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Abstract

Huge neural autoregressive sequence models have achieved impressive performance

across different applications, such as NLP, reinforcement learning, and bioinformatics.

However, some lingering problems (e.g., consistency and coherency of generated texts)

continue to exist, regardless of the parameter count. In the first part of this thesis, we chart

a taxonomy of the expressiveness of various sequence model families (§ 3). In particular,

we put forth complexity-theoretic proofs that string latent-variable sequence models are

strictly more expressive than energy-based sequence models, which in turn are more

expressive than autoregressive sequence models. Based on these findings, we introduce

residual energy-based sequence models, a family of energy-based sequence models (§ 4)

whose sequence weights can be evaluated efficiently, and also perform competitively

against autoregressive models. However, we show how unrestricted energy-based sequence

models can suffer from uncomputability; and how such a problem is generally unfixable

without knowledge of the true sequence distribution (§ 5).

In the second part of the thesis, we study practical sequence model families and

algorithms based on theoretical findings in the first part of the thesis. We introduce
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ABSTRACT

neural particle smoothing (§ 6), a family of approximate sampling methods that work

with conditional latent variable models. We also introduce neural finite-state transducers

(§ 7), which extend weighted finite state transducers with the introduction of mark strings,

allowing scoring transduction paths in a finite state transducer with a neural network.

Finally, we propose neural regular expressions (§ 8), a family of neural sequence models

that are easy to engineer, allowing a user to design flexible weighted relations using Marked

FSTs, and combine these weighted relations together with various operations.

Primary Reader and Advisor: Jason Eisner

Secondary Readers: Brian Roark, Matt Post
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Chapter 1

Introduction

String transduction refers to tasks that take a string 𝐱 as input, and output another

string 𝐲 as output. Many NLP tasks can be described as transduction tasks. Examples

include machine translation (e.g., translate the English sentence ‘where is the train station? ’

into French ‘où est la gare?’) (Sutskever, Vinyals, and Le, 2014), text summarization (Shi

et al., 2018b), parsing (Vinyals et al., 2015), generation (Mikolov et al., 2010), and slot filling

(Yao et al., 2013).

1.1 Modeling key dependencies

in string transduction tasks

For many NLP string transduction tasks, we must model complex interactions among

symbols in the input string, across input and output strings, and among interactions among

1



CHAPTER 1. INTRODUCTION

symbols in output strings. These interactions can be co-occurrence patterns (some symbols

may be likely/unlikely to co-occur), ordering patterns (some symbols may be likely/unlikely

to appear before some other symbols), among many others. Here we use slot filling as an

example, to illustrate how these dependencies arise in an NLP task.

The goal of slot filling is to identify from a running dialog different slots, which corre-

spond to different parameters of the user’s query (Huang, Chen, and Bigham, 2017). Imagine

a user is asking a digital assistant to buy goods at a specific shop with their coupon code, e.g.,

‘buy two light bulbs at Best Buy using my BOGO offer.’ Within the digital assistant, this com-

mand will be mapped to a particular string that specifies the actions required by the agent,

something like ‘buy␣P_98_BOGO[two␣light␣bulbs]␣at␣S_58[Best␣Buy]␣using␣my

PROMOTION_BOGO_BEST_BUY[BOGO]␣offer’
12

For the task of slot filling, there are depen-

dencies:

Among input string symbols: input strings in slot filling tasks are natural language

utterances, which are known to display various structures (Chomsky, 1957; Fillmore

and Baker, 2010; Grice, 1975). Besides being grammatical, human communication

with digital assistants may exhibit specific patterns — for example, many of these

utterances may be commands. Also note that in our ‘buy light bulbs’ example above

the user buys bulbs from an electronic store (and not from, say, McDonald’s).

Many of the patterns that happen in human utterances are neither mandatory nor

prohibitive: some patterns are likely to show up, while others are unlikely. This in

1
See §1.2 for details on the format of such sequences.

2
We use  to denote space symbols when appropriate.

2
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turn makes some strings more likely human utterances (if they contain common

patterns) than others. We say these strings, along with their weights, form a weighted

language (§2.2).

Between symbols on input and output strings: input and output strings can be mono-

tonically aligned in the task of slot filling (for example, the slot-filling example we give

in §1.2). Many monotonically aligned transduction tasks, such as speech recognition

(Mohri, Pereira, and Riley, 2008), are modeled using weighted finite-state transducers

(a special case of linear factor graph grammars).

Among output string symbols: Just as there can be complex interaction between sym-

bols on the input string, the output string can exhibit patterns as well. In our

slot filling example, the noun phrase ‘two light bulbs’ is annotated with a spe-

cial promotion type P_98_BOGO, which is only valid in the presence of the slot

PROMOTION_BOGO_BEST_BUY. On the other hand, the slotPROMOTION_BOGO_BEST_BUY

is only valid in the presence of slot S_58. While our slot filling example involves hard

constraints (slot annotations are either valid or invalid), other string transduction

tasks may only have preferences: for example, text summarization tasks may prefer

output strings that are more pragmatically informative (Shen et al., 2019).

These dependencies make string transduction a potentially challenging task in general.

In practice, the task of slot filling was historically modeled with weighted finite-state

transducers (a special kind of low-treewidth factor graph grammar §2.1.1) (Raymond and

3
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Riccardi, 2007), due to the monotone alignment between input and output symbols as we

described above. With the advent of neural sequence models, it is now often addressed

using seq2seq models (Yao et al., 2013). In fact, seq2seq models (Sutskever, Vinyals, and Le

(2014), §2.1.3) and low-treewidth factor graph grammars (§2.1.1) are currently the most

popular string transduction paradigms across most string transduction tasks.

However, these approaches each have key shortcomings, which make them unsuitable

for modeling the example above. First, WFSTs and other low-treewidth factor graph

grammars will make a Markov assumption that preclude global well-formedness constraints

on both input and output strings (i.e., they cannot capture dependency among symbols

on the input and output strings well). Seq2seq models on the other hand can capture the

dependency among input string symbols; however they cannot capture the dependency

among output string symbols without using asymptotically superpolynomially many

parameters (§ 3). Moreover, seq2seq models are not inherently modular: model reuse is

generally not straightforward.

In this thesis, we propose neural regular expressions (NREs), which generalize both

seq2seq and low-treewidth factor graph grammars, and are powerful enough to correctly

model difficult sequence-to-sequence mapping problems such as the one illustrated above.

In the following section, we first describe the mechanisms of existing approaches, and why

they will not work for the example we gave above.

4
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1.2 Problems with existing approaches

In this section we continue to use the slot filling task as our string transduction example, to

illustrate the pros and cons of linear factor graph grammars and seq2seq models, and how

it motivates our new paradigm.

Specifically, we assume the task is to annotate (transcribed) voice commands for digital

assistants. A digital assistant (also known as virtual assistant or voice assistant) is a program

that interprets human speech. Users can instruct their digital assistants to do various tasks

(e.g., send messages, make phone calls, control home automation devices, etc.) (Hoy, 2018).

To actually execute a command, a digital assistant classifies the command’s underlying

intent — which is backed by a function call — and also annotates parts of the (transcribed)

voice command, as arguments to the function call. Finally, the digital assistant calls the

function, with supplied arguments.

Intent classification and argument annotation together reduce to slot filling. As a

concrete example: the transcribed utterance ‘buy cereals at Whole Foods’ may get slot-filled

as ‘BUY[buy]␣P_85[cereals]␣at␣S_31[Whole␣Foods]’. In this example, the intent is

BUY, with P_85[cereals] and S_31[Whole Foods] as arguments.
3

As we described above,

the digital assistant would subsequently run the program associated with BUY, with these

arguments. Such programs are also known as skills. Under this design, to map a voice

3
In our examples the arguments take a format ARGUMENT_TYPE[gloss], where ARGUMENT_TYPE is spec-

ified by the annotation scheme beforehand, and gloss is the span of utterance that is identified as an

ARGUMENT_TYPE.

5
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command to its skill, we must first transcribe it into text, then slot-fill the text into an

appropriate intent, along with valid arguments.

1.2.1 The weighted regular expressions approach

Our first attempt at slot filling is using (weighted) regular expressions, or equivalently

weighted finite-state machines. Weighted finite-state machines are a special kind of low-

treewidth factor graph grammar (§2.1.1). Extracting information from natural language

using finite-state machines has a very long history (Appelt et al., 1993). To recognize and

extract useful information from patterns like ‘buy product name at shop name’, we

write the following regular expression BuyGrocery in RE 1.2.1 :
45

RE 1.2.1: BuyGrocery

(buy␣:BUY[buy]␣)Product(at␣:at␣)Shop

where Product and Shop are gazetteers — lists of some predefined named entities — also

expressed as regular expressions: for example, they can be

RE 1.2.2: Product

(cereals:P_85[cereals])|(milk:P_28[milk])|. . .

and

4
We adopt a PCRE-like formalism that allows transduction: (𝑎:𝑏) means transducing the finite state

machine 𝑎 into 𝑏. We need a novel formalism because conventional regular expression formalisms, such as

vanilla PCRE, only support acceptors.

5
In this work, we use SmallCaps to indicate a regular expression and the finite state machine it defines.
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RE 1.2.3: Shop

(Whole␣Foods:S_31[Whole␣Foods])|(Giant:S_46[Giant])|. . .

respectively.

A regular expression defines a finite-state transducer. For example, RE 1.2.2 defines the

following machine:

FST: An FST defined by RE 1.2.2

𝑞1 𝑞2

cereals:P_85[cereals]

milk:P_28[milk]

. . .

(other arcs omitted)

A user may ask their digital assistant to buy things, using different constructions. We

generally want to recognize the most frequent ones, out of all these constructions, while

implementing our skill. Let’s suppose that we wish to capture commands of the pattern ‘go

to shop name and buy product name’:

RE 1.2.4: BuyGrocery2

(Go␣to␣:Go␣to␣)Shop(and␣buy␣:and␣BUY[buy]␣)Product

7
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Note that we reuse REs 1.2.2 and 1.2.3 in RE 1.2.4. In practice, these gazetteers are likely

automatically generated by queries into large databases (rather than a manually curated

list of named entities).

REs 1.2.1 and 1.2.4 have their corresponding finite-state transducers. These automata

capture natural language sentences (e.g. ‘Buy cereals at Whole Foods’), and annotate their

slots (e.g. BUY[...] ...P_85[...] ...S_31[...] ...).

However, REs 1.2.1 and 1.2.4 are brittle: they do not handle typos (when a user input their

command on a keyboard) or ASR errors (when a user said their command to a microphone).

Of course, we can add common typos and ASR errors directly into gazetteers RE 1.2.2

and RE 1.2.3 (and have them transduce into the correct canonical names) — but doing so

can introduce additional brittleness problems (where do we get a list of common ASR

errors? How should we maintain that list?). Alternatively, we can make our finite-state

machines weighted, enabling them to consider inexact matches (where strings that are

closer to the right answer get higher scores). In other words, we wish to recognize and

transduce strings that are similar enough. To account for similarity systematically, we not

only change our regular expressions into weighted regular expressions (WREs), but

also introduce a new Similar WRE:
6

WRE 1.2.1: BuyGroceryWeighted: a weighted version of RE 1.2.1

(Buy␣:buy␣/1.)(.+◦Similar◦Product)(at␣:at␣/1.)(.+◦Similar◦Shop)

6
We use the notation ‘(a:b/𝑤)’ to indicate that ‘string a transduces to string b with weight 𝑤’.
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where Similar is a pre-engineered (or pre-trained) weighted FST that transduces all non-

empty strings to all non-empty strings, with similar-sounding string pairs getting higher

weights
7
:

WRE 1.2.2: Similar

((a:e/.7)|(a:a/.9)|(a:c/.01)|(a:𝜖/.2)|. . . |(z:s/.4). . . )+

Note that we compose the same regular expression WRE 1.2.2 against REs 1.2.2 and 1.2.3.
8

By reusing WRE 1.2.2 in different contexts, the weighted regular expression is (hopefully)

resilient to typos and ASR errors. Note that WRE 1.2.2 can be used in future weighted

regular expressions we write, too.

