARING TO PREVIOUS WORK (CAD 1.0 OR 2.0)

1) The previous state-of-the-art work is (Feulner et al., MedIA, 2013) which shows 52.9% sensitivity at 3.1 FP/Vol on 54 Chest CT scans or 60.9% recall at 6.1 FP/Vol. 2) "In order to compare the automatic detection results with the performance of a human, we did an experiment on the intra-human observer variability. Ten of the CT volumes were annotated a second time by the same person a few months later. The first segmentations served as ground truth, and the second ones were considered as detections. TPR and FP were measured in the same way as for the automatic detection. 3) The TPR was 54.8% with 0.8 false positives per volume on average. While 0.8 FP is very low, a TPR of 54.8% shows that finding lymph nodes in CT is quite challenging also for humans."


| Method                     | Body<br>Region | Number<br>CT Vol. | Size<br>(mm) | TP Criterion | TPR (%) | FP/Vol. |
|----------------------------|----------------|-------------------|--------------|--------------|---------|---------|
| Kitasaka et al.<br>(2007)  | Abdomen        | 5                 | >5.0         | Overlap      | 57.0%   | 58      |
| Feuerstein et al. (2009)   | Mediastinum    | 5                 | >1.5         | Overlap      | 82.1%   | 113     |
| Dornheim (2008)            | Neck           | 1                 | >8.0         | Unknown      | 100%    | 9       |
| Barbu et al. (2010)        | Axillary       | 101               | >10.0        | In box       | 82.3%   | 1.0     |
| Feulner et al.<br>(2013)   | Mediastinum    | 54                | >10.0        | In box       | 52.9%   | 3.1     |
| Intra-obs. Var.<br>(Human) | Mediastinum    | 10                | >10.0        | In box       | 54.8%   | 0.8     |

- Table reproduced from Table 3, FeuIner et al., "Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior", MedIA, 17(2): 254-270 (2013).
- Note that Barbu et al. (2010) is not directly comparable to other papers since Axillary lymph nodes are easier to detect.
- Our "comparable" result is 82% @ 3FP ...

### VISUALIZATION ON TRANSFER LEARNING (LEARNED FROM THORACO-ABDOMINAL LNS) [SHIN ET AL., TMI 2016]







KRIBB Fellowship

### BETTER LOCALIZATION AFTER FINE-TUNING?



### **FAILURE CASES**

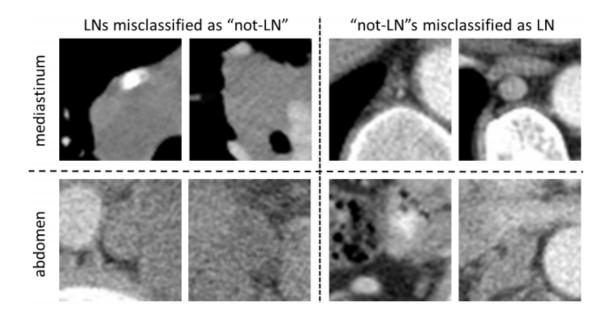
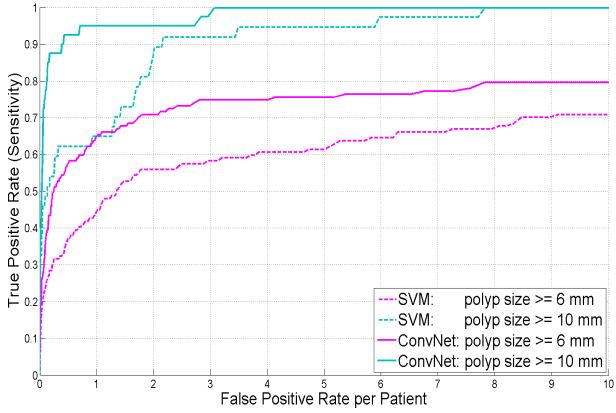
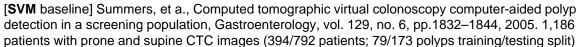





Fig. 9. Examples of misclassified lymph nodes (in axial view) of both false negatives (Left) and false positives (Right). Mediastinal LN examples are shown in the **upper** row, and abdominal LN examples in the **bottom** row.

### Generalizable? Colon CADe Results using a deeper CNN on 1186 patients (or 2372 CTC volumes) via fine-tuning AlexNet



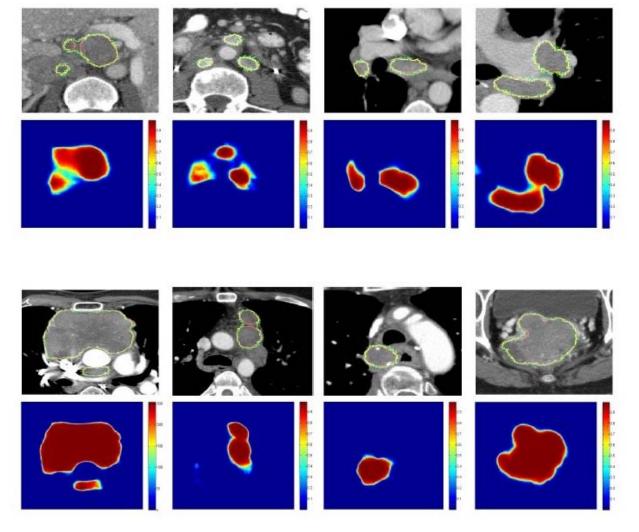




#### References:

- "A New 2.5D Representation for Lymph Node Detection using Random Sets of Deep Convolutional Neural Network Observations", MICCAI 2014
- "2D View Aggregation for Lymph Node Detection using a Shallow Hierarchy of Linear Classifiers", MICCAI 2014
- "Detection of Sclerotic Spine Metastases via Random Aggregation of Deep Convolutional Neural Network Classifications", (Oral), MICCAI Spine Imaging Workshop 2014
- "Leveraging Mid-Level Semantic Boundary Cues for Computer-Aided Lymph Node Detection", MICCAI 2015
- "An Analysis of Robust Cost Functions for Deep CNN in Computer-aided Diagnosis", MICCAI DLMIA workshop 2015
- "Anatomy-specific Classification of Medical Images using Deep Convolutional Nets", IEEE ISBI 2015
- "Improving Computer-aided Detection using Convolutional Neural Networks and Random View Aggregation", IEEE Trans. on Medical Imaging, 2016
- "Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning", IEEE Trans. on Medical Imaging, 2016



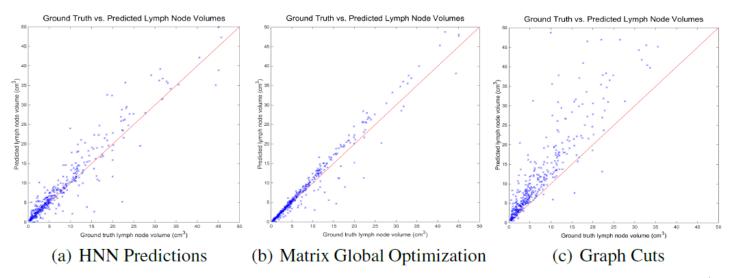

### **SEMANTIC SEGMENTATION:** TOP-DOWN OR BOTTOM-UP **PARADIGMS?**



# (A.2) MORE ACCURATE IMAGING BIO-MARKER USING LYMPH NODE VOLUME, INSTEAD OF DIAMETER BASED RECIST CRITERION? [NOGUES ET AL., MICCAI 2016, US PATENT APPLICATION: 62/345,606]



