
BWT for repetitive texts, part 1: runs!

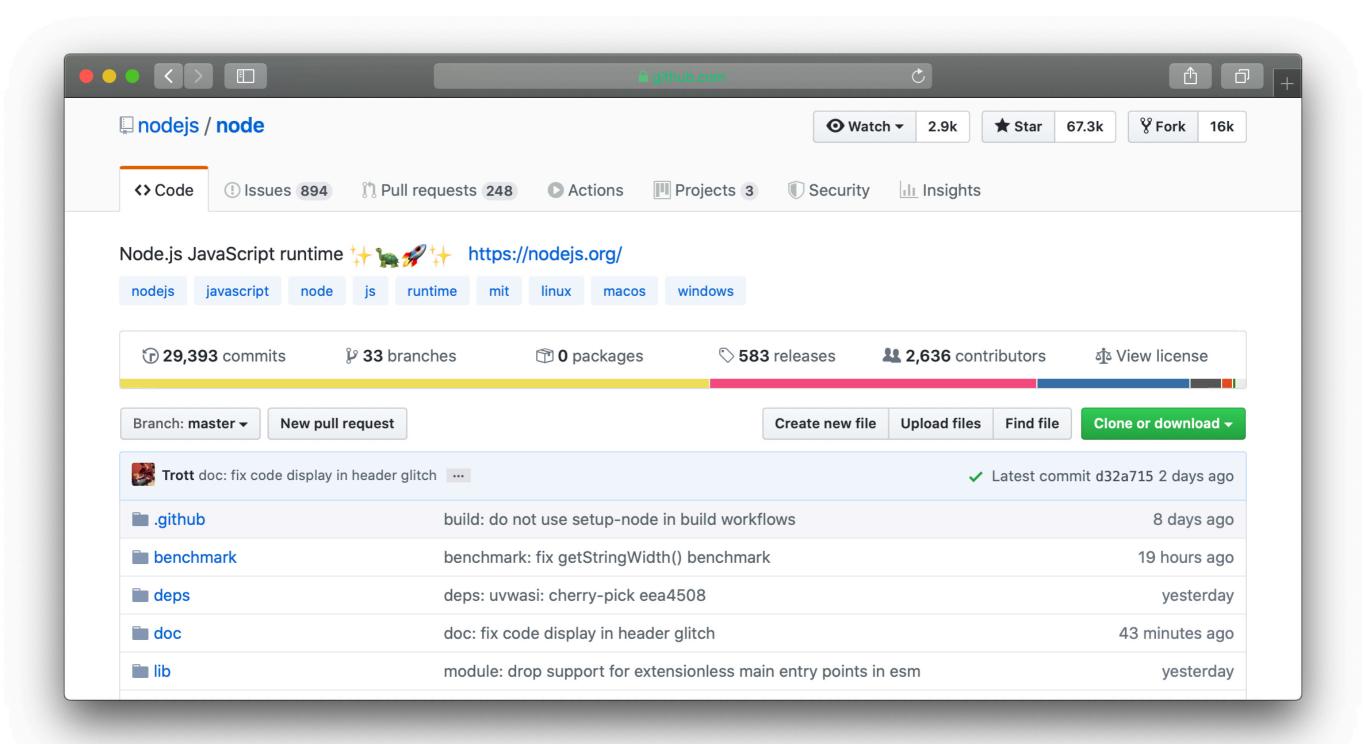
Ben Langmead



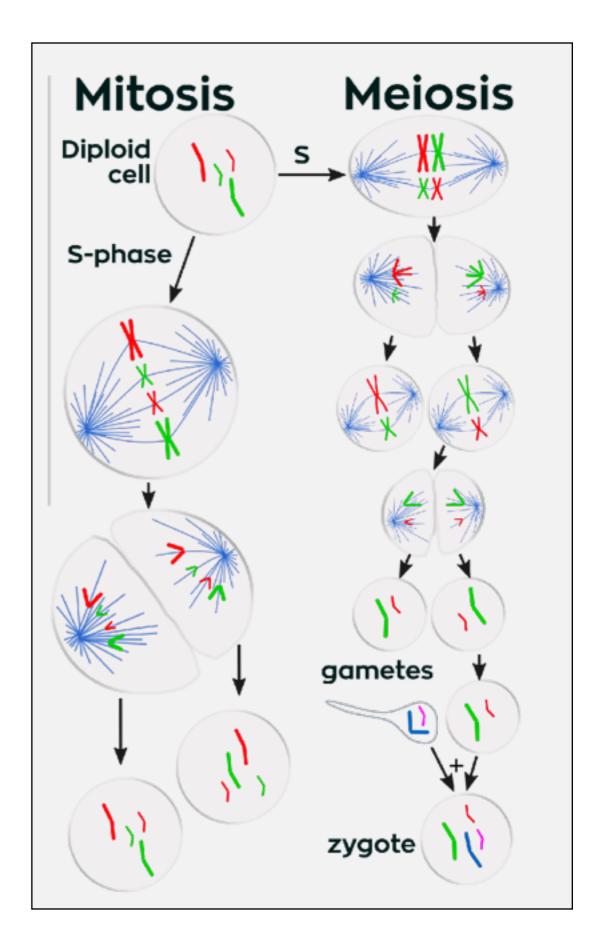
Department of Computer Science



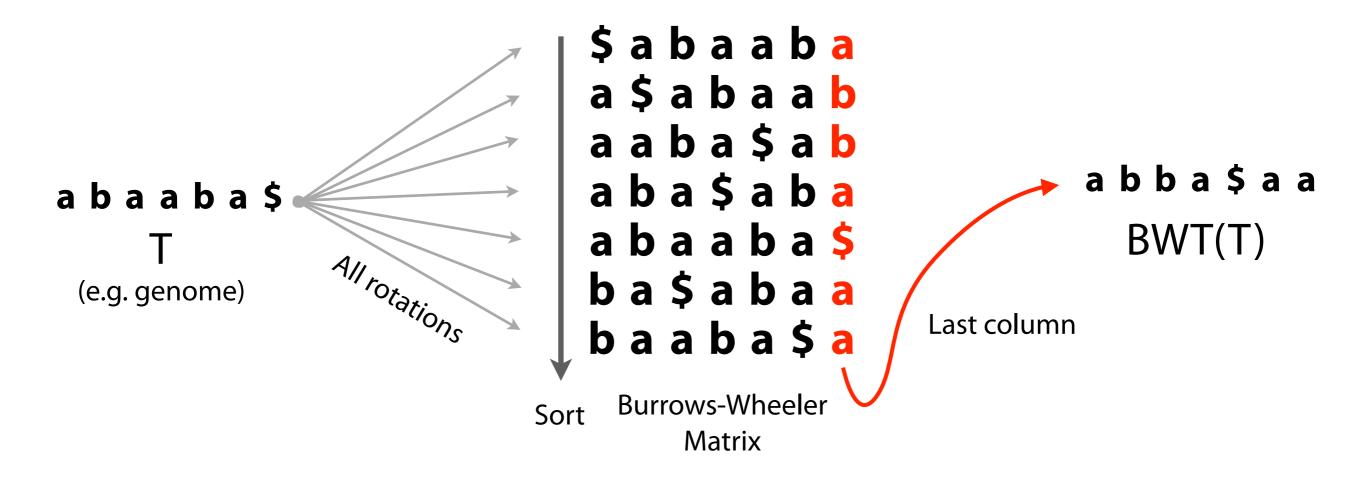
Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).


Real-world large text datasets frequently come from *make-a-copy-make-a-change* processes

Scriptorium, from manuscript in the Biblioteca de San Lorenzo de El Escorial, Madrid, Spain, c. 14th century AD (c/o medievalfragments.wordpress.com)



http://phdcomics.com/comics/archive.php?comicid=1531



The DNA in one of your cells comes from a chain of copying (**mitosis**) & mixing (**meiosis**) events

https://upload.wikimedia.org/wikipedia/commons/thumb/d/df/Three_cell_growth_types.svg/1920px-Three_cell_growth_types.svg.png

FM Index

BWT reorders the letters according to alphabetical order of their **right contexts** in T...