WREs define real-weighted relations between input and output strings: WRE 1.2.2

defines a weighted relation between non-empty string pairs; and WRE 1.2.1 defines a

weighted relation between strings of the pattern ‘Buy .+ at .+’, and all valid ‘buy’ action

strings. To get the relation weight between string pair (𝐱, 𝐲) under a WRE 𝜏 , one can

compose the two strings 𝐱 and 𝐲 against 𝜏 , to get a new WRE 𝐱◦𝜏 ◦𝐲 that only recognizes a

single string pair (𝐱, 𝐲). Finally, the relation weight between string pair (𝐱, 𝐲) under 𝜏 is

the sum of all paths’ 𝐳 weights 𝑤𝐳: ∑𝐳∶𝐳 is an accepting path of 𝐱◦𝜏 ◦𝐲 𝑤𝐳, which can be obtained in

polytime using dynamic programming techniques.

7
The weights we give here are not necessarily close to those used in real production systems.

8
We define that when we ‘coerce’ a regular expression into a weighted one, every string-to-string trans-

duction (i.e. (a:b) where a and b are both strings) has weight 1.

9



CHAPTER 1. INTRODUCTION

Taking advantage of the expressiveness of WREs over REs. WRE 1.2.1 is likely more

robust to typos and ASR errors than RE 1.2.1: the weighted relation defined by WRE 1.2.2

(used in WRE 1.2.1 as a component) can assign differently graded weights to different

string pairs according to their similarity, whereas it is either 1 or 0 in the case of RE 1.2.1.

As a result, WRE 1.2.1 can deal with typos and ASR errors with a much shorter/more

compact topology, than an equivalent unweighted regular expression, if we were to modify

RE 1.2.1 to cope with typos and ASR errors — the unweighted RE equivalent would have to

memorize similar-sounding string pairs in a huge gazetteer. On the other hand, suppose

we already had such a huge unweighted ‘similarity gazetter’ RE curated using human

knowledge, we have the option of ‘weighting it’ under the more expressive WRE formalism,

and fine-tune the new WRE’s weights on empirical data. Nonetheless, it is quite likely

that such a WRE will not be competitive against the much smaller WRE 1.2.2 on held-out

data, if we fine-tune WRE 1.2.2’s weights on empirical data as well. The reason is that the

lifted similarity gazetteer has to assign zero weight to many (in fact infinitely many) string

pairs. But WRE 1.2.2 can just assign low weights to those. So when it comes to really noisy

data (i.e. much garbled ASR text), the weighted similarity gazetteer would be forced to

assign a zero weight to a string pair, while WRE 1.2.2 assigns a low but non-zero weight

to it, which can still be compared against other weighted string pairs. This observation

suggests that while richer formalism are often strictly more powerful than restrictive ones

(e.g. WREs versus REs), it may be preferable to start from scratch to take advantage of the

added expressiveness. We will make an analogy in §1.3.1.

10
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Despite the added expressiveness when compared to unweighted REs, WREs are still

subject to the Markov assumption. Specifically, our weighted regular expression cannot

capture the tendency that certain products are more likely to be sold at certain shops: for

example, ‘MOM’s homeopathetic flu remedies’ is probably sold at ‘MOM’s organic market,’

rather than ‘Charles Village discount mart’, because an item is likely to be sold in a shop

that shares the same brand name; moreover, organic supermarkets may be more prone to

sell homeopathetic remedies than a discount mart. In other words, the semantic similarity

between item and shop names goes beyond superficial edit distance metrics.

The inability of our weighted regular expression (or equivalently, WFSTs) to capture

semantic similarities between item and shop names ultimately comes from the Markov

assumption of WFSTs — all information from the Shop segment will have been forgotten

when we reach segment Product.

There are ways to patch up for a weighted regular expression’s power limitation. One

possibility is to divide skills by the shops: MOM’s Organic Market has its skills (that only

recognize their products) and Charles Village Discount Mart has its own, too. We can

combine all these skills into a single ‘buy’ mega-skill. But that obviously will not scale

well — the corresponding finite-state machine will have a size that grows exponentially in

the number of shops. And the resultant skill will not generalize to a new shop (i.e., unseen

entity names will not be recognized).

11
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1.2.2 The seq2seq approach

A seq2seq model (§2.1.3) explicitly parametrizes an autoregressive distribution over output

strings, conditioned on an input string. Seq2seq models do not make a Markov assumption

between segments of the output string. Therefore, a seq2seq model trained on input-

output pairs like (‘buy cereals at Whole Foods’, BUY ...S_31 ...P_85 ...) will likely do

a decent job on filling these two slots, and can learn the tendency that store-branded items

are more likely to be sold at some particular stores, all without writing any explicit rules. It

can also generalize to speech act variations better than WFSTs given appropriate training

data (e.g. suppose we also trained on input-output pairs that display alternative speech acts,

such as (‘go buy cereals at Whole Foods’, BUY ...S_31 ...P_85 ...)).

Unlike WFSTs, vanilla seq2seq models do not have a baked-in inductive bias of a

monotonic alignment between input and output strings. There does not appear to be a

straightforward way to constrain the format of output strings either: in our slot filling

example, we require a valid output string to be a copy of the input string, with appropriate

intent and argument slot markups. Therefore, more training data may be required to learn

a vanilla seq2seq model that captures such behavior.
910

A downside of seq2seq models in general is that there is no obvious way to reuse

9
We note that there are extensions to the vanilla seq2seq models that address these issues (monotonic

alignment and copying of fragments in the input string). We discuss these extensions in §2.1.3.

10
We also note that there are post hoc constrained decoding methods that enforce lexical constraints

during beam search (Hokamp and Liu, 2017; Post and Vilar, 2018; Hu et al., 2019). But these methods only

guarantee local constraints, and may not be powerful enough to ensure output string wellformedness (e.g.,

there can be only one product ID in a slot-filled string).

12
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prebuilt modules. For example, suppose we need to develop a new skill that the intent

and arguments of ‘let me know when Cotton Candy grapes are in stock at Whole Foods’ as

‘NOTIFY-IN-STOCK[let␣me␣know] ...P_103 ...S_31 ...,’ we would have to collect

data for this new task, and train a new seq2seq model for it. On the other hand, under the

WFST approach, it is relatively easy to write a weighted regular expression (WRE 1.2.3)

that reuses existing weighted regular expressions:

WRE 1.2.3: NotifyInStock

(Let␣me␣know␣when␣:notify-in-stock␣)

(.+◦Similar◦Product)(are␣in␣stock␣at␣:𝜖)(.+◦Similar◦Shop)

1.2.3 Common problem: cannot guarantee output well-

formedness

Both WFSTs and seq2seq models suffer from a limited expressiveness problem: neither can

guarantee that the output strings conform to given constraints, even when such constraints

can be easily and efficiently checked (i.e., wellformedness can be evaluated in polytime).

We consider constraints exhibited by the ‘BOGO promotion’ skill introduced in §1.1.

We need to identify product and shop slots in an utterance for the BOGO skill (just like

the ‘buy’ skill). However, unlike the buy skill, only certain products are eligible under the

BOGO offer. Not all shops participate in the BOGO promotion, either. Finally, the promotion

13
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is handled separately from the ordinarily ‘buy’ skill, and has different intent and slot codes.

Can we write a WRE for BOGO commands? As we discussed in §1.2.1, compact WREs

cannot capture long term constraints of the BOGO offer (i.e., only certain products in

combination with certain shops are eligible). Therefore WREs cannot guarantee output

strings are well-formed.

How about seq2seq models? Due to their autoregressive nature, seq2seq models cannot

backtrack when they incrementally build up the output string. They also must consistently

make optimal choices during the output-building process. For example, suppose a seq2seq

model has partially built an output prefix ‘Buy ’ from ASR-transcribed input string ‘Buy

two light bulbs at Best Buy Bangkok’. Should the next piece be a BOGO slot code (e.g.,

P_98_BOGO), or a regular product code (e.g., P_98)? This choice will imply whether the

utterance is classified as a ‘BOGO’ skill. If the seq2seq model chooses P_98_BOGO, it

can only choose a PROMOTION_BOGO; on the other hand, if P_98 is instead chosen, then

PROMOTION_BOGO will not be a valid intent, and something else (e.g., BUY) must be used as

the intent. Therefore, for a seq2seq model to confidently choose P_98, it must be confident

that it will not get into a scenario, where such a choice is impossible.

But to make such a guarantee, we would need to consider all possible suffixes to our

already-built prefix. For example, what if ‘Best Buy Bangkok’ is not a valid shop name, and

the user actually meant to say ‘Best Buy BOGO’? We will show that autoregressive models

generally cannot consider all possible suffixes (§ 3), unless they are unreasonably slow (i.e.,

evaluation takes superpolynomial runtime) or use unreasonably many parameters (i.e.,

14
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have superpolynomial parameter size).

1.3 Thesis outline

In this thesis, we propose neural regular expressions (NREs) as an alternative paradigm.

At a very high level, NREs generalize both seq2seq and graphical models, and get the best

of two worlds: like weighted regular expressions, they have engineer-able topologies. And

like seq2seq models, they are very expressive, being families of unbounded-treewidth

graphs. They even exceed the expressiveness of seq2seq models, being able to model all

output structures where wellformedness can be evaluated in polytime.

1.3.1 Neuralization of finite state machines

Here we give a very high-level overview of the formalism and operationalization of NREs,

using digital assistant skills as our examples.

An NRE has a regular expression component that looks very similar to WREs. The only

difference is that each symbol transduction is now associated with zero, one, or multiple

marks, instead of a single real weight. And concatenating together all marks on a path,

they form a mark string (denoted as a space-delimited italic string). We call such regular

expression components Marked Regular Expressions (MREs).

We again use a grocery shopping skill as an example. A marked version of RE 1.2.1 can
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be written as:
11

MRE 1.3.1: BuyGroceryMarked: a Marked version of RE 1.2.1

(Buy␣:buy␣/buy)

(.+◦SimilarMarked◦ProductMarked)

(at␣:at␣/ location )(.+◦SimilarMarked◦ShopMarked)

and Product redefined as an MRE as:

MRE 1.3.2: ProductMarked: a Marked version of RE 1.2.2

(cereals:P_85/product_cereals food breakfast)|(milk:P_28/product_milk food dairy)|. . .

ShopMarked is marked similarly as MRE 1.3.2. Finally, SimilarMarked is a marked

version of WRE 1.2.2:

MRE 1.3.3: SimilarMarked: a Marked version of WRE 1.2.2

((a:e/i-a o-e )|(a:a/i-a o-a )|(a:c/i-a o-c )|(a:𝜖/i-a 𝜖 )|. . . |(z:s/i-z o-s ). . . )+

One possible mark string from NRE 1.3.1 (again, obtained by concatenating all mark

symbols along the transduction path) is ‘buy i-c o-c i-e o-e . . . cereals food breakfast location

i-w o-w i-h o-h . . .whole_foods’. Mark strings in MREs can be seen as latent variables: each

accepting path 𝐳 in an MRE 𝜏 will be associated with a (possibly non-unique) mark string.