**Fig. 1.** Examples of thoracoabdominal lymph node clusters in CT images with ground truth (red) boundaries.




Computing much more precise imaging based biomarkers, meta-information for precision medicine decision making, beyond the current Clinical Protocol ... (Oncology Example) → Mining reliable, high accuracy, clinically-relevant meta-measurements from unstructured, noisy low-level imaging data

### AUTOMATIC LYMPH NODE CLUSTER SEGMENTATION USING HOLISTICALLY-NESTED NEURAL NETWORKS AND STRUCTURED OPTIMIZATION IN CT IMAGES

| Method | Evaluation Metric |                 |                 |  |
|--------|-------------------|-----------------|-----------------|--|
|        | Mean DSC (%)      | Mean IoU (%)    | Mean RVD (%)    |  |
| HNN-A  | $73.0 \pm 17.6$   | $60.1 \pm 18.8$ | $32.2 \pm 46.3$ |  |
| MGO    | $82.1 \pm 9.6$    | $70.6 \pm 11.9$ | $13.7 \pm 13.1$ |  |

**Table 1.** Evaluation of segmentation accuracy: HNN-A and MGO



https://wiki.cancerimagingarchive.net/display/Public/CT+Lymph+Nodes annotated datasets are publicly available)



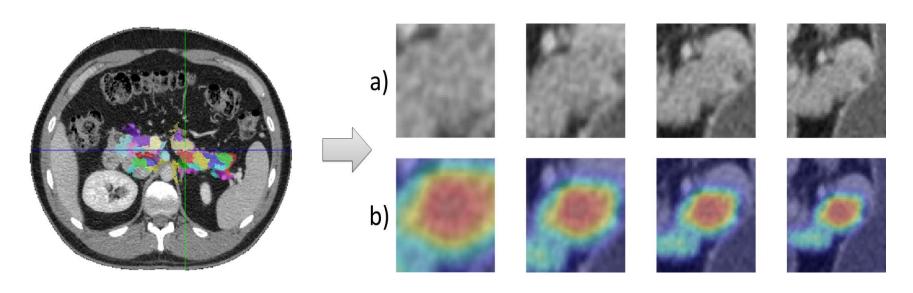


# (A.2) A ROADMAP OF BOTTOM-UP DEEP PANCREAS SEGMENTATION: PATCH, REGION, HOLISTIC CNNS [FARAG ET AL., IEEE TIP 2017]



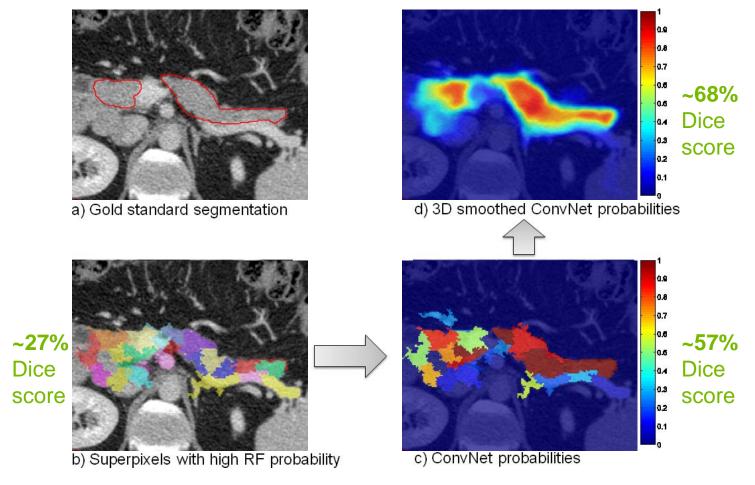
Ground truth

Random Forest


2.5D Patch

ConvNet prob.

P-ConvNet




# MULTI-SCALE "ZOOM-OUT" R-CONVNET



Zoom-out in dual spaces

# DEEPORGAN: R<sup>2</sup>-CONVNET VIA TWO-CHANNEL ENCODING [ROTH ET AL., MICCAI 2015]



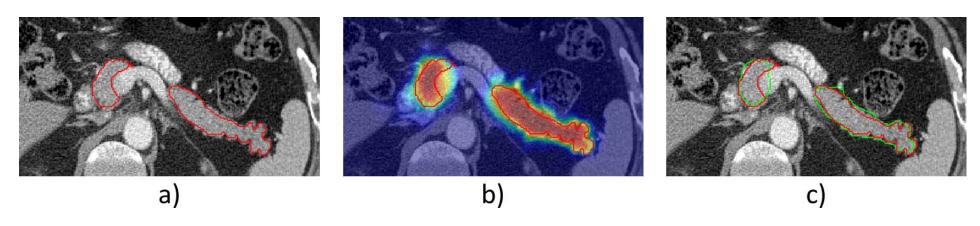
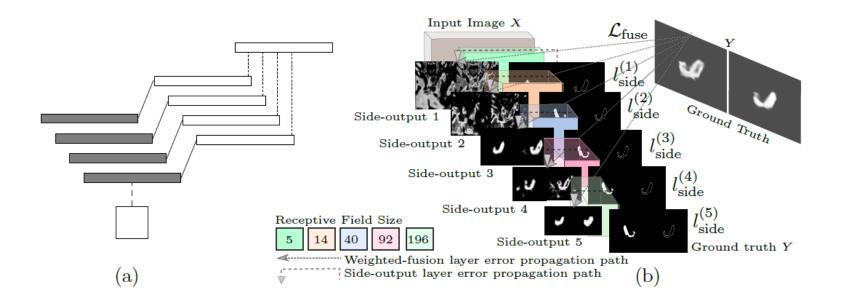

### 4-FOLD CV PERFORMANCE ON 82 CT SCANS

Table 1: **4-fold cross-validation**: optimally achievable DSCs, our initial candidate region labeling using  $S_{RF}$ , DSCs on P(x) and using smoothed G(P(x)), and a CRF model for structured prediction (best performance in bold).

| DSC (%) | Opt. | $S_{RF(x)}$ | $ P_0(x) $ | $G(P_0(x))$ | $P_1(x)$ | $G(P_1(x))$ | $P_2(x)$ | $G(P_2(x))$ | $CRF(P_2(x))$ |
|---------|------|-------------|------------|-------------|----------|-------------|----------|-------------|---------------|
| Mean    | 80.5 | 26.1        | 60.9       | 69.5        | 56.8     | 62.9        | 64.9     | 71.8        | 68.2          |
| Std     | 3.6  | 7.1         | 10.4       | 9.3         | 11.4     | 16.1        | 8.1      | 10.7        | 4.1           |
| Min     | 70.9 | 14.2        | 22.9       | 35.3        | 1.3      | 0.0         | 33.1     | 25.0        | 59.6          |
| Max     | 85.9 | 45.8        | 80.1       | 84.4        | 77.4     | 87.3        | 77.9     | 86.9        | 74.2          |

- $\triangleright$  Averaged surface-surface distances: 0.94+/-0.6mm (p<0.01) with  $R^2$ ConvNet from 1.46+/-1.5mm if just P-ConvNet is applied.
- > Previous state-of-the-art: [46.6% to 69.1%] DSC, all under LOO (Leave-one-patient-out).

# AN ABOVE-AVERAGE EXAMPLE




- a) The manual ground truth annotation (in red outline)
- b) The *G(P2(x))* probability map
- c) The final segmentation (in green outline) at  $p_2$ =0.6

DSC=82.7%.