Burrows-Wheeler Transform

Ordered by right-context

...bringing characters with similar contexts together in **runs**

final					
char	sorted rotations				
(<i>L</i>)					
a	n to decompress. It achieves compression				
0	n to perform only comparisons to a depth				
0	n transformation} This section describes				
0	n transformation} We use the example and				
0	n treats the right-hand side as the most				
a	n tree for each 16 kbyte input block, enc				
а	n tree in the output stream, then encodes				
i	n turn, set \$L[i]\$ to be the				
i	n turn, set \$R[i]\$ to the				
О	n unusual data. Like the algorithm of Man				
а	n use a single set of probabilities table				
е	n using the positions of the suffixes in				
i	n value at a given point in the vector \$R				
е	n we present modifications that improve t				
е	n when the block size is quite large. Ho				
i	n which codes that have not been seen in				
i	n with \$ch\$ appear in the {\em same order				
i	n with \$ch\$. In our exam				
0	n with Huffman or arithmetic coding. Bri				
0	n with figures given by Bell~\cite{bell}.				

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the sorted list of rotations of a version of this paper are shown, together with the final character of each rotation.

E.g. for a text where rectangle appears many times, ectangle tends to be preceded by r

T rectangular_rectangle_divided_into_rectangles\$

E.g. for a text where rectangle appears many times, ectangle tends to be preceded by r

These rs come together in a BWT run

```
T rectangular_rectangle_divided_into_rectangles$
T) sedrotttleeeei_lrrrdlnnnv_duggaaaita__$ecccngi
```

When T is more repetitive, BWT runs are longer & fewer

Avg. run
length

T Tomorrow_and_tomorrow\$

When T is more repetitive, BWT runs are longer & fewer

	Avg. run Iength
T Tomorrow_and_tomorrow_and_tomorrow\$	1.09
BWT(T) w\$wwddnnoooaattTmmmrrrrroooooo	2.33

When T is more repetitive, BWT runs are longer & fewer

	length
T Tomorrow_and_tomorrow_and_tomorrow\$	1.09
BWT(T) w\$wwddnnoooaattTmmmrrrrroooooo	2.33
T It_was_the_best_of_times_it_was_the_worst_of_times\$	1.00

BWT(T) s\$esttssfftteww_hhmmbootttt_ii_woeeaaressIi_

Avg. run

When T is more repetitive, BWT runs are longer & fewer

	length
T Tomorrow_and_tomorrow_and_tomorrow\$	1.09
BWT(T) w\$wwddnnoooaattTmmmrrrrroooooo	2.33
T It_was_the_best_of_times_it_was_the_worst_of_times\$	1.00
BWT(T) s\$esttssfftteww_hhmmbootttt_iiwoeeaaressIi	1.76
T in_the_jingle_jangle_morning_Ill_come_following_you\$	1.04
<pre>BWT(T) u_gleeeengj_mlhl_nnnnt\$nwjlggIolo_iiiiarfcmylo_oo_</pre>	1.30

Avg. run

```
row_row_your_boat
row_row_your_boat
row_row_row_your_boat
```

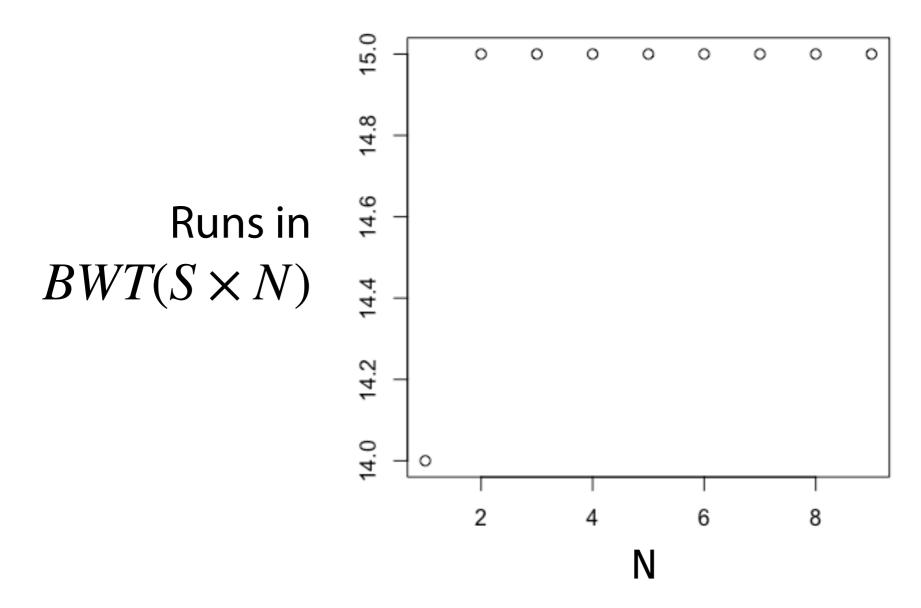
```
row_row_row_your_boat
row_row_row_your_boat
row_row_row_your_boat

BWT
trrrwwwwwwww...
```

```
row_row_row_your_boat
row_row_row_your_boat
row_row_row_your_boat$
```