For specific (𝐱, 𝐲) pairs, we are interested in paths in 𝜏 that transduce 𝐱 into 𝐲. Such paths

11
Here we extend our transducing regular expression formalism again, to denote marks after ‘/’.
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can be obtained by composing 𝜏 against the input and output strings (denoted by 𝐱◦𝜏 ◦𝐲).

And an NRE 𝜏 defines the score of (𝐱, 𝐲) as the sum of mark string scores on these paths:

score of pair (𝐱, 𝐲) according to 𝜏 = ∑
𝐳∶𝐳 is an accepting path of 𝐱◦𝜏 ◦𝐲

𝐺𝜽 (𝐳), (1.1)

where 𝐺𝜽 is a non-negative function that scores marks on 𝐳. In equation (1.1) we define a

weighted relation between input and output strings. Alternatively, we denote the weighted

relation in equation (1.1) as NRE 1.3.1:

NRE 1.3.1: Neuralization of MRE 1.3.1

N[BuyGroceryMarked, 𝐺𝜽 ]

We say 𝐺𝜽 neuralizes MRE 1.3.1 as NRE 1.3.1. Like WREs (e.g. WRE 1.2.1), an NRE defines

a real-weighted relation between input and output strings. However, with an expressive

enough family of 𝐺𝜽 , NREs are strictly more powerful than WREs: they do not have to be

subject to the Markovian assumption. In other words, with an appropriate 𝐺𝜽 that knows

to score a mark string 𝐳 highly, if 𝐳 has some possibly long-range mark pattern (e.g. 𝐳 = ‘

. . . MOM’s homeopathetic_flu_remedies . . .MOM’s organic_market . . . ’), we will be able to

capture the tendency that a store likely sells own-branded goods with NRE 1.3.1, unlike

WRE 1.2.1.

Taking advantage of the expressiveness of NREs over WREs. Note that we do not

need the partition-by-shop fix suggested in §1.2.1 to capture store-product correlation in
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NREs: there is no need to make use of an exponentially large finite-state machine to keep

track of long-distance interaction, given a powerful enough family of 𝐺𝜽 . More generally,

just as huge ‘ASR error’ gazetteers are no longer necessary as we go from REs to WREs,

huge WREs which are huge because of Markov assumptions can be made much smaller by

using the more expressive NREs. Since NREs are strictly more powerful than WREs, we

will be able to imbue prior knowledge from previously built weighted regular expressions

into our NREs via careful regularization.

1.3.2 Combining NREs

The use of non-Markovian path scoring functions opens up many possibilities. For example,

different subsequences of a path 𝐳 (from different parts of a finite-state machine that it goes

through) can be scored by different scoring functions. In this thesis, we achieve this goal,

by combining different NREs that use their own scoring functions.

To reuse our grocery NRE running example, a practitioner may opt to separately

neuralize components that recognize products and shops from our grocery NRE, in order to

reuse those components as NREs in other skills. We write such a combination of different

NREs as:
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NRE 1.3.2: Alternative neuralization of MRE 1.3.1

N[

(Buy␣:buy␣/buy)

SimilarProductNeural
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(at␣:at␣/ location )

SimilarShopNeural,

𝐺𝜽
3
].

where SimilarProductNeural is an NRE:

NRE 1.3.3: SimilarProductNeural

N[(.+◦SimilarMarked◦ProductMarked), 𝐺𝜽
1

]

and SimilarShopNeural is an NRE as well:

NRE 1.3.4: SimilarShopNeural

N[(.+◦SimilarMarked◦ShopMarked), 𝐺𝜽
2

]

Comparing NRE 1.3.1 with NRE 1.3.2, we see that the biggest difference is that whereas

NRE 1.3.1 has MRE 1.3.1 neuralized as a whole, NRE 1.3.2 has the two MREs

(.+◦SimilarMarked◦ProductMarked)

and

(.+◦SimilarMarked◦ShopMarked)

neuralized separately in NREs 1.3.3 and 1.3.4, before concatenating them with other MRE

components ((Buy␣:buy␣/buy) and (at␣:at␣/ location ) in this case) and neuralizing again.

NREs 1.3.3 and 1.3.4 can thus be reused in other composite NREs, and possibly trained
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together with them, to share statistical strength with other contexts that require fuzzy

matching of product and store names.

The set of NREs is closed under common finite state operations, such as concatenation

(illustrated in NRE 1.3.2), union, and composition (§ 8) — in other words, NRE 1.3.2 can be

written as

NRE 1.3.5: Alternative presentation of NRE 1.3.2

N[ AnotherMRE, 𝐺𝜽
′
]

where AnotherMRE is an MRE (essentially MRE 1.3.1 with some inserted ‘control’ marks),

and 𝐺′
𝜽 is a path scoring function. The equivalence of NRE 1.3.2 and NRE 1.3.5 (and in

general the closure of NREs under finite-state operations) allows us to express any weighted

relation under NREs as a sum-product, which makes inference straightforward.

1.3.3 Model capacity and computability concerns

of parametrization

NREs are powerful. NREs as we have described is an extremely expressive formalism.

Our only requirements for the scoring function 𝐺𝜽 is that 𝐺𝜽 must be a polytime non-

negative function (in mark string length), so it is possible to parametrize 𝐺𝜽 as neural

network models, and that approximate inference is not prohibitively slow. This effectively

makes NREs much more expressive than most bounded-treewidth factor graph-based
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formalisms, since NREs can be used to define a family of factor graphs that have unbounded

treewidths.

NREs are a strict generalization of both WREs and seq2seq models. Specifically, we

formally show NREs are more powerful than either WREs or seq2seq models in the following

theoretical sense:

There exists a weighted relation that cannot be modeled by any polysize

parametric families of WREs and seq2seq models — each parametric model 𝑀𝑖
in family, which has parameter vector with size 𝑂(poly(𝑖)), only has to model

relations of strings shorter than 𝑖. But this weighted relation can be modeled

by one finite-size NRE model.

In particular, neither polysize families of WREs nor seq2seq models can capture weighted

relations which prefer output strings that conform to polytime checkable structural

constraints (§1.2.3).

NREs may be too powerful. However, with great model expressiveness come great

parameter estimation challenges. With an MRE 𝜏 , the weighted relation 𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝜖) can

be used to model any recursively enumerable language 𝐿 = {𝐱 ∶ 𝐱 ∈ 𝐿}. Moreover, with

unbounded treewidths, inference is not only intractable, but generally uncomputable and

inapproximable. To see this, consider NRE 1.3.6

NRE 1.3.6

N[Program, 𝐺program]

where Program is an MRE:
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MRE 1.3.4

((𝜖:𝜖/0)|(𝜖:𝜖/1))*

We use 𝜖 to denote the empty string ‘’. Here we sketch how 𝐺program can be defined in a way,

such that 𝑁 [Program, 𝐺program](𝜖, 𝜖) is uncomputable (Proposition 7.3.1 is a more formal

statement): we let 𝐺program(𝐳) = 1 if 𝐳 encodes a proof that ZFC is not consistent (in some

formal language), and 𝐺program(𝐳) = 1/3|𝐳|+1 otherwise. 𝐺program can be built as a finite-size

1-encoder-layer 4-decoder-layer Transformer network (§2.3.2).

Our construction of 𝐺program implies if there is no proof that ZFC is inconsistent,

then 𝑁 [Program, 𝐺program](𝜖, 𝜖) = 1. Assuming the ZFC axioms as our axiomatic set,

there indeed will not be a 𝐳 such that 𝐺program(𝐳) > 1; on the other hand, Gödel’s second

incompleteness theorem implies the we cannot prove there will not be such a proof either —

that is, we cannot prove that 𝑁 [Program, 𝐺program](𝜖, 𝜖) = 1. Therefore, there will be no

provably correct algorithm (either randomized or deterministic) that exactly computes

𝑁 [Program, 𝐺program](𝜖, 𝜖) (and as we will later show in § 5, not even only approximately).

Even when we want to learn NREs ‘simpler’ than NRE 1.3.6, having a too expressive

parametric family 𝚯 can still be problematic, since fundamental tasks such as likelihood-

based model selection can be undecidable (§ 5): just as there exists 𝜽 ∈ 𝚯 that leads to

uncomputable weights, deciding whether a given 𝜽 leads to uncomputable weights is itself

undecidable.
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We need to parametrize NREs in a way that limits their power. We certainly do not

want to work with a parametric family where likelihood-based model selection is generally

impossible. On the other hand, we are reluctant to give up the unbounded treewidth

promise, which would significantly cripple expressiveness.

We make a parametrization choice, where likelihood-based model selection and param-

eter estimation are always feasible, while still ensuring the formalism strictly outperforms

seq2seq models in expressiveness. Specifically, we parametrize primitive scoring functions —

scoring functions that are not composed using other scoring functions — as autoregressive

models: we define 𝐺𝜽 (𝐳) to be of the form

𝐺𝜽 (𝐳) ≜
|𝐳|+1

∏
𝑡=1

𝑝𝜽 (𝑧𝑡 ∣ 𝑧<𝑡), (1.2)

where 𝑧<𝑡 ≜ (𝑧0 … 𝑧𝑡−1), 𝑧0 ≜ bos, and 𝑧|𝐳|+1 ≜ eos. In other words, a primitive scoring

function defines a (normalized) probability distribution over mark strings.

In this thesis, we formally study the consequences of our parametrization choice, making

connections between sequence modeling and computability/complexity theories. We would

like to answer the following questions:

∙ Do autoregressive sequence models lose expressiveness, compared to the more

general energy-based sequence models?

∙ Do we gain expressiveness over ordinary autoregressive models, by having string

latent variables (i.e. mark strings)?
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∙ Do NREs with autoregressive primitive scoring functions define computable weighted

relations? Is computability of the relation weight closed under finite-state operations

on NREs?

This thesis attempts to answer all these questions. In particular, it turns out that in the

case of no-latent-variable sequence models, an autoregressive parametrization of the form

equation (1.2) would be very restrictive — to ensure ‘good’ strings are always weighted

higher than all ‘bad’ strings, where good/bad is decided by some polytime algorithm,

autoregressive models need to have their parameter vectors grow superpolynomially in the

maximum sequence length one wishes to model. This theoretical result has consequences

beyond NREs: in general autoregressive models cannot check the goodness of strings,

regardless of their parametrization, as long as they only make use of polytime compute.

As for our second question, we show that introducing string latent variables (in the

manner of NREs) patches the aforementioned problem of autoregressive models. Further-

more, we show that with string latent variables, autoregressive sequence models have a

very high capacity: they are able to model all languages ∈ NP as distribution supports,

exceeding that of no-latent-variable autoregressive sequence models (which can have some,

but not all languages in P as support), and energy-based sequence models (which can have

any language in P as support).

Finally, we have been able to show that NREs with autoregressive primitive scoring

functions, and subsequent NREs built from these NREs, using finite-state operations, have

computable partition functions. One implication is that likelihood-based model selection is
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at least possible — even though the exact quantities of partition functions are likely still

intractable, and must be approximated.