# SPATIAL AGGREGATION OF HOLISTICALLY-NESTED NETWORKS FOR AUTOMATED PANCREAS SEGMENTATION

[ROTH, ET AL., MICCAI 2016, US PATENT APPLICATION: 62/345,606]



Saining Xie and Zhuowen Tu, "*Holistically-Nested Edge Detection*", ICCV 2015 (Marr Prize Honorable Mention). Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu, "*Deeply-Supervised Nets*", AISTATS 2015.

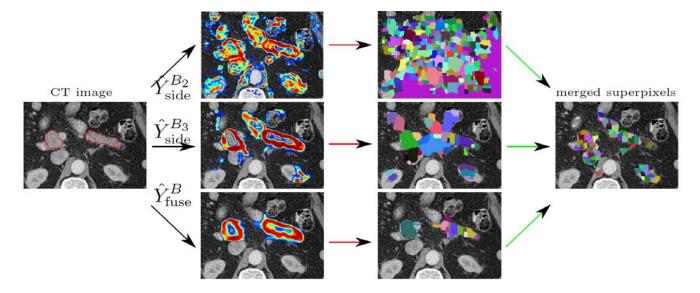
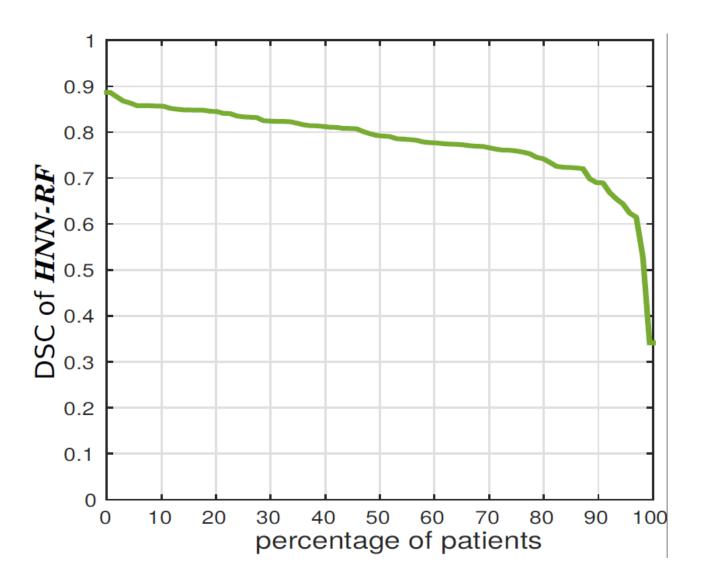



Fig. 2: "Multiscale Combinatorial Grouping" (MCG) [16] on three different scales of learned boundary predication maps from **HNN-B**:  $\hat{Y}_{\text{side}}^{B_2}$ ,  $\hat{Y}_{\text{side}}^{B_3}$ , and  $\hat{Y}_{\text{fuse}}^{B}$  using the original CT image as input (shown with ground truth delineation of pancreas). MCG computes superpixels at each scale and produces a set of merged superpixel-based object proposals. We only visualize the boundary probabilities p > 10%.

# MORE ACCURATE AND FASTER? [ROTH, ET AL. MICCAI 2016]


Table 1: **4-fold cross-validation**: The DSC and average minimum distance (Dist) performance of our implementation of [6], optimally achievable superpixels, **HNN-I**, and **HNN-RF** spatial aggregation, and DCRF (best performance in bold).

| DSC[% | o]  [6] | Opt.  | HNN-I | HNN-RF | DCRF  | Dist[mn | n] [6] | Opt. | HNN-I | HNN-RF | DCRF |
|-------|---------|-------|-------|--------|-------|---------|--------|------|-------|--------|------|
| Mean  | 71.42   | 88.08 | 76.99 | 78.01  | 77.14 | Mean    | 1.53   | 0.15 | 0.70  | 0.60   | 0.69 |
| Std   | 10.11   | 2.10  | 9.45  | 8.20   | 10.58 | Std     | 1.60   | 0.08 | 0.73  | 0.55   | 0.76 |
| Min   | 23.99   | 81.24 | 24.11 | 34.11  | 16.10 | Min     | 0.20   | 0.08 | 0.17  | 0.15   | 0.15 |
| Max   | 86.29   | 92.00 | 87.78 | 88.65  | 88.30 | Max     | 10.32  | 0.81 | 5.91  | 4.37   | 5.71 |

<u>https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT</u> annotated datasets are publicly available) → <a href="https://www.synapse.org/#!Synapse:syn3193805/wiki/217789">https://www.synapse.org/#!Synapse:syn3193805/wiki/217789</a>

Our newest results are (81.4% +/- 7.3%) in Dice and ~0.43 mm mean surface-to-surface distance with a stacked implementation of HNNs for both pancreas localization & segmentation.

Localize & Zoom better to see better or segment more accurately) → proper Zooming is related to scale & attention models

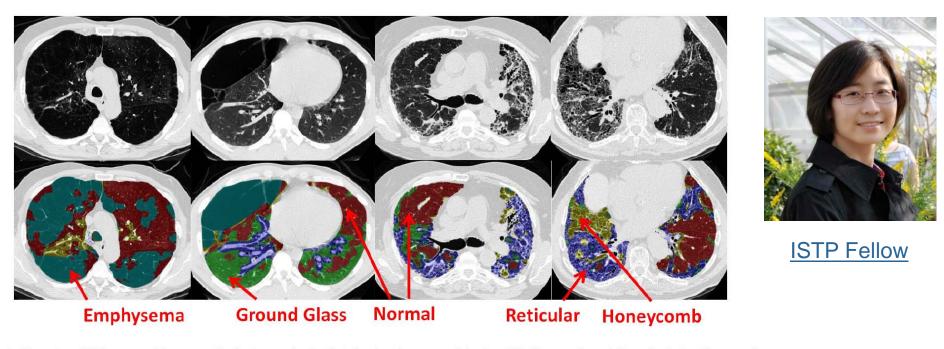
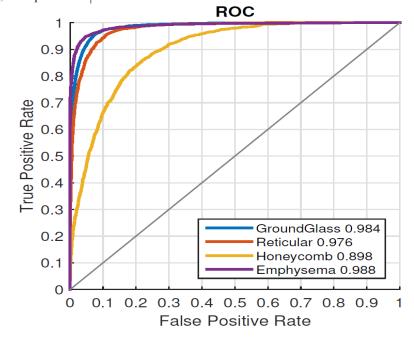


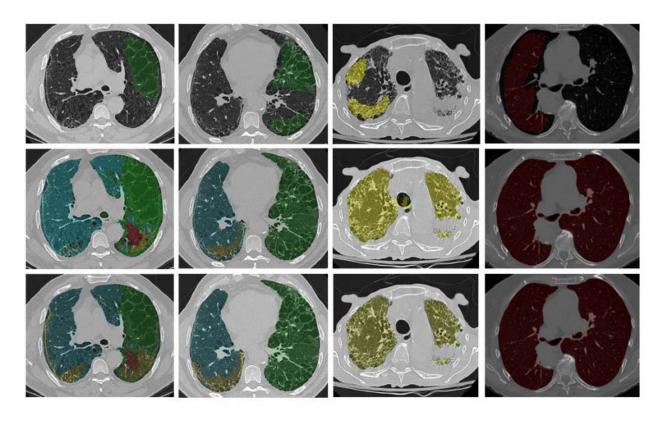
#### References:

