Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Basic ideas:

When a bitvector is sparse enough, we can simply *store answers for all 1-bits*

When a bitvector is short enough, we can store all answers for all possible vectors and queries

Here we think in terms of B . rank $_1$ queries, but B . rank $_0$ queries are doable with same methods

Split bitvector into *chunks* of $\log_2^2 n$ bits each

$$\times n/\log_2^2 n$$
 ...

$$-\log_2^2 n$$

$$\log_2^2 n \equiv (\log_2 n)^2$$
 I'll omit base-2 from logs from now on

Store pre-calculated cumulative rank up to each chunk

$$O\left(\frac{\log n \cdot n/\log^2 n}{n}\right) = O\left(n/\log n\right) = \check{o}(n)$$
 bits to store # chunks cum. rank

$$\times n/\log^2 n$$

So far, extra space is $\check{o}(n)$

Finding a rank can be decomposed:

- (a) find what chunk it's in (division)
- (b) look up cumulative rank
- (c) find (relative) rank within chunk

(d) add (b)
$$+$$
 (c)

TODO

$$O\left(n \cdot \log \log n / \log n\right) = \check{o}(n)$$

Finding a rank:

- (a) find what chunk it's in (division)
- (b) look up cumulative rank
- (c) find rank within chunk
 - (c.i) find what sub-chunk it's in
 - (c.ii) look up relative cum. rank
 - (c.iii) find rank within sub-chunk

(d) add (b)
$$+$$
 (c.ii) $+$ (c.iii)

Finding rank within a sub-chunk: two ways of thinking

Way 1: $1/2 \log n$ is ~ a machine word; use instructions like "population count" to find rank in O(1) time

Way 2: Lookup table

(Coming next)

Say we naively store answers to all rank queries for all length-x bitvectors. How many bits required?

 2^{x}

possible bitvectors

Say we naively store answers to all rank queries for all length-x bitvectors. How many bits required?

$$2^x \cdot x$$

possible possible bitvectors offsets

Say we naively store answers to all rank queries for all length-x bitvectors. How many bits required?

$$2^x \cdot x \cdot \log x$$

possible possible answer bitvectors offsets

Say we naively store answers to all rank queries for all length-x bitvectors. How many bits required?

$$2^x \cdot x \cdot \log x$$

possible possible answer bitvectors offsets

$$-1/2 \log n - \frac{1}{2 \log n}$$
Let $x = 1/2 \log n$

$$O\left(2^{1/2\log n} \cdot 1/2\log n \cdot \log 1/2\log n\right)$$
$$= O\left(\sqrt{n}\log n\log\log n\right) = \check{o}(n)$$

Finding a rank:

- (a) find what chunk it's in (division)
- (b) look up cumulative rank
- (c) find rank within chunk
 - (c.i) find what sub-chunk it's in
 - (c.ii) look up relative cum. rank
 - (c.iii) find rank within sub-chunk

(d) add (b)
$$+$$
 (c.ii) $+$ (c.iii)

O(1)

Bitvectors

	Time	Space (bits)	Note
B . $access$	<i>O</i> (1)	n	Lookup
B . $rank_1$	<i>O</i> (1)	$\check{o}(n)$	Jacobson
B . $select_1$	<i>O</i> (1)	$\check{o}(n)$??*****??