1.4 Thesis organization

In this thesis, we

∙ chart a taxonomy of the expressiveness of various sequence model families (§ 3, Lin et

al. (2021)). In particular, we put forth complexity-theoretic proofs that string latent-

variable sequence models are strictly more expressive than energy-based se-

quence models, which in turn are more expressive than autoregressive sequence

models. Based on these findings, we

∙ introduce residual energy-based sequence models, a family of energy-based

sequence models (§ 4, Lin et al. (2021)) whose sequence weights can be evaluated

efficiently, and also perform competitively against autoregressive models. However,

we

∙ show how unrestricted energy-based sequence models can suffer from uncom-

putability; and how such a problem is generally unfixable without knowledge of

the true sequence distribution (§ 5, Lin and McCarthy (2022)). We then

∙ introduce neural particle smoothing (§ 6, Lin and Eisner (2018)), a family of

approximate sampling methods that work with conditional latent variable models.
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We then

∙ introduce neural finite-state transducers (§ 7, Lin et al. (2019)), which extend

weighted finite state transducers with the introduction of mark strings, allowing

scoring transduction paths in a finite state transducer with a neural network. Finally,

we

∙ propose neural regular expressions (§ 8), a family of neural sequence models that

are easy to engineer, allowing a user to design flexible weighted relations using

Marked FSTs, and combine these weighted relations together with various operations.
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Background

We review popular sequence models in this chapter. We also define parametric sequence

model families and weighted language classes that we will discuss in future chapters.

In particular, we provide two different abstractions of sequence models. We first define

and describe them as weighted Turing machines. This perspective allows us to derive

complexity and computability results regarding different sequence model families. We

then equivalently characterize them as parametric sequence models, which implies the

power, and associated uncomputability of modern neural sequence models.

2.1 Common sequence model families

In this section we give a brief introduction to common sequence model families. Most

pre-neural string transduction models are graph-based: speaking at a high level, the
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transduction from input string 𝐱 to output string 𝐲 can be ‘explained’ by some graph.

These graphs’ structures explain how input symbols ∈ 𝐱 correspond to output symbols ∈ 𝐲.

These models are generally realized as low-treewidth factor graph grammars (§2.1.1). In

this work, we are especially interested in finite-state grammars (where symbols ∈ 𝐱 are

monotonically aligned with symbols ∈ 𝐲 in factor graphs), namely weighted finite-state

transducers. We therefore also give a focused review of this formalism (§2.1.2). As for neural

string transduction models, a majority of them are based on the sequence-to-sequence

transduction paradigm (§2.1.3).

2.1.1 Low-treewidth factor graph grammars

Graph-based models explicitly account for the interaction within clusters of symbols

and/or discrete latent variables. In the case where both input and output strings have

fixed and finite lengths, they can be described as factor graphs (Kschischang, Frey, and

Loeliger, 2001). Recently, factor graph models have been generalized into a model family of

unbounded sequence lengths: factor graph grammars (Chiang and Riley, 2020). Many

popular sequence modeling formalisms, such as HMMs (Eddy, 1996), PCFGs (McAllester,

Collins, and Pereira, 2004), and linear chain CRFs (Sutton and McCallum, 2012), which had

had been popular before the resurgence of neural networks in the 2010s, have also been

recognized as instantiations of factor graph grammars (Chiang and Riley, 2020, Theorem

10).

A factor graph grammar  is a hypergraph, which defines a set of derived graphs ().
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A factor graph 𝐷 ∈ () is a (finite) bipartite graph, with two kinds of nodes: variables

 and factors Ψ. Each variable 𝑣 ∈  has a finite set of possible values Ω(𝑣). And each

factor 𝜓 ∈ Ψ that is connected to variable nodes 𝑣1… 𝑣𝑘 is associated with a function 𝐺𝜓 ∶

Ω(𝑣1) ×…×Ω(𝑣𝑘) → ℝ≥0. And we define a weight of 𝐷: [𝐷] ≜ ∑𝐳∈assignments of  ∏𝜓∈Ψ 𝐺𝜓 (𝐳𝜓 ),

where 𝐳𝜓 is the value sequence of variables that are connected to factor 𝜓 . Finally, the

weight of 𝐺 is defined as the weight of all derived graphs’ weights: [] ≜ ∑𝐷∈()[𝐷].

Factor graphs can encode latent variable models: some variables ∈  may not be

observed, and factors that are functions of these variables are usually designed to reflect

prior knowledge of how these latent variables influence each other, and also how they

influence observed variables. 𝐺𝜓 is also commonly engineered to ensure structured zeros:

for example, to ensure that some variable assignment 𝐳 is not possible, it suffices to engineer

a factor 𝜓 such that 𝐺𝜓 (𝐳𝜓 ) = 0.

Factor graph grammars can model both strings, and transduction of string pairs: by

defining a function 𝑓 that maps every factor graph 𝐷 ∈ ()’s variable assignment 𝐳 to a

string 𝐱, we can define factor graph grammar  which assigns positive weight to string 𝐱 if

and only if ∃𝐷 ∈ (), [𝐷] > 0 where ∀𝐳 ∈ assignments of  , 𝑓 (𝐳) = 𝐱. Likewise, by defining

a function 𝑓 that maps every factor graph 𝐷 ∈ ()’s variable assignment 𝐳 to a string pair

(𝐱, 𝐲), we can similarly define a factor graph grammar which assigns positive weight to string

pair (𝐱, 𝐲) if and only if ∃𝐷 ∈ (′), [𝐷] > 0 where ∀𝐳 ∈ assignments of  , 𝑓 ′(𝐳) = (𝐱, 𝐲).

We can thus define distributions over strings, by treating the weights of factor graph 𝐷

whose variable assignments correspond to a single string 𝐱 as the unnormalized probability
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�̃�(𝐱), and the weight of factor graph grammar , which generates only such factor graphs,

as the partition function 𝑍 . We can define distributions over string transductions in a

similar manner. Since we only know algorithms that compute both [𝐷] and [] in time

exponential in the graph treewidth in the worst case, compromises have to be made to

limit the expressivity of the factors, to make marginalization and renormalization tractable

via dynamic programming (Chandrasekaran, Srebro, and Harsha, 2008; Chiang and Riley,

2020). In sequence models, one very common compromise is the Markov assumption. For

string transduction tasks, the assumption is that a factor cannot model interaction between

symbols on 𝐲 that are too far apart: a factor that is a function of 𝑦𝑖 can typically only look

at 𝐲𝑖−𝑘,𝑖−𝑘+1…𝑖+𝑘 for some very small 𝑘 ∈ ℕ.

Most human languages do exhibit complicated long term dependency (Hulst, 2010),

rendering the Markov assumption unrealistic. Nonetheless, the Markov assumption allows

for tractable inference and parameter estimation methods. Moreover, if a factor graph

grammar  makes the Markov assumption, it is often easy to infer quantities other than

conditional probability 𝑝(𝐲 ∣ 𝐱) about �̃�, because of the existence of efficient dynamic

programming algorithms. For example, given graphical model 𝐷 ∈ (), one can ask ‘what

is the most likely 𝐲 given observed 𝐱 under 𝐷, under the condition that 𝐲 has the suffix

‘d e f’?’ In contrast, seq2seq models (§2.1.3) that are trained to maximize 𝑝(𝐲 ∣ 𝐱) will

have to undergo expensive renormalization (i.e., the partition function would be a weight

sum of strings that have suffix ‘d e f’), to be able to answer such questions (i.e. compute

𝑝(𝐲 ∣ 𝐱, ‘𝐲 ends with d e f’).
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2.1.2 Weighted finite-state transducers

Weighted finite state transducers (WFSTs) are a commonly used subclass of factor

graph grammars. They have been used for decades to analyze, align, and transduce strings

in language and speech processing (Roche and Schabes, 1997; Mohri, Pereira, and Riley,

2008). They form a family of efficient, interpretable models with well-studied theory.

WFSTs are generalizations of (unweighted) finite-state transducers, which in turn

generalize finite-state acceptors (FSAs):

Definition 2.1.1. A finite-state acceptor 𝑀 is an 5-tuple 𝑀 = (Σ, 𝑄, 𝑞init, 𝐸, 𝐹 ), where

∙ Σ is an finite alphabet,

∙ 𝑄 is a finite set of states,

∙ 𝑞init ∈ 𝑄 is the initial state,

∙ 𝐸 ⊆ 𝑄 × (Σ ∪ {𝜖}) × 𝑄 is a finite set of transitions,

∙ 𝐹 ⊆ 𝑄 is a set of final states.

An FSA is a directed graph. And FSA 𝑀 accepts string 𝐱 if there is a path from 𝑞init to

some state ∈ 𝐹 , such that the concatenation of symbols on this path is 𝐱.

Compared to FSAs, WFSTs:

∙ can transduce input strings into output strings; and
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∙ can have different weights for different transductions.

Formally, weights in a WFST come from a set 𝕂 which with a commutative operator

(usually denoted as ⊕) and an associative operator (usually denoted as ⊗), forms a semiring

(Kuich and Salomaa, 2012):

Definition 2.1.2. A semiring 𝐾 is a 5-tuple (𝕂, ⊕, ⊗, 0, 1), where

∙ (𝕂, ⊕, 0) is a commutative monoid with identity element 0,

∙ (𝕂, ⊗, 1) is a monoid with identity element 1,

∙ ⊗ distributes over ⊕, and

∙ ∀𝑎 ∈ 𝕂, 0 ⊗ 𝑎 = 𝑎 ⊗ 0 = 0.

Finally, we give a definition of WFSTs adopted from Mohri, Pereira, and Riley (2008):

Definition 2.1.3. A weighted finite-state transducer 𝑇 over a semiring 𝐾 = (𝕂, ⊕, ⊗, 0, 1) is

an 8-tuple 𝜏 = (Σ,Δ, 𝑄, 𝑞init, 𝐸, 𝐹 , 𝜆, 𝜌), where

∙ Σ and Δ are input and output alphabets,

∙ 𝑄 is a finite set of states,

∙ 𝑞init ∈ 𝑄 is the initial state,

∙ 𝐸 ⊆ 𝑄 × (Σ ∪ {𝜖}) × (Δ ∪ {𝜖}) × 𝕂 × 𝑄 is a finite set of transitions,

∙ 𝐹 ⊆ 𝑄 is a set of final states,

33



CHAPTER 2. BACKGROUND

∙ 𝜆 ∈ 𝕂, 𝜌 ∶ 𝐹 → 𝕂 are initial and final weights respectively.

A transition 𝑎 = (𝑝[𝑎], 𝑖[𝑎], 𝑜[𝑎], 𝑤[𝑎], 𝑛[𝑎]) ∈ 𝐸 is an arc from state 𝑝[𝑎] to state 𝑛[𝑎],

with input and output labels 𝑖[𝑎] and 𝑜[𝑎], and weight 𝑤[𝑎]. A path in 𝐸∗
is a sequence of

consecutive transitions 𝑎1 … 𝑎𝑛 where 𝑛[𝑎𝑖] = 𝑝[𝑎𝑖+1], 𝑖 ∈ [1… 𝑛 − 1]. An accepting path 𝐚

is a path where 𝑝[𝑎1] = 𝑞init and 𝑛[𝑎|𝐚|] ∈ 𝐹 . We also define the path weight of accepting

path 𝐚 to be [𝐚] ≜ 𝜆⊗𝑤[𝑎1]⊗⋯⊗𝑤[𝑎|𝐚|]⊗𝜌(𝑛[𝑎|𝐚|]). Finally, we define the machine weight

of 𝑇 : [𝑇 ] ≜ ⨁𝐚∶𝐚 is an accepting path of 𝑇 [𝐚].