- "DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation", MICCAI 2015
- "A Bottom-up Approach for Automatic Pancreas Segmentation Abdominal CT Scans", Oral, MICCAI Abdominal **Imaging Workshop 2014**
- "Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation", MICCAI 2016
- Automatic Lymph Node Cluster Segmentation using Holistically-Nested Networks and Structured Optimization", MICCAI 2016
- Pancreas Segmentation in MRI using Graph-based Decision Fusion on Convolutional Neural Networks", MICCAI 2016
- "A Bottom-up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling", to appear, IEEE Trans. Image Processing, 2016, arXiv:1505.06236, 2015
- "Spatial Aggregation of Holistically-Nested Convolutional Neural Networks for Automated Pancreas Localization and Segmentation", in preparation, 2016



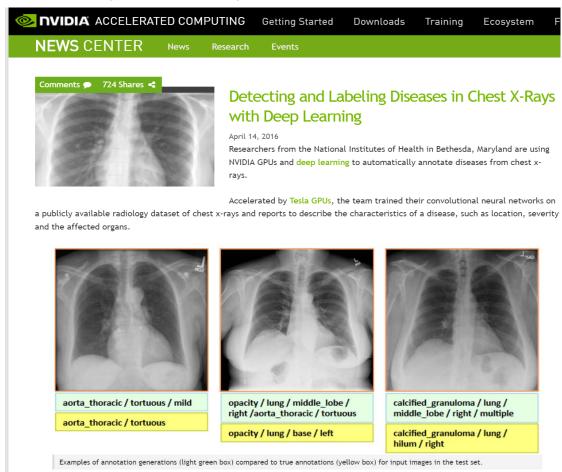
# (A3) HOLISTIC ILD (INTERSTITIAL LUNG DISEASE) PREDICTION VIA MULTI-LABEL DEEP LEARNING (LOOKING FOR A CLINICALLY MORE DESIRABLE PROTOCOL TO ASSIST DECISION MAKING)



Fig. 1. Examples of ILD patterns. Every voxel in the lung region is labeled as healthy or one of the four ILD diseases: Ground Glass, Reticular, Honeycomb or Emphysema. The first row is the lung CT images. The second row is their corresponding labeling.

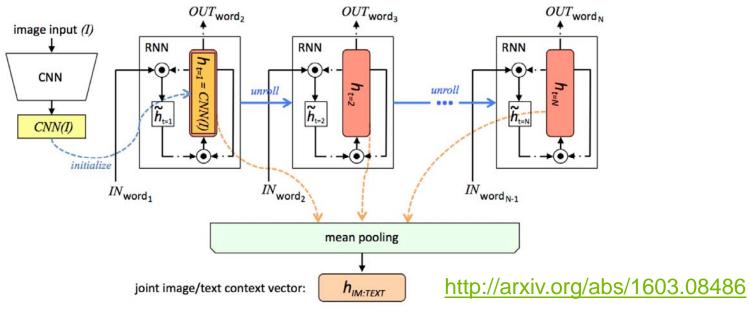
F SCORES

|                                               | F-score          |           |           |           |         |         |
|-----------------------------------------------|------------------|-----------|-----------|-----------|---------|---------|
| Disease                                       | Ground Glass     | Reticular | Honeycomb | Emphysema | Overall | Healthy |
| multilabel unbalanced testing (658 patients)  | 0.8750           | 0.6791    | 0.1651    | 0.8851    | 0.8185  |         |
| multilabel balanced testing (658 patients)    | 0.8960           | 0.7157    | 0.1615    | 0.9094    | 0.8393  |         |
| multilabel balanced training (658 patients)   | 0.9237           | 0.8810    | 0.9818    | 0.9639    | 0.9395  |         |
| multitask unbalanced testing (533 patients)   | 0.81             | 0.74      | 0.30      | 0.89      |         |         |
| multitask unbalanced training (533 patients)  | 0.86             | 0.78      | 0.49      | 0.88      |         |         |
| multitask balancing testing (533 patients)    | does not improve |           |           |           |         |         |
| multitask testing (658 patients) independent  |                  |           | 0.2705    | 0.8616    |         | 0.9897  |
| multitask training (658 patients) independent |                  |           | 1         | 0.9991    |         | 1       |
| multitask testing (658 patients) independent  |                  |           | 0.3091    |           |         |         |



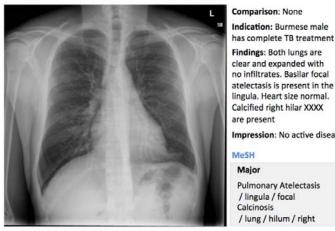

# LABEL ANYTHING (THAT MATTERS) FROM EVERYWHERE?



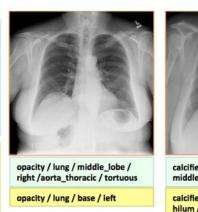

Gao et al., "SEGMENTATION LABEL PROPAGATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS AND DENSE CONDITIONAL RANDOM FIELD", IEEE ISBI, 2016

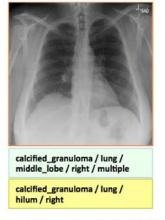
# LEARNING TO READ CHEST X-RAY USING DEEP NEURAL NETWORKS, (A LITTLE MORE LIKE HUMANS?) [SHIN ET AL., CVPR 2016, US PATENT APPLICATION: 62/302,084]






### Towards more accurate, "human-like" image annotation, using MeSH





generated annotation

true annotation



Findings: Both lungs are clear and expanded with no infiltrates. Basilar focal atelectasis is present in the lingula. Heart size normal. Calcified right hilar XXXX are present Impression: No active disease. MeSH Major **Pulmonary Atelectasis** / lingula / focal Calcinosis / lung / hilum / right





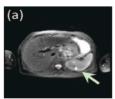
Shin et al, IEEE CVPR 2016

50 **NVIDIA**.

#### References:

- "Holistic Classification of CT Attenuation Patterns for Interstitial Lung Diseases via Deep CNNs", MICCAI DLMIA workshop 2015
- "SEGMENTATION LABEL PROPAGATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS AND DENSE CONDITIONAL RANDOM FIELD", IEEE ISBI, 2016
- "Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning", IEEE Trans. on Medical Imaging, 2016
- Multi-label Deep Regression and Unordered Pooling for Holistic Interstitial Lung Disease Detection", MICCAI-MLMI 2016.
- 5. "Learning to Read Chest X-Rays: Recurrent Neural Feedback Model for Automated Image Annotation", IEEE CVPR, 2016
- "Holistic Interstitial Lung Disease Detection using Deep Convolutional Neural Networks: Multi-label Learning and Unordered Pooling", in preparation, 2016



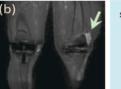

## (A.4) INTERLEAVED TEXT/IMAGE DEEP MINING ON A LARGE-SCALE RADIOLOGY DATABASE (780K/62K PATIENTS) FOR AUTOMATED IMAGE INTERPRETATION