BWT

trrrwwwwwwwwwooo____bbbyyyrrrrrrrruuutt\$____aaaoooooooooo___


RLE

 $(t, 1), (r, 3), (w, 9), (o, 3), (\underline{\hspace{0.5mm}}, 3), (b, 3), (y, 3), (r, 9), (u, 3), (t, 2), (\$, 1), (\underline{\hspace{0.5mm}}, 6), (a, 3), (o, 12), (\underline{\hspace{0.5mm}}, 3)$

Avg run length = 4.27

```
Runs in BWT(S \times 1) = 14
Runs in BWT(S \times 2) = 15
Runs in BWT(S \times 3) = 15
Runs in BWT(S \times 4) = 15
\vdots
```

N $S = "{\tt row_row_row_your_boat"} \ \times \ {\tt N}$

 $S = "row_row_row_your_boat" \times N$

 H_k is a weighted sum over all contexts of the zero order empirical entropy of symbols with that context

$$|S|H_k(S) = |S| \sum_{t \in \Sigma^k} \frac{|S_t|}{|S|} \cdot H_0(S_t) \quad \text{for } k > 0$$

 S_t is the concatenation of symbols having context t

$$row_row_row_your_boat$$
 $row_row_row_your_boat$
 $row_row_row_your_boat$
 $row_row_row_your_boat$
 $\times N$

$$|S|H_k(S) = |S| \sum_{t \in \Sigma^k} \frac{|S_t|}{|S|} \cdot H_0(S_t)$$

$$row_row_row_your_boat$$
 $row_row_row_your_boat$ $row_row_row_your_boat$ $row_row_row_your_boat$ $\times N$

Increases by factor of
$$N$$

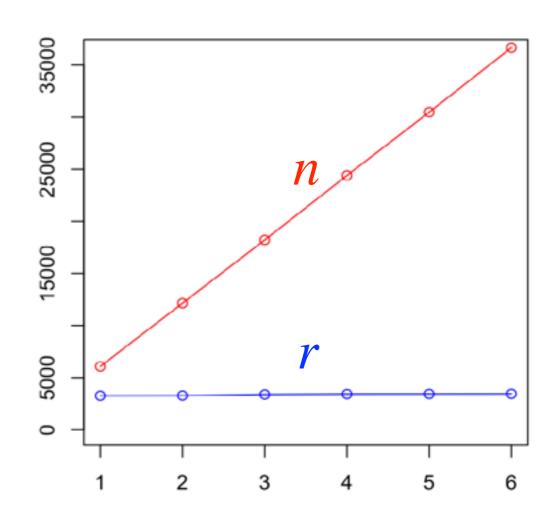
$$|S|H_k(S) = |S| \sum_{t \in \Sigma^k} \frac{|S_t|}{|S|} \cdot H_0(S_t)$$

$$row_row_row_your_boat$$
 $row_row_row_your_boat$ $row_row_row_your_boat$ $row_row_row_your_boat$ $\times N$

Increases by factor of
$$N$$

$$|S|H_k(S) = |S|\sum_{t\in\Sigma^k} \frac{|S_t|}{|S|} \cdot H_0(S_t)$$
 Increases by factor of N

$$row_row_row_your_boat$$
 $row_row_row_your_boat$
 $row_row_row_your_boat$
 $row_row_row_your_boat$
 $\times N$


Increases by factor of
$$N$$

$$|S|H_k(S) = |S|\sum_{t\in\Sigma^k} \frac{|S_t|}{|S|} \cdot \underbrace{H_0(S_t)}_{\text{Same}}^{\text{Stays the same}}$$
 Increases by factor of N

$$row_row_row_your_boat$$
 $row_row_row_your_boat$ $row_row_row_your_boat$ $row_row_row_your_boat$ $\times N$

Increases by factor of
$$N$$

$$|S|H_k(S) = |S|\sum_{t\in\Sigma^k} \frac{|S_t|}{|S|} \cdot \underbrace{H_0(S_t)}_{\text{Increases by factor of }N}_{\text{e.g.}}$$
 e.g.
$$H_0(\text{rwww}) = H_0(\text{rrrwwwwwwww})$$

FM Index

# human genomes	n	r
1	6,072 M	3,264 M
2	12,144 M	3,282 M
3	18,217 M	3,386 M
4	24,408 M	3,423 M
5	30,480 M	3,436 M
6	36,671 M	3,449 M

Kuhnle A, Mun T, Boucher C, Gagie T, Langmead B, Manzini G. Efficient Construction of a Complete Index for Pan-Genomics Read Alignment. J Comput Biol. 2020 Apr;27(4):500-513.