Computing [𝑇 ] exactly or approximately is feasible for production-level speech recog-

nition systems (Mohri, 2009). However, WFSTs have the Markov property — since they lack

memory. The weight of an accepting path 𝐚: [𝐚] is simply the product of the transition

weights.

2.1.3 Neural autoregressive sequence models

Factor graph grammars cannot capture arbitrarily long dependency involving arbitrarily

many symbols, if we require inference to be tractable. However, neural autoregressive

sequence models — the prevailing sequence-to-sequence modeling paradigm — are not

subject to such a restriction.

These models — which we dub standard autoregressive models — are generative

models: the probability of a string 𝐱 is parametrized as 𝑝(𝐱) = ∏𝑡 𝑝𝜽 (𝑥𝑡 ∣ 𝐱<𝑡). A closely

related family — commonly known as seq2seq models (Sutskever, Vinyals, and Le, 2014) —
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parametrize the probability of string 𝐲 given 𝐱 as 𝑝(𝐲 ∣ 𝐱) = ∏𝑡 𝑝𝜽 (𝑦𝑡 ∣ 𝐲<𝑡 , 𝐱).1 Standard

autoregressive models parametrize local conditional distributions 𝑝𝜽 (⋅ ∣ 𝐱<𝑡) over the next

symbol that follow 𝐱<𝑡 , where 𝐱<𝑡 is a valid prefix of length 𝑡 − 1. To generate string 𝐱, one

samples from from conditional distributions 𝑝𝜽 (⋅ ∣ 𝜖), 𝑝(⋅ ∣ 𝑥1), 𝑝(⋅ ∣ 𝑥1𝑥2) … iteratively, to

obtain a growing sequence of output symbols 𝐱1…𝑡 , until 𝑥𝑡+1 = eos. Here eos is a special

symbol that indicates the transduction is done. In practice, beam search may be used in place

of sampling as an effort to find more probable 𝐱’s. The generation process for seq2seq models

is similar: we sample from conditional distributions 𝑝𝜽 (⋅ ∣ 𝜖, 𝐱), 𝑝𝜽 (⋅ ∣ 𝑦1, 𝐱), 𝑝𝜽 (⋅ ∣ 𝑦1𝑦2, 𝐱) …

iteratively, until 𝑦𝑡+1 = eos.

Modern neural autoregressive sequence models typically parametrize 𝑝𝜽 with high-

parameter-count neural networks. Furthermore, they usually parametrize local conditional

distributions 𝑝𝜽 (⋅ ∣ 𝐱<𝑡) (or 𝑝𝜽 (⋅ ∣ 𝐲<𝑡 , 𝐱)) in a way that these local probabilities are fast to

evaluate. Therefore, not only sampling from the distributions they define is easy (using the

generation method we described above), but we can also evaluate 𝑝(𝐱) = ∏𝑡 𝑝𝜽 (𝑥𝑡 ∣ 𝐱<𝑡) for

an arbitrary 𝐱 ∈ Σ∗
; and likewise 𝑝(𝐲 ∣ 𝐱). Moreover, log-likelihood gradients with regard to

𝜽 are easy to evaluate, either: ∇𝜽 log 𝑝(𝐱) = ∑𝑡 ∇ log 𝑝𝜽 (𝑥𝑡 ∣ 𝐱<𝑡).

The ability to evaluate a string probability and its gradients with regard to 𝜽 makes

training neural autoregressive sequence models straightforward. Since the normalizing

constant 𝑍 = ∑𝐱 𝑝(𝐱) = 1 by definition for any value of the model parameters 𝜽 , we do not

1
There are non-autoregressive seq2seq models (Gu et al., 2018; Lee, Mansimov, and Cho, 2018; Saharia

et al., 2020; Ghazvininejad et al., 2020). They explore model families that are capable of non-autoregressive

decoding that exploits parallelism. These models give up expressiveness in exchange for better speed. There-

fore they still fall under our definition of autoregressive models, since they can be parametrized as autore-

gressive ones (i.e. decode sequentially without using parallelism).
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need to compute ∇𝜃𝑍 during MLE training, which is generally required for WFSTs (§2.1.2).

Standard autoregressive models and seq2seq models have both achieved stellar empirical

results in many applications (Oord et al., 2016; Child et al., 2019; Zellers et al., 2019; Brown

et al., 2020). In particular, thanks to the expressiveness of neural networks that parametrize

local conditional distributions 𝑝𝜽 (⋅ ∣ 𝐱<𝑡) and 𝑝𝜽 (⋅ ∣ 𝐲<𝑡 , 𝐱), very large neural autoregressive

sequence models can model human languages so well that untrained humans cannot

reliably distinguish between human- and computer-generated content (Clark et al., 2021).

One may attribute their success in part to the ability to capture long distance dependency —

that is, unlike WFSTs, neural autoregressive sequence models in general do not have the

Markov property. However this does not imply that neural autoregressive models can model

all string distributions, or even approximate them ‘well enough’, given a reasonable amount

of parameters: speaking very loosely, an autoregressive sequence model cannot ‘correct’

bad estimates of local conditional probability at time step 𝑡 : 𝑝𝜽 (⋅ ∣ 𝐱<𝑡) in subsequent time

steps 𝑡 ′ > 𝑡 . We will make our argument rigorous in § 3. But we need to first discuss the

computational aspects of weighted languages in §2.2.

2.2 Weighted languages

A sequence model that takes a string as input and outputs a non-negative number is

essentially a weighted language. Formally, let alphabet 𝑉 be a finite set of symbols, an

(unweighted) language  ⊆ 𝑉 ∗
is a countable set of strings. And a weighted language
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�̃� ∶ 𝑉 ∗ → ℝ≥0 is a function that assigns positive scores to string 𝐱 if and only if 𝐱 ∈  .

2.2.1 Normalizable weighted languages

We say a weighted language �̃� is normalizable when 𝑍�̃� ≜ ∑𝐱∈𝑉 ∗ �̃�(𝐱) ∈ ℝ>0. The sum over

all possible strings is finite and positive. 𝑍�̃� is also called the partition function of �̃�.
2

We

can then normalize �̃� into a distribution 𝑝 over 𝑉 ∗
such that 𝑝(𝐱) = �̃�(𝐱)/𝑍�̃� , and thereby

∑𝐱∈𝑉 ∗ 𝑝(𝐱) = 1.

Let �̂� ⪯ 𝐱 mean that �̂� is a prefix of 𝐱 ∈ 𝑉 ∗
(not necessarily a strict prefix). If �̃� is

normalizable, then 𝑍 (�̂�) ≜ ∑𝐱∈𝑉 ∗∶�̂�⪯𝐱 �̃�(𝐱) is ≤ 𝑍 for any �̂� ∈ 𝑉 ∗
, yielding a marginal prefix

probability 𝑍 (�̂�)/𝑍 . If the prefix �̂� has positive prefix probability, then it admits a local

conditional probability 𝑝(𝑥 ∣ �̂�) ≜ 𝑍 (�̂� 𝑥)/𝑍 (�̂�) for each symbol 𝑥 ∈ 𝑉 , where the denominator

is interpreted as a local normalizing constant. This is the conditional probability that if

a random string starts with the prefix �̂�, the next symbol is 𝑥 . There is also a probability

𝑝(eos ∣ �̂�) ≜ 1 −∑𝑥∈𝑉 𝑝(𝑥 ∣ �̂�) = �̃�(�̂�)/𝑍 (�̂�) ≥ 0 that the string ends immediately after �̂�; the

special symbol eos ∉ 𝑉 represents “end of string.”

2
We use the convention that 𝑍�̃� is the partition function of �̃�, and 𝑍�̃� of �̃�, etc. The subscript is omitted

in unambiguous cases.
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2.2.2 Computable weighted languages

In this work, we put an emphasis on computable weighted languages. We say a weighted

language �̃� is computable
3

if there exists a Turing machine that outputs a rational number

�̃�(𝐱) ∈ ℚ+
, or 𝑅(𝐱, 𝐲) ∈ ℚ+

on input 𝐱 or (𝐱, 𝐲) in finite time. A Turing machine is traditionally

described as a 5-tuple (𝑄,Σ, 𝛿 , 𝑞init, 𝐹 ) (Sipser, 2013), where 𝑄 is a set of states, Σ is an

alphabet of symbols that can be read off and written onto the tape, 𝛿 ∶ 𝑄 ×Σ → 𝑄 ×Σ×{L, R}

is a state transition function, 𝑞init is the initial state, and 𝐹 is a set of accepting states. This

classical 5-tuple definition of Turing machines can be extended in many possible ways to

associate a computable number with every accepted string. For example, we can make

use of an additional tape to record the output number. However, in this thesis we adopt

a Turing machine extension that does not change its machinery, but defines the string

weight as a function of both number of computation steps, and the state sequences.

A weighted Turing machine 𝑊 is defined as a 7-tuple

(𝑄,Σ, 𝛿 , 𝑞init, 𝐹 , update_num, update_denom),

where the first 5 components (𝑄,Σ, 𝛿 , 𝑞init, 𝐹 ) are defined just as in standard Turing machines.

The last two additions are weight-update functions: both update_num and update_denom

have signature 𝑄 → , where  ≜ {same, carry}. At the end of time step 𝑖, assuming

3
Note that the string weights under our computable weighted languages form the set of rational numbers,

not the set of computable numbers. That is, we cannot have string weights that are irrational but computable

(e.g., 𝜋 ). It may be possible to extend our definition of computable weighted languages, to allow general

computable string weights. We leave the extension as future work.
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the current state is 𝑞, we define

num𝑖 =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

num𝑖−1 if update_num(𝑞) = same

2𝑖 + num𝑖−1 if update_num(𝑞) = carry

and similarly,

denom𝑖 =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

denom𝑖−1 if update_denom(𝑞) = same

2𝑖 + denom𝑖−1 if update_denom(𝑞) = carry.

We (quite arbitrarily) define that ∀𝑞 ∈ 𝐹 ∪{𝑞init}, update_num(𝑞) = update_denom(𝑞) =

same. Finally, upon arriving at a halting state ∈ 𝐹 in 𝑟 time steps, we say num𝑟/denom𝑟 is the

weight of an input 𝐱 ∈ 𝔹∗
under 𝑊 , if num𝑟/denom𝑟 is a rational number.

4

2.2.3 Efficiently computable (EC) weighted languages

Efficiently computable weighted languages (EC; Lin et al., 2021) are computable

weighted languages, where the weight of string 𝐱 ∈  : �̃�(𝐱) can be computed in 𝑂(poly(|𝐱|)).

Most weighted languages defined by (fixed-size) neural sequence models fall into this class.

4
We say an input string 𝐱 has an undefined weight if 𝐱 is not accepted by 𝑚. When num𝑟/denom𝑟 is not a

rational number (because denom𝑟 = 0), we also say the weight of input string 𝐱 is undefined.

39



CHAPTER 2. BACKGROUND

2.2.3.1 Non-uniform computation

In the machine learning approach to sequence modeling, we usually do not manually design

the weighted Turing machine behind a weighted language �̃�. Rather, we design a model

𝑀 with parameters 𝜽 . 𝑀 is a Turing machine that reads 𝜽 and outputs the description

of a specialized Turing machine �̃�𝜽 ≜ 𝑀(𝜽) that can score strings 𝐱 and hence defines a

weighted language. Without loss of generality, we will express 𝜽 as a string in 𝔹∗
(where

𝔹 ≜ {0, 1}). For each 𝜽 , we obtain a potentially different weighted language.