#### Input image

#### Generated key-words

Disease detection

#### **Original text**




originating effusion upper

avg distance 0.14 cyst: 0.999
no cyst: 2.24e-05
disease: 1.54e-05
gallstone: 5.32e-07
hydronephrosis: 3.48e-07

label: cyst

2 multiple clip artifacts indicative of previous surgery in the left abdominal wall and left retroperitoneum about the kidney 3 in the upper abdomen non enhancing well defined foci of high signal intensity on t2 weighted images consistent with cysts one about a centimeter at the left renal splenic interface series 501 image 19 the other less than 5 mm in the periphery of the right kidney series 501 image 12 4 multiple gallstones



susceptibility findings tibialis

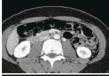
avg distance 0.20 label: abscess

abscess: 0.663

infection: 0.103 osteochondromatosis: 0.037 synovitis: 0.032 cyst: 0.026 ... for example series 701 image 12 and series 401 image 27 with findings suggesting minimally enhancing rim laterally for example series 1101 image 21 may ... the findings suggest a fluid collection with ... the location suggests possibility of a synovial collection synovial thickening as the appearance is nonspecific correlation with clinical findings is recommended regarding the possibility of an infection abscess



(c)

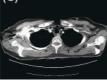



basal fasciitis findings

avg distance 0.31 label: myositis

myositis: 0.996 fasciitis: 0.002 tenosynovitis: 0.002 lymphedema: 1.30e-05 images were obtained of both thighs including stir scans findings include 1 areas of slight increase in signal intensity in some muscles on the stir scan more apparent on the left than the right for example series 4 image 13 the left hamstrings and vastus medialis consistent with myositis 2 no evidence of gross fatty infiltration of the muscles



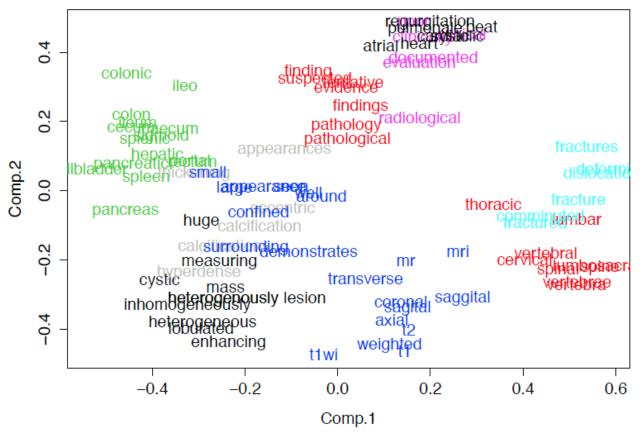



anterior effusion renal

avg distance 0.34 no myositis: 2.84e-06 label: cyst

lymphocele: 0.120 no gallstone: 0.050 syndrome: 0.020 pyelonephritis: 0.016 adrenal glands 1.2 mm lower right kidney focus e.g series 3 image 63 possibly due to cyst no evidence of pleural effusion splenomegaly hydronephrosis calcification in gallbladder or kidneys or definite adrenal mass or calcification

e)




subclavian effusion hairy

avg distance 0.20 label: osteophyte

osteophyte: 0.472 disease: 0.207 gynecomastia: 0.098 no hydronephrosis: 0.034 pneumothorax: 0.028 history lymphoma restaging chest subcentimeter right apex lung cavity series 921780 image 11 unchanged since xx/xx/ xxxx spine osteophytes no evidence of pleural or pericardial effusion bulky axilla mediastinum or hilum adenopathy or lung mass or infiltrate

# INTERLEAVED TEXT/IMAGE DEEP MINING ON A LARGE-SCALE RADIOLOGY DATABASE



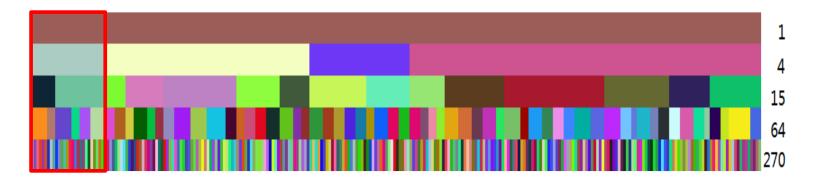

Example words embedded in the vector space using Open Source RNN based Google Word-to-Vector modeling (visualized on 2D), trained from 1B words in 780K radiology reports and 0.2B from OpenI: an open access biomedical image search engine; <a href="http://openi.nlm.nih.gov">http://openi.nlm.nih.gov</a>.

