Suffix Tries
Ben Langmead

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).
Suffix trie

Build a trie containing all suffixes of a text T

T: GTTATAGCTGATCGCGGCGTAGCGG$
 GTTATAGCTGATCGCGGCGTAGCGG$
 TTATAGCTGATCGCGGCGTAGCGG$
 TTAGCTGATCGCGGCGTAGCGG$
 ATAGCTGATCGCGGCGTAGCGG$
 TAGCTGATCGCGGCGTAGCGG$
 AGCTGATCGCGGCGTAGCGG$
 GCTGATCGCGGCGTAGCGG$
 CTGATCGCGGCGTAGCGG$
 TGATCGCGGCGTAGCGG$
 GATCGCGGCGTAGCGG$
 ATCGCGGCGTAGCGG$
 TCGCGGCGTAGCGG$
 CGCGGCGTAGCGG$
 GCGCGTAGCGG$
 CGCGTAGCGG$
 CGTAGCGG$
 GTAGCGG$
 TAGCGG$
 AGCGG$
 GCGG$
 CGG$
 GG$
 G$

$m(m+1)/2$ chars
Suffix trie

First add special terminal character $\$ to the end of T

$\$ is a character that does not appear elsewhere in T, and we define it to be less than other characters ($\$ < A < C < G < T$)

$\$ enforces a familiar rule: e.g. “as” comes before “ash” in the dictionary. $\$ also guarantees no suffix is a prefix of any other suffix.

\[
T: \begin{array}{c}
\text{GTTATAGCTGATCGCGTGCTAGCGG}\$
\text{TTATAGCTGATCGCGGCGTAGCGG}\$
\text{TTATAGCTGATCGCGGCGTAGCGG}\$
\text{TATAGCTGATCGCGGCGTAGCGG}\$
\text{TATAGCTGATCGCGGCGTAGCGG}\$
\text{ATAGCTGATCGCGGCGTAGCGG}\$
\text{TAGCTGATCGCGGCGTAGCGG}\$
\text{TAGCTGATCGCGGCGTAGCGG}\$
\text{AGCTGATCGCGGCGTAGCGG}\$
\text{GCTGATCGCGGCGTAGCGG}\$
\text{CTGATCGCGGCGTAGCGG}\$
\text{TGATCGCGGCGTAGCGG}\$
\text{GATCGCGGCGTAGCGG}\$
\text{ATCGCGGCGTAGCGG}\$
\text{TCGCGGCGTAGCGG}\$
\text{CGCGCGTAGCGG}\$
\text{GCCGCGTAGCGG}\$
\text{CCCGCGTAGCGG}\$
\end{array}
\]
Suffix trie

\(T: \text{aba}\$\)

Suffix trie:
Suffix trie

T: \textit{aba}$\$\$

Suffix trie:
Suffix trie

\(T: \text{abaaba}\$

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf.

Would this still be the case if we hadn’t added $\$?$
Suffix trie

T: abaaba

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Would this still be the case if we hadn’t added $\$?$ **No**

"ba" is a suffix, but does not end in leaf
Suffix trie

\(T: \) abaaba$

We need the $ for this property:

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf
Suffix trie

Think of each node as having a label, spelling out characters on path from root to node
Suffix trie

Think of each node as having a label, spelling out characters on path from root to node

"baa"
Suffix trie

How do we check whether a string S is a substring of T?

A substring is a prefix of a suffix

Each of T's substrings is a prefix of a suffix, and so is spelled out along a path from the root.
How do we check whether a string S is a substring of T?

$S = baa$
Suffix trie

To check whether a string S is a substring of T:

- Start at root and follow edges labeled with the characters of S
 - If we “fall off,” S is not a substring
 - If we exhaust S without falling off, S is a substring of T

Reasonable to assume $O(n)$ time
where $|S| = n$
Suffix trie

How do we count the **number of times** a string S occurs as a substring of T?

Say $S = ab$

Let n be the **node** we reach after "walking down" according to S

The **subtree** rooted at n holds suffixes for which S is a prefix

2 **leaves** in the subtree, so 2 suffixes for which S is a prefix $= 2$ occurrences!
Suffix trie

How do we count the **number of times** a string S occurs as a substring of T?

Walk down according to S. If we fall off, answer is 0.

Otherwise, if we ended at node n, answer = **# of leaves in subtree rooted at** n.

Leaves can be counted with depth-first traversal.
How do we find the **longest repeated substring** of T?

Find the **deepest node with more than one child**

Deepest node with multiple children has label "aba"