Strings vary in length, and accurate modeling of longer strings may sometimes require

more complex computations with more parameters. For example, when 𝑉 is a natural

language alphabet, a recurrent neural network may require more hidden units to model

sentences of the language rather than individual words, and even more units to model

whole documents. To accommodate this, we allow an infinite sequence of parameter vectors,

𝚯 = {𝜽𝑛 ∈ 𝔹∗ ∶ 𝑛 ∈ ℕ}, which yields an infinite sequence of Turing machines {�̃�𝑛 ∶ 𝑛 ∈ ℕ}

via �̃�𝑛 ≜ 𝑀(𝜽𝑛). We then define �̃�𝚯(𝐱) ≜ �̃�|𝐱|(𝐱), so a string of length 𝑛 is scored by the �̃�𝑛

machine. This is known as non-uniform computation (Arora and Barak, 2009, Chapter

6). Of course, it is legal (and common) for all of the 𝜽𝑛 to be equal, or empty, but if desired,

we can obtain more power by allowing the number of parameters to grow with 𝑛 if needed.

We can now consider how rapidly the parametric and runtime complexity may grow.

∙ If |𝜽𝑛| is permitted to be exponential in 𝑛, then one can fit any weighted language �̃�

(even an uncomputable one). Simply use 𝜽𝑛 to encode a trie with 𝑂(|𝑉 |𝑛+1) nodes that
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maps 𝐱 ↦ �̃�(𝐱) for any |𝐱| of length 𝑛, and design 𝑀 such that the Turing machine

�̃�𝑛 = 𝑀(𝜽𝑛) has a (large) state transition table that mirrors the structure of this trie.

The resulting collection of Turing machines {�̃�𝑛 ∣ 𝑛 ∈ ℕ} can then compute �̃�(𝐱)

exactly for any 𝐱, with only linear runtime 𝑂(|𝐱|) (which is used to traverse the trie).

∙ Separately, if unbounded runtime is permitted for 𝑀 , then one can exactly fit any

computable weighted language �̃�. Simply have 𝑀 , when run on 𝜽𝑛, compute and

return the large trie-structured �̃�𝑛 that was mentioned above. In this case, 𝑀 need

not even use the parameters 𝜽𝑛, except to determine 𝑛.

∙ Finally, if unbounded runtime is permitted for �̃�𝑛, then again one can exactly fit any

computable weighted language �̃�. In this case, 𝑀 trivially returns �̃�𝑛 = �̃� for all 𝑛.

∙ However, if the parameters 𝚯 are “compact” in the sense that |𝜽𝑛| grows only as

𝑂(poly(𝑛)), and also �̃�𝑛 = 𝑀(𝜽𝑛) is constructed by 𝑀 in time 𝑂(poly(𝑛)), and �̃�𝑛

scores any 𝐱 of length 𝑛 in time 𝑂(poly(𝑛)), then we say that the resulting weighted

language �̃� is efficiently computable with compact parameters (ECCP).
5

We

refer to 𝑀 paired with a parameter space of possible compact values for 𝚯 as an

ECCP weighted language.

ECCP weighted languages is a loose expressiveness upper bound of practical parametric

sequence model families, where sequence probabilities can be evaluated reasonably fast,

5
Since we require 𝑀 to run in polytime, it can only look at a polynomial-sized portion of 𝜽𝑛 . Hence it is

not really crucial for the parameters 𝜽p𝑛 to be compact, but we nonetheless include this intuitive condition,

without loss of generality.
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but training compute and dataset are both unbounded. The construction and execution of

the neural network �̃�𝑛 may perform a polynomial amount of total computation to score

the string 𝐱. This computation may involve parameters that were precomputed using

any amount of effort (e.g., training on data) or even obtained from an oracle (they need

not be computable). However, the exponentially many strings of length 𝑛 must share a

polynomial-size parameter vector 𝜽𝑛, which prevents the solution given in the first bullet

point above.

In practice one takes 𝜽𝑛 = 𝜽 for all 𝑛 and obtains 𝜽 ∈ ℝ𝑑
by training. However, we

do not consider whether such parameters are easy to estimate or even computable. We

simply ask, for a given target language �̃�, whether there exists a polynomially growing

sequence 𝚯 of “good” parameter vectors for any parametric model 𝑀 . When not, there can

be no scheme for estimating arbitrarily long finite prefixes of such a sequence. So for any

polynomial 𝑓 , any training scheme that purports to return a trained model of size 𝑓 (𝑛) that

works “well” for strings of length ≤ 𝑛 must fail for large enough 𝑛— even if unlimited data,

computation, and oracles are allowed at training time.

2.2.4 Computable locally normalizable weighted languages

(LN)

Many parameter estimation techniques and inference methods specifically work with local

conditional probabilities 𝑝(𝑥 ∣ �̂�) (§2.2.1). Thus, weighted languages where such quantities
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are computable,
6

and especially efficiently computable, are worth more discussion.

If for weighted language �̃�, local conditional probabilities 𝑝(𝑥 ∣ �̂�) for all 𝑥 ∈ 𝑉 , and all

valid prefixes �̂� can be computed by a single Turing machine in finite time, we say �̃� is

locally normalizable (LN). They are required to be consistent: the probability that a

string is infinitely long under such distributions is zero. Equivalently, given any 𝜖 > 0, we

can approximate 𝑍 with a finite sum of string weights:

Proposition 2.2.1 (Consistency of LN distributions (Booth and Thompson, 1973; Chen

et al., 2018b)). Let 𝑝 ∈ LN be a locally normalized distribution over strings. All strings of a

given length or longer have their probabilities bounded. That is, for all positive real numbers

𝜖, there is a length 𝑛 at which all strings 𝐱 of length at least 𝑛 have 𝑝(𝐱) < 𝜖.

Most fixed-size autoregressive sequence models (§2.3.1) fall into the class of LN. In

fact, many of these models compute such quantities can be computed in time 𝑂(poly(|�̂�|))

(given the parameters).
7

We say that the resulting distributions are efficiently locally

normalizable, or ELN.

We may again generalize ELNs to allow the use of non-uniform computation, through

the use of compact parameters (in the manner of §2.2.3.1). For any weighted language

6
We will further discuss weighted languages where these quantities are not computable in §3.1.

7
An autoregressive model architecture generally defines 𝑝(𝐱) as an efficiently computable (§2.2.3) prod-

uct of local conditional probabilities. However, the parametrization usually ensures only that ∑𝑥∈𝑉 𝑝𝜽 (𝑥 ∣
�̂�) = 1 for all prefixes �̂�. Some parameter settings may give rise to inconsistent distributions where

𝑍 ≜ ∑𝐱∈𝑉 ∗ 𝑝𝜽 (𝐱) < 1 because the generative process terminates with probability < 1 (Chen et al., 2018b). In

this case, the factors 𝑝𝜽 (𝑥 ∣ �̂�) defined by the autoregressive model are not actually the conditional probabili-

ties of the weighted language (as defined by §2.2.4). It is true that training 𝜽 with a likelihood objective does

encourage finding a weighted language whose generative process always terminates (hence 𝑍 = 1), since

this is the behavior observed in the training corpus (Chi and Geman, 1998; Chen et al., 2018b; Welleck et al.,

2020). Our definitions of ELN(CP) models require the actual conditional probabilities to be efficiently com-

putable. Autoregressive models that do not sum to 1, whose normalized probabilities can be uncomputable,

are not ruled out by our theorems that concern ELN(CP).
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�̃�, the Turing machine 𝑀q
efficiently locally normalizes �̃� with compact parameters

𝚯q = {𝜽q
𝑛 ∣ 𝑛 ∈ ℕ} if

∙ the parameter size |𝜽q
𝑛| grows only as 𝑂(poly(𝑛))

∙ 𝑀q(𝜽q
𝑛) returns a Turing machine 𝑞𝑛 (similar to �̃�𝑛 in §2.2.3.1) in time 𝑂(poly(𝑛))

∙ �̃� is normalizable (so 𝑝 exists)

∙ 𝑞𝑛 maps �̂�𝑥 ↦ 𝑝(𝑥 ∣ �̂�) for all 𝑥 ∈ 𝑉 ∪ {eos} and all prefixes �̂� ∈ 𝑉 ∗
with |�̂�| ≤ 𝑛 and

𝑍 (�̂�) > 0

∙ 𝑞𝑛 runs on those inputs �̂�𝑥 in time 𝑂(poly(𝑛))

If there is 𝑀q
that efficiently locally normalizes a weighted language �̃� with compact

parameters 𝚯q
, we say �̃� is efficiently locally normalizable with compact parameters,

or ELNCP. Note that this is a property of the weighted language itself.

ELNCP weighted languages can be more powerful than ELN ones (i.e., ELNCP ⊇ ELN)

because their parameters may be set by an oracle. In fact, some ELNCP weighted languages

cannot be captured by LN weighted languages that do not have access to compact parameters

(see also Figure 3.1):

Lemma 2.2.2. The set {�̃� ∶ �̃� ∈ EC, �̃� ∈ ELNCP, �̃� ∉ LN} is not empty.

We will prove Lemma 3.2.1 in § 3. It is also obvious that an ELNCP model is also ECCP:

Lemma 2.2.3. An ELNCP model �̃� is also ECCP. Likewise, an ELN model is also EC.
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Proof. Let �̃� be an ELNCP language. This implies that �̃� is normalizable, so let 𝑝(𝐱) ≜ �̃�(𝐱) /𝑍

as usual. Specifically, let 𝑀q
efficiently locally normalize �̃� with compact parameters

𝚯q = {𝜽q
𝑛 ∣ 𝑛 ∈ ℕ}. It is simple to define a Turing machine 𝑀 r

that maps each parameter

string 𝜽q
𝑛 to a Turing machine 𝑟𝑛, where 𝑟𝑛(𝐱) simply computes (∏𝑛

𝑡=1 𝑞𝑛(𝑥𝑡 ∣ 𝐱<𝑡)) ⋅ 𝑞𝑛($ ∣ 𝐱).

Then for all 𝐱 of length 𝑛, 𝑟𝑛(𝐱) = (∏𝑛
𝑡=1 𝑝(𝑥𝑡 ∣ 𝐱<𝑡)) ⋅ 𝑝($ ∣ 𝐱), by the definition of local

normalization, and thus 𝑟𝑛(𝐱) = 𝑝(𝐱).

𝑀 r
can be constructed by incorporating the definition of 𝑀q

, so that 𝑟𝑛 = 𝑀 r(𝜽q
𝑛) can

include 𝑞𝑛 = 𝑀q(𝜽q
𝑛) as a subroutine. This allows 𝑟𝑛 to query 𝑞𝑛 for local conditional

probabilities and multiply them together.

∙ Since 𝑀q
runs in polytime, it is straightforward for this construction to ensure that 𝑀 r

runs in polytime as well.

∙ Since 𝑞𝑛(⋅ ∣ �̂�) ∈ 𝑂(poly(𝑛)), this construction can ensure that 𝑟𝑛 runs in polytime as well.

∙ We were given that |𝜽q
𝑛| ∈ 𝑂(poly(𝑛)) (compact parameters).

Since 𝑝 is the weighted language defined by (𝑀 r,𝚯q), and 𝑀 r
and 𝚯q

have the properties

just discussed, we see that 𝑝 is efficiently computable with compact parameters (ECCP).

Therefore �̃�(𝐱) = 𝑍𝑝(𝐱) is also ECCP.