| ~1.2 billion words with OpenI                                                                              |                                                                                                                                              | ~1.2 billion words wi                                                                                                     | th Openi                                                                                                                                     | ~1.2 billion words wi                                                                    | th OpenI                                                                                                                                     | ~1.2 billion words with O                                                                                                       | penl                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| "cyst"                                                                                                     |                                                                                                                                              | "heart"                                                                                                                   |                                                                                                                                              | "brain"                                                                                  |                                                                                                                                              | "liver"                                                                                                                         |                                                                                                                                              |
| cysts                                                                                                      | 0.799191                                                                                                                                     | cardiac                                                                                                                   | 0.672690                                                                                                                                     | hemisphere                                                                               | 0.684149                                                                                                                                     | hepatic                                                                                                                         | 0.764163                                                                                                                                     |
| hydatid                                                                                                    | 0.734686                                                                                                                                     | respiratory                                                                                                               | 0.644453                                                                                                                                     | hemispheric                                                                              | 0.668626                                                                                                                                     | spleen                                                                                                                          | 0.683242                                                                                                                                     |
| cystic                                                                                                     | 0.701855                                                                                                                                     | beat                                                                                                                      | 0.642630                                                                                                                                     | cerebellum                                                                               | 0.663902                                                                                                                                     | cirrhotic                                                                                                                       | 0.664428                                                                                                                                     |
| unilocular                                                                                                 | 0.654273                                                                                                                                     | pressure                                                                                                                  | 0.558879                                                                                                                                     | whole                                                                                    | 0.661564                                                                                                                                     | cirrhosis                                                                                                                       | 0.664262                                                                                                                                     |
| tailgut                                                                                                    | 0.639764                                                                                                                                     | murmur                                                                                                                    | 0.551323                                                                                                                                     | regions                                                                                  | 0.647632                                                                                                                                     | hcc                                                                                                                             | 0.656473                                                                                                                                     |
| nonparasitic                                                                                               | 0.621647                                                                                                                                     | systolic                                                                                                                  | 0.548490                                                                                                                                     | mri                                                                                      | 0.646674                                                                                                                                     | portal                                                                                                                          | 0.610437                                                                                                                                     |
| epidermoid                                                                                                 | 0.604492                                                                                                                                     | pericardial                                                                                                               | 0.538957                                                                                                                                     | structural                                                                               | 0.638171                                                                                                                                     | hepatocellular                                                                                                                  | 0.603930                                                                                                                                     |
| lipoma                                                                                                     | 0.588372                                                                                                                                     | dobutamine                                                                                                                | 0.537429                                                                                                                                     | neuroanatomical                                                                          | 0.636563                                                                                                                                     | parenchyma                                                                                                                      | 0.597169                                                                                                                                     |
| cheesy                                                                                                     | 0.586947                                                                                                                                     | intracardiac                                                                                                              | 0.533799                                                                                                                                     | crinion                                                                                  | 0.626951                                                                                                                                     | splenic                                                                                                                         | 0.579957                                                                                                                                     |
| multiloculated                                                                                             | 0.584199                                                                                                                                     | great                                                                                                                     | 0.532735                                                                                                                                     | in                                                                                       | 0.626707                                                                                                                                     | hepatomegaly                                                                                                                    | 0.573687                                                                                                                                     |
| pearly                                                                                                     | 0.583126                                                                                                                                     | rate                                                                                                                      | 0.531352                                                                                                                                     | parasaggital                                                                             | 0.618392                                                                                                                                     | tumor                                                                                                                           | 0.571135                                                                                                                                     |
| multilocular                                                                                               | 0.582670                                                                                                                                     | beats                                                                                                                     | 0.524729                                                                                                                                     | illustration                                                                             | 0.610440                                                                                                                                     | abdomen                                                                                                                         | 0.559092                                                                                                                                     |
| lesion                                                                                                     | 0.579009                                                                                                                                     | atrial                                                                                                                    | 0.524052                                                                                                                                     | striatal                                                                                 | 0.609282                                                                                                                                     | hepatectomy                                                                                                                     | 0.556156                                                                                                                                     |
| tgdc                                                                                                       | 0.578533                                                                                                                                     | tachycardia                                                                                                               | 0.521093                                                                                                                                     | brains                                                                                   | 0.607442                                                                                                                                     | bclc                                                                                                                            | 0.546798                                                                                                                                     |
| multiseptate                                                                                               | 0.575851                                                                                                                                     | minute                                                                                                                    | 0.520249                                                                                                                                     | behavioral                                                                               | 0.606803                                                                                                                                     | subcapsular                                                                                                                     | 0.542745                                                                                                                                     |
|                                                                                                            |                                                                                                                                              |                                                                                                                           |                                                                                                                                              |                                                                                          |                                                                                                                                              |                                                                                                                                 |                                                                                                                                              |
| ~1 billion words repo                                                                                      | rts only                                                                                                                                     | ~1 billion words repo                                                                                                     | orts only                                                                                                                                    | ~1 billion words repo                                                                    | rts only                                                                                                                                     | ~1 billion words reports o                                                                                                      | only                                                                                                                                         |
| ~1 billion words repo                                                                                      | rts only                                                                                                                                     | ~1 billion words repo<br>"heart"                                                                                          | orts only                                                                                                                                    | ~1 billion words repo<br>"brain"                                                         | rts only                                                                                                                                     | ~1 billion words reports o                                                                                                      | only                                                                                                                                         |
| •                                                                                                          | rts only<br>0.768382                                                                                                                         |                                                                                                                           | orts only<br>0.526600                                                                                                                        | ,                                                                                        | orts only<br>0.615066                                                                                                                        | •                                                                                                                               | only<br>0.759884                                                                                                                             |
| "cyst"                                                                                                     | ,                                                                                                                                            | "heart"                                                                                                                   | ,                                                                                                                                            | "brain"                                                                                  | ,                                                                                                                                            | "liver"                                                                                                                         | •                                                                                                                                            |
| "cyst"<br>cysts                                                                                            | 0.768382                                                                                                                                     | "heart"                                                                                                                   | 0.526600                                                                                                                                     | "brain" t1                                                                               | 0.615066                                                                                                                                     | "liver"                                                                                                                         | 0.759884                                                                                                                                     |
| "cyst" cysts septated                                                                                      | 0.768382<br>0.586067                                                                                                                         | "heart"<br>lungs<br>mediastinum                                                                                           | 0.526600<br>0.517008                                                                                                                         | "brain" t1                                                                               | 0.615066<br>0.595027                                                                                                                         | "liver" spleen gallbladder                                                                                                      | 0.759884<br>0.648075                                                                                                                         |
| "cyst" cysts septated polyp                                                                                | 0.768382<br>0.586067<br>0.583761                                                                                                             | "heart" lungs mediastinum consolidating                                                                                   | 0.526600<br>0.517008<br>0.486605                                                                                                             | "brain" t1<br>mri<br>sagittal                                                            | 0.615066<br>0.595027<br>0.580841                                                                                                             | "liver" spleen<br>gallbladder<br>hepatomegaly                                                                                   | 0.759884<br>0.648075<br>0.642022                                                                                                             |
| "cyst" cysts septated polyp simple                                                                         | 0.768382<br>0.586067<br>0.583761<br>0.534717                                                                                                 | "heart" lungs<br>mediastinum<br>consolidating<br>pa                                                                       | 0.526600<br>0.517008<br>0.486605<br>0.449816                                                                                                 | " <b>brain</b> " t1<br>mri<br>sagittal<br>flair                                          | 0.615066<br>0.595027<br>0.580841<br>0.565445                                                                                                 | "liver" spleen<br>gallbladder<br>hepatomegaly<br>gallstones                                                                     | 0.759884<br>0.648075<br>0.642022<br>0.611837                                                                                                 |
| "cyst" cysts septated polyp simple septation                                                               | 0.768382<br>0.586067<br>0.583761<br>0.534717<br>0.500951                                                                                     | "heart" lungs<br>mediastinum<br>consolidating<br>pa<br>chest                                                              | 0.526600<br>0.517008<br>0.486605<br>0.449816<br>0.433362                                                                                     | "brain" t1<br>mri<br>sagittal<br>flair                                                   | 0.615066<br>0.595027<br>0.580841<br>0.565445<br>0.555053                                                                                     | "liver" spleen gallbladder hepatomegaly gallstones pancreas                                                                     | 0.759884<br>0.648075<br>0.642022<br>0.611837<br>0.608356                                                                                     |
| "cyst"  cysts septated polyp simple septation parapelvic                                                   | 0.768382<br>0.586067<br>0.583761<br>0.534717<br>0.500951<br>0.500877                                                                         | "heart" lungs mediastinum consolidating pa chest infiltrates                                                              | 0.526600<br>0.517008<br>0.486605<br>0.449816<br>0.433362<br>0.428404                                                                         | "brain" t1<br>mri<br>sagittal<br>flair<br>t2<br>axial                                    | 0.615066<br>0.595027<br>0.580841<br>0.565445<br>0.555053<br>0.554040                                                                         | "liver" spleen gallbladder hepatomegaly gallstones pancreas gallstone                                                           | 0.759884<br>0.648075<br>0.642022<br>0.611837<br>0.608356<br>0.606063                                                                         |
| "cyst"  cysts septated polyp simple septation parapelvic incidental                                        | 0.768382<br>0.586067<br>0.583761<br>0.534717<br>0.500951<br>0.500877<br>0.500760                                                             | "heart"  lungs  mediastinum  consolidating  pa  chest  infiltrates  hyperinflated                                         | 0.526600<br>0.517008<br>0.486605<br>0.449816<br>0.433362<br>0.428404<br>0.413326                                                             | "brain" t1 mri sagittal flair t2 axial spgr                                              | 0.615066<br>0.595027<br>0.580841<br>0.565445<br>0.555053<br>0.554040<br>0.520954                                                             | "liver"  spleen gallbladder hepatomegaly gallstones pancreas gallstone steatosis                                                | 0.759884<br>0.648075<br>0.642022<br>0.611837<br>0.608356<br>0.606063<br>0.601081                                                             |
| "cyst"  cysts septated polyp simple septation parapelvic incidental small                                  | 0.768382<br>0.586067<br>0.583761<br>0.534717<br>0.500951<br>0.500877<br>0.500760<br>0.487211                                                 | "heart"  lungs  mediastinum  consolidating  pa  chest  infiltrates  hyperinflated  cardiomegaly                           | 0.526600<br>0.517008<br>0.486605<br>0.449816<br>0.433362<br>0.428404<br>0.413326<br>0.410785                                                 | "brain" t1<br>mri<br>sagittal<br>flair<br>t2<br>axial<br>spgr<br>weighted                | 0.615066<br>0.595027<br>0.580841<br>0.565445<br>0.555053<br>0.554040<br>0.520954<br>0.502047                                                 | "liver"  spleen gallbladder hepatomegaly gallstones pancreas gallstone steatosis dome portal ascites                            | 0.759884<br>0.648075<br>0.642022<br>0.611837<br>0.608356<br>0.606063<br>0.601081<br>0.594812                                                 |
| "cyst"  cysts septated polyp simple septation parapelvic incidental small cystic                           | 0.768382<br>0.586067<br>0.583761<br>0.534717<br>0.500951<br>0.500877<br>0.500760<br>0.487211<br>0.477632                                     | "heart"  lungs  mediastinum  consolidating  pa  chest  infiltrates  hyperinflated  cardiomegaly  hyperlucent              | 0.526600<br>0.517008<br>0.486605<br>0.449816<br>0.433362<br>0.428404<br>0.413326<br>0.410785<br>0.400836                                     | "brain" t1 mri sagittal flair t2 axial spgr weighted technique                           | 0.615066<br>0.595027<br>0.580841<br>0.565445<br>0.555053<br>0.554040<br>0.520954<br>0.502047<br>0.487768                                     | "liver"  spleen gallbladder hepatomegaly gallstones pancreas gallstone steatosis dome portal                                    | 0.759884<br>0.648075<br>0.642022<br>0.611837<br>0.608356<br>0.606063<br>0.601081<br>0.594812<br>0.570008                                     |
| "cyst"  cysts septated polyp simple septation parapelvic incidental small cystic pole                      | 0.768382<br>0.586067<br>0.583761<br>0.534717<br>0.500951<br>0.500877<br>0.500760<br>0.487211<br>0.477632<br>0.471933                         | "heart"  lungs mediastinum consolidating pa chest infiltrates hyperinflated cardiomegaly hyperlucent pectus               | 0.526600<br>0.517008<br>0.486605<br>0.449816<br>0.433362<br>0.428404<br>0.413326<br>0.410785<br>0.400836<br>0.396142                         | "brain"  t1 mri sagittal flair t2 axial spgr weighted technique astrocytoma              | 0.615066<br>0.595027<br>0.580841<br>0.565445<br>0.555053<br>0.554040<br>0.520954<br>0.502047<br>0.487768<br>0.480527                         | "liver"  spleen gallbladder hepatomegaly gallstones pancreas gallstone steatosis dome portal ascites                            | 0.759884<br>0.648075<br>0.642022<br>0.611837<br>0.608356<br>0.606063<br>0.601081<br>0.594812<br>0.570008<br>0.551869                         |
| "cyst"  cysts septated polyp simple septation parapelvic incidental small cystic pole multiseptated        | 0.768382<br>0.586067<br>0.583761<br>0.534717<br>0.500951<br>0.500877<br>0.500760<br>0.487211<br>0.477632<br>0.471933<br>0.469851             | "heart"  lungs mediastinum consolidating pa chest infiltrates hyperinflated cardiomegaly hyperlucent pectus great         | 0.526600<br>0.517008<br>0.486605<br>0.449816<br>0.433362<br>0.428404<br>0.413326<br>0.410785<br>0.400836<br>0.396142<br>0.395712             | "brain"  t1 mri sagittal flair t2 axial spgr weighted technique astrocytoma gbm          | 0.615066<br>0.595027<br>0.580841<br>0.565445<br>0.555053<br>0.554040<br>0.520954<br>0.502047<br>0.487768<br>0.480527<br>0.476956             | "liver"  spleen gallbladder hepatomegaly gallstones pancreas gallstone steatosis dome portal ascites hepatosplenomegaly         | 0.759884<br>0.648075<br>0.642022<br>0.611837<br>0.608356<br>0.606063<br>0.601081<br>0.594812<br>0.570008<br>0.551869<br>0.540501             |
| "cyst"  cysts septated polyp simple septation parapelvic incidental small cystic pole multiseptated polyps | 0.768382<br>0.586067<br>0.583761<br>0.534717<br>0.500951<br>0.500877<br>0.500760<br>0.487211<br>0.477632<br>0.471933<br>0.469851<br>0.464380 | "heart"  lungs mediastinum consolidating pa chest infiltrates hyperinflated cardiomegaly hyperlucent pectus great ectatic | 0.526600<br>0.517008<br>0.486605<br>0.449816<br>0.433362<br>0.428404<br>0.413326<br>0.410785<br>0.400836<br>0.396142<br>0.395712<br>0.394560 | "brain"  t1 mri sagittal flair t2 axial spgr weighted technique astrocytoma gbm gradient | 0.615066<br>0.595027<br>0.580841<br>0.565445<br>0.555053<br>0.554040<br>0.520954<br>0.502047<br>0.487768<br>0.480527<br>0.476956<br>0.476593 | "liver"  spleen gallbladder hepatomegaly gallstones pancreas gallstone steatosis dome portal ascites hepatosplenomegaly hepatic | 0.759884<br>0.648075<br>0.642022<br>0.611837<br>0.608356<br>0.606063<br>0.601081<br>0.594812<br>0.570008<br>0.551869<br>0.540501<br>0.537453 |