	Count		Locate	
	Space	Time	Space	Time
FM Index (2000)	O(n)	O(m)	O(n)	O(m + occ)

Where n is total reference length, m is query-string length, r is total # BWT runs

(log factors omitted)

FM: Ferragina P, and Manzini M. Opportunistic data structures with applications. Proceedings of 41st FOCS. IEEE, 2000.

	Count Space Time		Locate	
			Space	Time
FM Index (2000)	O(n)	O(m)	O(n)	O(m + occ)
RLFM Index (2005)	O(r)	O(m)	O(n)	O(m + occ)

Where n is total reference length, m is query-string length, r is total # BWT runs

(log factors omitted)

FM: Ferragina P, and Manzini M. Opportunistic data structures with applications. Proceedings of 41st FOCS. IEEE, 2000.

RLFM: Mäkinen V, and Navarro G. Succinct suffix arrays based on run-length encoding. Annual Symposium on CPM. Springer, Berlin, Heidelberg. 2005. pp45–56.

	Count		Locate	
	Space	Time	Space	Time
FM Index (2000)	O(n)	O(m)	O(n)	O(m + occ)
RLFM Index (2005)	O(r)	O(m)	O(n)	O(m + occ)
r-index (2018)	O(r)	O(m)	O(r)	O(m + occ)

Where n is total reference length, m is query-string length, r is total # BWT runs

(log factors omitted)

FM: Ferragina P, and Manzini M. Opportunistic data structures with applications. Proceedings of 41st FOCS. IEEE, 2000.

RLFM: Mäkinen V, and Navarro G. Succinct suffix arrays based on run-length encoding. Annual Symposium on CPM. Springer, Berlin, Heidelberg. 2005. pp45–56.

r-index: Gagie T, Navarro G, and Prezza P. Optimal-time text indexing in BWT-runs bounded space. Proceedings of 29th SODA, ACM-SIAM. 2018. pp1459—1477.

	Count		Locate	
Next: How?	Space	Time	Space	Time
FM Index (2000)	O(n)	O(m)	O(n)	O(m + occ)
RLFM Index (2005)	O(r)	O(m)	O(n)	O(m + occ)
r-index (2018)	O(r)	O(m)	O(r)	O(m + occ)

Where n is total reference length, m is query-string length, r is total # BWT runs

(log factors omitted)

FM: Ferragina P, and Manzini M. Opportunistic data structures with applications. Proceedings of 41st FOCS. IEEE, 2000.

RLFM: Mäkinen V, and Navarro G. Succinct suffix arrays based on run-length encoding. Annual Symposium on CPM. Springer, Berlin, Heidelberg. 2005. pp45–56.

r-index: Gagie T, Navarro G, and Prezza P. Optimal-time text indexing in BWT-runs bounded space. Proceedings of 29th SODA, ACM-SIAM. 2018. pp1459—1477.

	Count		Locate	
Next: How?	Space	Time	Space	Time
FM Index (2000)	$\setminus O(n)$	O(m)	O(n)	O(m + occ)
RLFM Index (2005)	O(r)	O(m)	O(n)	O(m + occ)
r-index (2018)	O(r)	O(m)	O(r)	O(m + occ)

Where n is total reference length, m is query-string length, r is total # BWT runs

(log factors Later: omitted)

FM: Ferragina P, and Manzini M. Opportunistic data structures with applications. Proceedings of 41st FOCS. IEEE, 2000.

RLFM: Mäkinen V, and Navarro G. Succinct suffix arrays based on run-length encoding. Annual Symposium on CPM. Springer, Berlin, Heidelberg. 2005. pp45–56.

r-index: Gagie T, Navarro G, and Prezza P. Optimal-time text indexing in BWT-runs bounded space. Proceedings of 29th SODA, ACM-SIAM. 2018. pp1459—1477.