In the case where �̃� is more strongly known to be ELN (the parameters 𝚯q
are not

needed), a simplification of this argument shows that it is EC.

If we define ELNCP models analogously to ECCP models, Lemma 2.2.3 means that

locally normalized models do not provide any extra power. Their distributions can always
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be captured by globally normalized models (of an appropriate architecture that we used

in the proof). But we will see in § 3 that the converse is likely not true: provided that

NP ⊈ P/poly, there are efficiently computable weighted languages that cannot be efficiently

locally normalized, even with the help of compact parameters. That is, they are EC (hence

ECCP), yet they are not ELNCP (hence not ELN, see also Figure 3.1).

2.2.5 Complexity classes and known results

Some weighted languages we have introduced in this chapter generalize decision problem

classes. In this section we describe their connection, and name some well-known complexity

class results. We make use of these results to derive the relation between weighted language

classes in § 3.

2.2.5.1 P, P/poly, and NP/poly

The phrase “efficiently computable with compact parameters” means that without access to

those parameters, the ECCP weighted language may no longer be efficiently computable.

Indeed, it need not be computable at all, if the parameter vectors store the outputs of some

uncomputable function.

Our definitions above of EC and ECCP weighted languages are weighted generalizations

of complexity classes P and P/poly, respectively,
8

and their supports are always unweighted

languages in P and P/poly, respectively. An unweighted language 𝐿 is in P iff there is a

8
Namely the nonnegative functions in FP and FP/poly.
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deterministic Turing machine that decides in 𝑂(poly(|𝐱|)) time whether 𝐱 ∈ 𝐿. And an

unweighted language 𝐿′ is in P/poly iff
9

there exist Turing machines {𝑀𝑛 ∶ 𝑛 ∈ ℕ} such

that 𝑀𝑛 decides in 𝑂(poly(𝑛)) time whether 𝐱 of length 𝑛 is in 𝐿′, where each 𝑀𝑛 can be

constructed in 𝑂(poly(𝑛)) time as 𝑀(𝜽𝑛), for some Turing machine 𝑀 and some sequence of

polynomially-sized advice strings 𝚯 = {𝜽𝑛 ∣ 𝑛 ∈ ℕ} with |𝜽𝑛| ∈ 𝑂(poly(𝑛)). We define the

language class NP/poly similarly to P/poly: the only difference is the family {𝑀𝑛 ∶ 𝑛 ∈ ℕ}

consists of nondeterministic Turing machines.

Naturally, P ⊆ P/poly. But P/poly is larger than P: it contains all sparse languages,

regardless of their hardness — even sparse undecidable languages — as well as many dense

languages. The extra power of P/poly comes from its access to compact advice strings that

do not have to be recursively enumerable, let alone efficient to find. This corresponds to

statistical modeling, where the trained model has a computationally efficient architecture

plus access to parameters that might have taken a long time to find.

2.2.5.2 NP-completeness and Sat

NP-complete decision problems have solutions that are efficient to validate but inefficient to

find (assuming P ≠ NP). One of the most well-known NP-complete problems is the boolean

9
Our presentation of P/poly is a variant of Arora and Barak (2009, §6), in which inputs 𝐱 of length

𝑛 are evaluated by a polytime function 𝑀 that is given an advice string 𝜽𝑛 as an auxiliary argument. This

corresponds to a neural architecture𝑀 that can consult trained parameters 𝜽𝑛 at runtime. We have replaced

the standard call 𝑀(𝜽𝑛 , 𝐱) with the “curried” expression 𝑀(𝜽𝑛)(𝐱), which we still require to execute in

polynomial total time. Here the intermediate result 𝑀𝑛 = 𝑀(𝜽𝑛) corresponds to a trained runtime model for

inputs of length 𝑛. Our Turing machines 𝑀𝑛 have size polynomial in 𝑛 (because they are constructed by 𝑀
in polynomial time). They correspond to the polynomial-sized boolean circuits 𝑀𝑛 that are used to evaluate

inputs of length 𝑛 under the classical definition of P/poly (Ladner, 1975). We exposed these intermediate

results 𝑀𝑛 only to observe in §2.2.3.1 and §3.4.3 that if we had allowed the 𝑀𝑛 to grow exponentially, they

would have been able to encode the answers in tries.
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satisfiability problem (Sat) (Cook, 1971). Given a boolean formula 𝜙, Sat accepts 𝜙 iff 𝜙 can

be satisfied by some value assignment. For example, the formula (𝐴1 ∨¬𝐴2 ∨𝐴3) ∧ (𝐴1 ∨¬𝐴4)

is in Sat, since there is a satisfying assignment 𝐴1…4 = 1101. We denote the number of

satisfying assignments to 𝜙 as #(𝜙).

It is widely believed that no NP-complete languages are in P/poly. Otherwise we would

have all of NP ⊆ P/poly and the polynomial hierarchy would collapse at the second level

(Karp and Lipton, 1980).

A capacity limitation of EC/ECCP weighted languages naturally follows from this

belief:

Lemma 2.2.4. For any 𝐿 ∈ P, there exists an EC weighted language with support 𝐿. For any

𝐿 ∈ P/poly, there exists an ECCP language with support 𝐿. But for any 𝐿 ∈ NP-complete,

there exists no ECCP language with support 𝐿 (assuming NP ⊈ P/poly).

This simple lemma relates our classes EC and ECCP of weighted languages to the

complexity classes P and P/poly of their supports, which are unweighted formal languages

(§ 2). It holds because computing a string’s weight can be made as easy as determining

whether that weight is nonzero (if we set the weights in a simple way), but is certainly no

easier. We spell out the trivial proof to help the reader gain familiarity with the formalism.

Proof. Given 𝐿, define a weighted language �̃� with support 𝐿 by �̃�(𝐱) = 1 if 𝐱 ∈ 𝐿 and

�̃�(𝐱) = 0 otherwise.

If 𝐿 ∈ 𝑃 , then clearly �̃� is EC since the return value of 1 or 0 can be determined in

polytime.
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If 𝐿 ∈ P/poly, 𝐿 can be described as a tuple (𝑀,𝚯) following our characterization in

§2.2.5.1. It is easy to show that �̃� is ECCP, using the same polynomially-sized advice strings

𝚯. We simply construct 𝑀 p̃
such that 𝑀 p̃(𝜽𝑛) returns 1 or 0 on input 𝐱 according to whether

𝑀(𝜽𝑛) accepts or rejects 𝐱. Both 𝑀 p̃(𝜽𝑛) and 𝑀 p̃(𝜽𝑛)(𝐱) are computed in time 𝑂(poly(𝑛)) if

|𝐱| = 𝑛. (The technical construction is that 𝑀 p̃
simulates the operation of 𝑀 on the input 𝜽𝑛

to obtain the description of the Turing machine 𝑀𝑛 = 𝑀(𝜽𝑛), and then outputs a slightly

modified version of this description that will write 1 or 0 on an output tape.)

For the second half of the lemma, we prove the contrapositive. Suppose �̃� is an ECCP

weighted language with support 𝐿. �̃� can be characterized by a tuple (𝑀 p̃,𝚯). It is easy

to show that 𝐿 ∈ P/poly, using the same polynomially-sized advice strings 𝚯. We simply

construct 𝑀 such that 𝑀(𝜽𝑛) accepts 𝐱 iff 𝑀 p̃(𝜽𝑛)(𝐱) > 0. Then by the assumption, 𝐿 ∉ NP-

complete.

2.3 Parametric sequence models

We characterize computable weighted languages as automata in §2.2. Such a description

makes it easy to discuss computability and complexity aspects of different weighted language

families. However, most popular neural sequence models do not directly implement these

automata: for example, RNNs and Transformers do not seem to have an intrinsic notion of

halting states — RNNs and Transformers can map any rational-valued embedding sequences

into a family of arbitrary length rational-valued embedding sequences. The lack of explicit
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transition among finitely many states makes their correspondence with automaton-based

abstractions (i.e., weighted Turing machines which we introduced in §2.2.2) somewhat

obscure.

2.3.1 Formal definition

To formally characterize the computational power of neural sequence models, we adopt the

definition of parametric sequence model families from Pérez, Barceló, and Marinkovic

(2021). We define a parametric sequence model family to be a set of seq-to-seq models

𝐍 = {𝑁𝜽 ∶ 𝜽 ∈ 𝚯}, where 𝚯 ∈ ⋃𝑘∈ℕ ℚ𝑘
. We also define dimension size 𝑑𝜽 ∈ ℕ,

embedding function 𝑓𝜽 ∶ 𝔹 → ℚ𝑑(𝜽)
, and initial states 𝐬𝜽 ∈ ℚ𝑑(𝜽)

to be properties of

𝑁𝜽 .

Seq-to-seq model 𝑁𝜽 ∶ (ℚ𝑑 )∗ → (ℚ𝑑 )ℕ, 𝑁𝜽 ∈ 𝐍 maps an input embedding sequence

{𝐞𝑡 ∶ 𝐞𝑡 ∈ ℚ𝑑(𝜽), 𝑡 ∈ [1… 𝑇 ]}, 𝑇 ∈ ℕ to an infinite sequence {𝐲𝑘 ∈ ℚ𝑑(𝜽) ∶ 𝑘 ∈ ℕ}. We

define 𝑁𝜽 to accept 𝐱 = [𝑥1… 𝑥𝑇 ] ∈ 𝔹∗
if and only if there exists 𝑟 ∈ ℕ, such that 𝑁𝜽 maps

embedding sequence [𝑓𝜽 (𝑥1) … 𝑓𝜽 (𝑥𝑇 )] to an infinite sequence {𝐲𝑘 ∈ ℚ𝑑(𝜽) ∶ 𝑘 ∈ ℕ}, where

𝑔(𝐲𝑟 ) = 1. And we say 𝑁𝜽 recognizes language 𝐿𝜽 if and only if there exists a polytime

termination decision function 𝑔𝜽 ∶ ℚ𝑑(𝜽) → 𝔹 such that 𝑁𝜽 accepts every string 𝐱 ∈ 𝐿𝜽 .

Furthermore, we say 𝐍 is Turing-complete if for every Turing machine 𝑀 , there exists

𝜽 ∈ 𝚯 such that 𝐿𝜽 is the language of 𝑀 . We further say 𝐍 is provably Turing-complete

if there exists an algorithm that takes Turing machine 𝑀 as input, and outputs 𝜽 such that

𝐿𝜽 is the language of 𝑀 .
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Both RNNs and Transformers are provably Turing-complete (Siegelmann and Sontag,

1992; Pérez, Barceló, and Marinkovic, 2021).
10

Notably, both can simulate computations in a

universal Turing machine, with finite-length parameter vectors.
11

Moreover, since there are

Turing machines whose halting property cannot be proven, it follows that there are RNNs

and Transformers whose behaviors cannot be predicted by any algorithms.

2.3.2 EC-complete parametric families

This thesis discusses weighted languages. Just as we extended the definition of Turing ma-

chines to weighted Turing machines in §2.2.2, here we also extend the definition of sequence

model families to recognize weighted languages. We therefore define EC-complete para-

metric families, as a parametric sequence model counterpart of the weighted language

class EC (which was defined in terms of weighted Turing machines).