# UNSUPERVISED LOOPED DEEP PSEUDO-TASK OPTIMIZATION

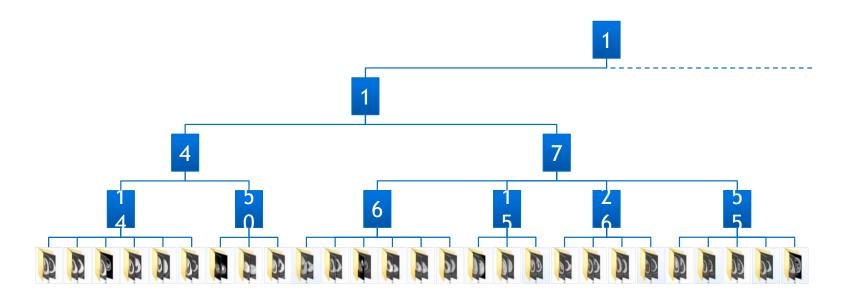
[WANG ET AL. ARXIV 2016, WACV 2017, US PATENT APPLICATION: 62/302,096]

| Cluste               | r #5       |
|----------------------|------------|
| Word                 | Frequency  |
| neck                 | 656        |
| adenopathy           | 343        |
| thyroid              | 295        |
| lymph                | 292        |
| supraclavicular      | 236        |
| nodes                | 218        |
| mass                 | 203        |
| enhancing            | 96         |
| bulky                | 77<br>76   |
| paratracheal         |            |
| Cluste               |            |
| Word                 | Frequency  |
| liver                | 524        |
| abdomen              | 337        |
| enhancement          | 217        |
| mass                 | 198        |
| lesion               | 168        |
| lobe                 | 161        |
| adenopathy           | 119        |
| lesions              | 109        |
| segment              | 58         |
| bulky                | 45         |
| Cluste               |            |
| Word                 | Frequency  |
| enhancement          | 277        |
| cerebellar<br>lesion | 193<br>192 |
| lobe                 | 192        |
| flair                | 173        |
| hemisphere           | 155        |
| mass                 | 134        |
| abnormal             | 119        |
| frontal              | 115        |
| cerebellum           | 113        |




