Valgrind

Ben Langmead
ben.langmead@gmail.com

www.langmead-lab.org

i

OHNS HOPKINS
JOHNS HOPKINS JOHINS PoPK!
UNIVERSITY of ENGINEERING

Source markdown available at github.com/BenLangmead/c-cpp-notes

https://github.com/BenLangmead/c-cpp-notes

Valgrind

Image from valgrind.org

Very easy-to-use tool for finding memory leaks and other
pointer/memory mistakes

Compile your program with -g option for more helpful output from
valgrind

valgrind --leak-check=full ./your-program <argl> <arg2> ...

http://valgrind.org

From valgrind.org/docs/manual/fag.html:

The “grind” is pronounced with a short ‘i’ — ie. “grinned”
(rhymes with “tinned”) rather than “grined” (rhymes with

“find”). Don't feel bad: almost everyone gets it wrong at
first.

Valgrind is the name of the main entrance to Valhalla (the
Hall of the Chosen Slain in Asgard).

http://valgrind.org/docs/manual/faq.html

#include <stdio.h>

int main() {
printf (" *xx My program's output x**x\n");
return 0;

valgrind

$ gcc -o valgrind_egl valgrind_egl.c -std=c99 -pedantic -Wall -Wextra -g
$ valgrind --leak-check=full ./valgrind_egl

x My program's output *x*
==22== Memcheck, a memory error detector
==22== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==22== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==22== Command: ./valgrind_eg1l

==20==
==22==

==22== HEAP SUMMARY:

==22== in use at exit: @ bytes in @ blocks

==22== total heap usage: 1 allocs, 1 frees, 4,096 bytes allocated
==)0==

==22== All heap blocks were freed -- no leaks are possible

==)2==

==22== For counts of detected and suppressed errors, rerun with: -v
==22== ERROR SUMMARY: @ errors from @ contexts (suppressed: @ from @)

Output of the program is interspersed with messages from valgrind

Some valgrind messages have to do with invalid reads and writes

= Usually, instances where we've dereferenced addresses not
“belonging” to us

Everything from HEAP SUMMARY on has to do with memory leaks

= Failing to deallocate a pointer you allocated earlier

valgrind

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

char xstring_copy(const char *orig) {
char *fresh = malloc(strlen(orig) * sizeof(char));
assert(fresh != NULL);
strcpy(fresh, orig);
return fresh;

int main() {
char xhello_copy = string_copy("hello");
assert(hello_copy != NULL);
printf("%s\n", hello_copy);
return 0;

valgrind output indicates two problems:

“Invalid write"” and “invalid read”

= We dereferenced addresses that didn't belong to us

valgrind

$ gcc -o buggy_strcpy buggy_strcpy.c -std=c99 -pedantic -Wall -Wextra -g
$ valgrind --leak-check=full ./buggy_strcpy

==21== Memcheck, a memory error detector

==21== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
21== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==21== Command: ./buggy_strcpy

==21==

21== Invalid write of size 1
==21== at 0x4C32C9D: strcpy (vg_replace_strmem.c:510)
==21== by 0x40065D: string_copy (buggy_strcpy.c:9)

21== by 0x400675: main (buggy_strcpy.c:14)

==21== Address 0x5221045 is @ bytes after a block of size 5 alloc'd
at Ox4C2FB6B: malloc (vg_replace_malloc.c:299)

by 0x400626: string_copy (buggy_strcpy.c:7)

==21== by 0x400675: main (buggy_strcpy.c:14)
==21=
21== Invalid read of size 1
==21== at 0x4C32B94: strlen (vg_replace_strmem.c:458)
==21== by 0x4EB4D41: puts (in /usr/1ib64/libc-2.26.s0)

21== by 0x4006A5: main (buggy_strcpy.c:16)

==21== Address 0x5221045 is @ bytes after a block of size 5 alloc'd
at Ox4C2FB6B: malloc (vg_replace_malloc.c:299)

by 0x400626: string_copy (buggy_strcpy.c:7)

by 0x400675: main (buggy_strcpy.c:14)

valgrind

==21== HEAP SUMMARY:

21== in use at exit: 5 bytes in 1 blocks
==21== total heap usage: 2 allocs, 1 frees, 4,101 bytes allocated
==21==
21== 5 bytes in 1 blocks are definitely lost in loss record 1 of 1
==21== at Ox4C2FB6B: malloc (vg_replace_malloc.c:299)
==21== by 0x400626: string_copy (buggy_strcpy.c:7)
21== by 0x400675: main (buggy_strcpy.c:14)
==21==
==21== LEAK SUMMARY:
21== definitely lost: 5 bytes in 1 blocks
==21== indirectly lost: @ bytes in @ blocks
==21== possibly lost: @ bytes in @ blocks
21== still reachable: @ bytes in @ blocks
==21== suppressed: @ bytes in @ blocks

==21==

21== For counts of detected and suppressed errors, rerun with: -v
==21== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: @ from @)

10

Let's start with the “stack trace” for the memory leak:

==21== 5 bytes in 1 blocks are definitely lost in loss record 1 of 1

==21== at 0x4C2FB6B: malloc (vg_replace_malloc.c:299)
==21== by 0x400626: string_copy (buggy_strcpy.c:7)
==21== by 0x400675: main (buggy_strcpy.c:14)

Look for the topmost function that's actually part of the code you

wrote, and go to the file and line number indicated.

We wrote main & string_copy, but not malloc. string_copy is

highest, so go to buggy_strcpy.c:7:

char *fresh = malloc(strlen(orig) * sizeof(char));

11

valgrind is saying that we fail to free the memory returned by
this malloc

That's true! We should free it in main:

int main() {
char xhello_copy = string_copy("hello");
assert(hello_copy != NULL);
printf("%s\n", hello_copy);
free(hello_copy); // that's better
return 0;

12

valgrind

==21== Invalid write of size 1

==21== at 0x4C32C9D: strcpy (vg_replace_strmem.c:510)

==21== by 0x40065D: string_copy (buggy_strcpy.c:9)

==21== by 0x400675: main (buggy_strcpy.c:14)

==21== Address 0x5221045 is @ bytes after a block of size 5 alloc'd
==21== at Ox4C2FB6B: malloc (vg_replace_malloc.c:299)

==21== by 0x400626: string_copy (buggy_strcpy.c:7)

==21== by 0x400675: main (buggy_strcpy.c:14)

Warning has two parts:

= Top stack trace: where “invalid write” happened
= Bottom: Where a nearby memory block was allocated; useful

since mistake is usually that we go past the end of an allocated
block

13

char xstring_copy(const char xorig) {
// **x memory allocated on next line #**x*
char *fresh = malloc(strlen(orig) * sizeof(char));
assert(fresh != NULL);
// *x% invalid write on next line #**x
strcpy(fresh, orig);
return fresh;

What's the mistake?

14

strlen returns length of string not counting null terminator

But we need to malloc enough chars for string and terminator

5

valgrind

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

char *string_copy(const char *orig) {
char *fresh = malloc((strlen(orig)+1) x sizeof(char)); // ** FIX 2
assert(fresh != NULL);
strcpy(fresh, orig);
return fresh;

int main() {
char *hello_copy = string_copy("hello");
assert(hello_copy != NULL);
printf("%s\n", hello_copy);
free(hello_copy); // *x FIX 1
return 0;

16

valgrind

Now let's look at the invalid read:

==21== Invalid read of size 1

==21== at 0x4C32B94: strlen (vg_replace_strmem.c:458)

==21== by 0x4EB4D41: puts (in /usr/lib64/libc-2.26.s0)

==21== by 0x4006A5: main (buggy_strcpy.c:16)

==21== Address 0x5221045 is @ bytes after a block of size 5 alloc'd
==21== at 0x4C2FB6B: malloc (vg_replace_malloc.c:299)

==21== by 0x400626: string_copy (buggy_strcpy.c:7)

==21== by 0x400675: main (buggy_strcpy.c:14)

This is because the lack of null terminator causes the call to printf
(which the compiler turned into a call to puts) to read beyond the
end of hello_copy. We already fixed this.

17

valgrind

After fixes, we have a clean valgrind report:

$ gcc -o fixed_strcpy fixed_strcpy.c -std=c99 -pedantic -Wall -Wextra -g
$ valgrind --leak-check=full ./fixed_strcpy

hello

==34== Memcheck, a memory error detector

34== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==34== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==34== Command: ./fixed_strcpy

==34==
==34== HEAP SUMMARY:

34== in use at exit: @ bytes in @ blocks

==34== total heap usage: 2 allocs, 2 frees, 4,102 bytes allocated

All heap blocks were freed -- no leaks are possible

= For counts of detected and suppressed errors, rerun with: -v
= ERROR SUMMARY: @ errors from @ contexts (suppressed: @ from @)

18