**RSNA 2016 Best Paper** Award!




### FIVE-LEVEL HIERARCHICAL CATEGORIZATION

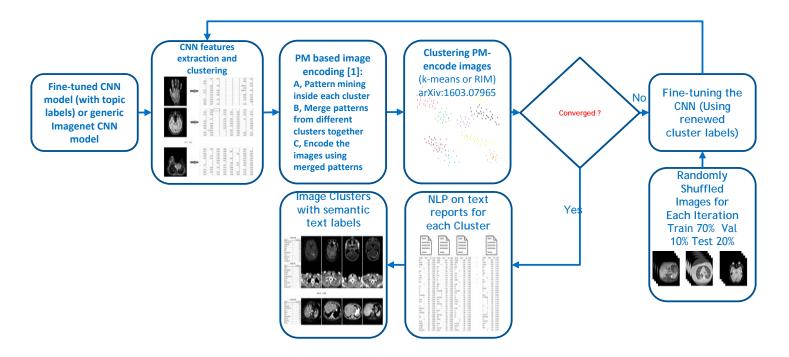
- Form a hierarchical category tree (ontology semantics?) of (270, 64, 15, 4, 1) different class labels from bottom (leaf) to top (root). The random color coded category tree is shown.
- *Model Selection* embedded for a large scale radiology image database (215,786 key images from 61,845 unique patients)



# A SAMPLE BRANCH OF CATEGORY HIERARCHY

The high majority of images in the clusters of this branch are verified as CT Chest scans by radiologists.




\*With "Radiologist-in-theloop" Protocol to build an annotated Large-scale Radiology Image Database → Flickr 30K, MS COCO ...?

\*\* Significantly better quantitative classification performance than [Shin et al., CVPR 2015; Shin et al. JMLR 2016], in recognizing learned categories!!

[Shin et al. CVPR 2015] may be the first work demonstrating the benefits of transfer learning from ImageNet to ~0.22M radiology key image database.

| Cluster<br>Number | Radiologist's Impression (Label)     | Withih-Class<br>Coherence or |
|-------------------|--------------------------------------|------------------------------|
|                   |                                      | Consistency                  |
| 1                 | Abdomen or pelvis CT with disease    | High                         |
| 2                 | Abdomen or pelvis CT with disease    | Moderately High              |
| 3                 | Abdomen or pelvis CT with disease    | Moderately High              |
|                   | (predominantly bowel)                |                              |
| 4                 | Chest CT with pulmonary disease      | High                         |
| 5                 | Neck or chest CT with tumor or       | High                         |
|                   | lymphadenopathy                      |                              |
| 6                 | Abdomen or pelvis CT with disease    | High                         |
| 7                 | Chest CT containing mass             | Moderately High              |
| 8                 | Chest CT with pulmonary disease      | Moderately High              |
|                   | (predominantly pleural)              |                              |
| 9                 | Body MRI (chest, abdomen, or pelvis) | High                         |
|                   | with mass/lesion                     |                              |
| 10                | Chest or abdomen CT (chest,          | High                         |
|                   | abdomen, or pelvis) with lesion in   |                              |
|                   | hepatic dome                         |                              |
| 11                | Chest CT with lesions (predominately | High                         |
|                   | pleural)                             |                              |
| 12                | Abdomen CT with lesions              | High                         |
|                   | (predominately hepatic or renal)     |                              |
| 13                | Abdominal or Pelvis MRI with tumor   | High                         |
| 14                | Lower extremity CT with disease      | Moderately Low (2            |
|                   |                                      | internal sub-classes)        |
| 15                | Chest CT with nodule/mass            | High                         |
| 16                | Abdominal MRI with tumor             | Moderately High              |
|                   | (predominately hepatic)              |                              |
| 17                | Abdomen CT with hepatic lesions      | High                         |
| 18                | Pelvis CT with lesions/tumor         | High                         |
| 19                | Chest CT with pulmonary disease      | High                         |
|                   | (predominately pleural)              |                              |
| 20                | Chest CT with tumor                  | High                         |

# FRAMEWORK OF LDPO-PM: [WANG ET AL. ARXIV:1603.07965]



[1] Mid-level Deep Pattern Mining. CVPR 2015; arxiv:1506.06343

# **Scene Recognition Dataset**

### MIT Indoor-67

(indoor scenes, 67 categories, 15620 images)







# Building-25

(Architecture Style, 25 categories, 4794 images)









### Scene-15

(Both indoor and outdoor, 15 categories, 4485 images)









# Results- Learned Features for Supervised classification

\* Unsupervised feature representation learning on MIT Indoor-67(67 categories, 15620 images)

| Method                 | Accuracy (%) | Comment                    |  |
|------------------------|--------------|----------------------------|--|
| D-patch [1]            | 38.10        | 2012                       |  |
| D-parts [2]            | 51.40        | 2013                       |  |
| DMS [3]                | 64.03        | 2013                       |  |
| MDPM-Alex [4]          | 64.12        | 2015                       |  |
| MDPM-VGG [4]           | 76.95        | 2015                       |  |
| MetaObject [5]         | 78.90        | 2015                       |  |
| LDPO-PM-Alex*          | 63.68        | Our unsupervised method    |  |
| LDPO-PM-VGG*           | 72.52        | Our unsupervised method    |  |
| FC (CaffeRef) [4]      | 57.74        | CNN FC feature             |  |
| FC (VGG) [4]           | 68.87        | CNN FC feature             |  |
| CONV-FV (CaffeRef) [6] | 69.70        | Fisher Vector (supervised) |  |
| CONV-FV (VGG) [6]      | 81.00        | Fisher Vector (supervised) |  |
|                        |              |                            |  |

### References:

- "Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database", IEEE CVPR 2015
- "Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database for Automated Image Interpretation", Journal of Machine Learning Research, arXiv:1505.00670, 2016
- 3. "Unsupervised Category Discovery via Looped Deep Pseudo-Task Optimization Using a Large Scale Radiology Image Database", arXiv:1603.07965, 2016
- "Unsupervised Joint Mining of Deep Features and Image Labels for Large-scale Radiology Image Categorization and Scene Recognition", ..., 2016



### **TAKE-HOME-MESSAGES**

- There exists the exact mapping of semantic object detection, object segmentation & parsing, and image-text captioning problems towards corresponding medical imaging tasks
- Preventative and precision medicine in radiology are feasible means to advance healthcare through improved quantitative performance on hard and important clinical problems.
- It is time to empower deep learning or deep neural networks under novel visual representations to solve previously poorly performed yet critical issues (lymph node, pancreas, chest X-ray, unconstrained ILD prediction, etc.) from doctors' wish-list; and work with them to make new diagnosis protocols!
- Key Technical Elements: Compositional & Hierarchical Visual Representations, Structured Prediction & Optimization, Heterogeneous Visual Cues (Boundary, etc.) integration, CNN Architectures & Loss Functions, Sequential vs. End-to-end Training ...

**Advances in Computer Vision and Pattern Recognition** Le Lu Yefeng Zheng **Gustavo Carneiro** Lin Yang Editors Deep Learning and Convolutional **Neural Networks** for Medical Image Computing Precision Medicine, High Performance and Large-Scale Datasets

# Thank you gour amazing trainees, collaborators!



Radiology and Imaging Sciences
National Institutes of Health Clinical Center

le.lu@nih.gov; rms@nih.gov

Thanks NIH Intramural Research Program (NIH-IRP) for support and NVidia for donating Tesla K40 and Titan X GPUs! NIH FARE awards (2014,2015, 2016), KRIBB Fellowship, NDSEG Fellowship, MICCAI student travel award 2016, RSNA trainee research prize 2016, ...