Formally, a parametric family {𝑁𝜽 ∶ 𝜽 ∈ 𝚯 ⊆ ℝ𝑑 , 𝑑 ∈ ℕ} is EC-complete if given any

�̃� ∈ EC (as a description of a weighted Turing machine), we can construct a parameter vector

𝜽 ∈ 𝚯 such that there exist polytime functions𝑤𝑝 ∶ ℚ𝑑 → ℕ∪{0} and𝑤𝑞 ∶ ℚ𝑑 → ℕ∪{0},

where whenever on input 𝐱 = [𝑥1 … 𝑥𝑇 ], if 𝑔(𝐲𝑟 ) = 1 for some output embeddings 𝐲𝑟 (that

is, 𝑁𝜽 accepts 𝐱 in 𝑟 time steps), 𝑤𝑝(𝐲𝑟 )/𝑤𝑞(𝐲𝑟 ) = �̃�(𝐱).

Pérez, Barceló, and Marinkovic (2021) formally showed the Turing completeness of

10
When some conditions are met: for example arbitrary precision rational weights. However such condi-

tions usually do not hold for real-life machine learning models.

11
Specifically, let 𝐿 be the language of any universal Turing machine, and let 𝚯transformer and 𝚯rnn be

parameter families of Transformer and RNN models. There exist finitely long parameter vectors 𝜽rnn ∈
𝚯rnn and 𝜽transformer ∈ 𝚯transformer, where 𝐿𝜽rnn

= 𝐿𝜽transformer
= 𝐿.
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Transformers:

Theorem 2.3.1. (Pérez, Barceló, and Marinkovic, 2021, Theorem 6) The class of Transformer

networks with positional encodings is Turing complete. Moreover, Turing completeness holds

even in the restricted setting in which the only non-constant values in positional embedding

𝑝𝑜𝑠(𝑛) of 𝑛, for 𝑛 ∈ ℕ, are 𝑛, 1/𝑛, and 1/𝑛2, and Transformer networks have a single encoder

layer and three decoder layers.

We show that with a slight modification to positional embeddings, we can extend

Theorem 2.3.1 to show that the family of arbitrary precision, hard attention Transformers

defined in Pérez, Barceló, and Marinkovic (2021, Section 3) is EC-complete:

Theorem 2.3.2. The class of one-encoder-layer four-decoder-layer Transformer networks

with positional encodings (𝑛, 1/𝑛, 1/𝑛2, 2𝑛) is EC-complete.

Proof. To model all weighted Turing machines defined in §2.2.2, we extend the Turing-

complete one-encoder-layer three-decoder-layer Transformer network construction intro-

duced by Pérez, Barceló, and Marinkovic (2021) with one additional layer. We also modify

the original positional embedding function pos ∶ ℕ → ℚ𝑑
to include a new component. In

this proof, we let

pos(𝑖) = [0,… , 0, 1, 𝑖, 1/𝑖, 1/𝑖2, 2𝑖]

instead of pos(𝑖) = [0,… , 0, 1, 𝑖, 1/𝑖, 1/𝑖2] as in (Pérez, Barceló, and Marinkovic, 2021).
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For the sake of clarity, our construction is a ‘stack-on’ construction: the encoder layer

and the first 3 decoder layers are largely identical to the design of Pérez, Barceló, and

Marinkovic (2021), with the only difference being necessary changes to accommodate our

one additional positional embeddings component.
12

It may be possible to strengthen our

results by showing that one-encoder-layer three-decoder-layer Transformer networks

with the original positional embeddings — the parametrization family (Pérez, Barceló, and

Marinkovic, 2021) showed to be Turing-complete — are EC-complete as well, with a more

involved construction. We leave such an improvement as future work.

We claim our fourth layer of the decoder has output 𝐲𝑟 = 𝐲′𝑟 +𝐰𝑟 , where

∙ 𝐲′𝑟 is a zero-padded version of the original Transformer output embeddings from

(Pérez, Barceló, and Marinkovic, 2021). 𝐲′𝑟 is of the form

[J𝑞𝑟K, J𝑠𝑟K, 𝑚(𝑟−1), 0,… , 0]

where J𝑞𝑟K denotes an one-hot vector of size |𝑄| where the 𝑞𝑟-th component is 1

(again following the notation of (Pérez, Barceló, and Marinkovic, 2021)).

∙ And 𝐰𝑟 is of the form

[𝟎𝑞, 𝟎𝑠 , 0,num𝑟 ,denom𝑟 , 0,… , 0] (2.1)

12
Since we increase the output embeddings’ dimension by 1, we also need to pad all matrices in the

original construction by additional zero columns/rows, such that our new positional embeddings’ new com-

ponent has no effect on any computation in the encoder layer, and the first 3 decoder layers.
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where num𝑟 ∈ ℕ ∪ {0} and denom𝑟 ∈ ℕ ∪ {0} are defined in §2.2.2.

Now we describe how 𝐰𝑟 can be computed from [𝐲′0 … 𝐲′𝑟 ] using the attention mechanism,

with the help of our new positional embeddings. Specifically, we want to show that we can

construct feedforward networks 𝑄4, 𝐾4, and 𝑉4 such that

𝐲𝑖 = Att(𝑄4(𝐲′′𝑖 ), 𝐾4(𝐘′′
𝑖 ), 𝑉4(𝐘′′

𝑖 ))

where 𝐲′′𝑖 = 𝐲′𝑖 + pos(𝑖), 𝐘′ = [𝐲′1… 𝐲′𝑖], and 𝐘′′
𝑖 = 𝐘′ + [pos(1),… , pos(𝑖)]. We let 𝑄4(𝐲′′) =

[0,… , 0, 1, 0, 0, 0, 0] be a constant vector, and 𝐾4(𝐘′′
𝑖 ) = 𝐘′′

𝑖 . Finally, we let

𝑉4(𝐘′′
𝑖 ) = [𝟎𝑞, 𝟎𝑠 , 0,

𝕀(update_num(𝑞𝑖) = carry)2𝑖 ,

𝕀(update_denom(𝑞𝑖) = carry)2𝑖 , 0,… , 0].

𝑄4 is a constant function (such that it always attends to the unity component of

𝐘′′
𝑖 ), so it can be implemented as a single-layer feedforward network. 𝐾4 is the identity

function, which can also be implemented as a single-layer feedforward network. 𝑉4 on

the hand can be implemented as a fixed-size feedforward network, with the piecewise-

linear sigmoidal function 𝜎 : in the case of denom𝑖 , the network would first project 𝑞𝑖 to

𝐚 = [𝕀(update_denom(𝑞𝑖) = carry), 𝕀(update_denom(𝑞𝑖) = same)] (using the one-hot J𝑞𝑖K

segment from 𝐲′𝑖 ), multiply it by 𝐛 = [2𝑖 , 0] (with the help of nonlinearity from 𝜎 ), and put

𝐚 ⊗ 𝐛 at the position of denom𝑖 in equation (2.1). The component at num𝑖 in equation (2.1)
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can be computed likewise.

Given any position 𝑟 ∈ ℕ, we have

𝐲𝑟 = Att(𝑄4(𝐲′′𝑟 ), 𝐾4(𝐘′′
𝑟 ), 𝑉4(𝐘′′

𝑟 )) = [𝟎𝑞,

𝟎𝑠 ,

0,

1
𝑟

𝑟

∑
𝑖=1

𝕀(update_num(𝑞𝑖) = carry)2𝑖 ,

1
𝑟

𝑟

∑
𝑖=1

𝕀(update_denom(𝑞𝑖) = carry)2𝑖 ,

0,

… ,

0].

Let extract_avg_num(𝐲𝑟 ) be an affine transformation that extracts the (|𝑄| + |Σ| + 2)nd

component from 𝐲𝑟 , and extract_avg_denom(𝐲𝑟 ) be an affine transformation that extracts

the (|𝑄| + |Σ| + 3)rd
component from 𝐲𝑟 , we have

extract_avg_num(𝐲𝑟 )
extract_avg_denom(𝐲𝑟 )

=
∑𝑟

𝑖=1 𝕀(update_num(𝑞𝑖) = carry)2𝑖

∑𝑟
𝑖=1 𝕀(update_denom(𝑞𝑖) = carry)2𝑖

=
num𝑟

denom𝑟

which is the weight of input 𝐱 = [𝑥1 … 𝑥𝑇 ] as we defined in §2.3.1.
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2.4 Realistic parametric sequence models

In §2.3 we discussed hard-attention Transformer models that can keep decoding symbols

after they consumed every input symbol. This assumption does not hold for common

Transformer language models, such as GPT-3 (Brown et al., 2020).

It turns out the constraint that no additional symbols can be decoded severely limits

expressiveness. For example, Schwartz, Thomson, and Smith (2018) showed that a particular

CNN model family is equivalent to weighted finite-state automata. Merrill et al. (2020) also

showed saturated GRUs and RNNs can also be described by finite-state automata. More

recently, Hao, Angluin, and Frank (2022) showed that hard-attention Transformers that do

not decode additional symbols can only recognize languages within the circuit complexity

class AC0
, which does not contain ‘easy’ languages such as Parity.

2.5 Brief summary

In this chapter, we have introduced several abstractions of sequence models. In particular,

we have identified several classes of weighted languages, namely EC, LN, ELN, ECCP, and

ELNCP.

In the next chapter, we will formally establish an expressiveness taxonomy of these

weighted language classes.
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An expressiveness taxonomy of

various weighted language classes

We have defined various weighted language families in §2.2. In particular, we have intro-

duced EC and ELN as classes of weighted languages defined by common neural sequence

model architectures §2.3. We have also introduced ECCP and ELNCP as non-uniform

counterparts of EC and ELN. These weighted language classes can be seen as abstractions

of neural sequence models that do arbitrary polytime computation, and are very powerful.

Still, we ask: are there expressiveness differences among these classes? More specifically, in

this chapter we answer the following questions:

Does local normalization hurt expressiveness? (§3.1) LN weighted languages intro-

duced in §2.2.4 are an abstraction of autoregressive sequence models (§2.1.3). LN

weighted languages are guaranteed to have computable local conditional distributions
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given any possible prefix, which in turn makes inference and parameter estimation

easier.

However, we do find that the parametrization assumption of LN weighted languages

does reduce expressiveness (Theorem 3.1.1) — they cannot even model some normal-

izable weighted languages ∈ EC— namely there is a string distribution where the

unnormalized string probabilities are efficient to compute, but the string probabilities

cannot be expressed as products of left-to-right autoregressive factors.

Just train larger models? (§3.2) The negative results stated by Theorem 3.1.1 might

not deter machine learning practitioners from building bigger and bigger neural

autoregressive sequence models. ‘Why should we care when you said fixed-size

autoregressive sequence models will not work for all strings? We will just build a

bigger model that works on longer strings’ they may say. While we can show that

we do capture more distributions if we allow the parameter vector size to grow with

the maximum length of strings we model (Lemma 3.2.1), we also show that making

models larger is no panacea: we will exhibit a weighted language ∈ EC that cannot

be modeled by larger autoregressive models, unless the autoregressive models grow

superpolynomially in string length (Theorem 3.2.2). Moreover, autoregressive models

not only cannot fit these distributions exactly, they cannot even capture their supports

(Theorem 3.2.3) or approximate distributions that honor rankings of string weights

(Lemma 3.2.4). Finally, we show that we not only cannot keep the string weight

rankings — we cannot even guarantee to approximate string weights from some
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EC language within any multiplicative factor — if the parameter vector only grows

polynomially in string length, and that we use only polytime in computing local

conditional distributions, even with the help of randomized algorithms (Lemma 3.2.7

and Theorem 3.2.6).

Do latent variables help? (§3.3) Despite the negative results with autoregressive se-

quence models, they become much more powerful when they also model latent

variables. Specifically, we show that the class ELNCP, which is an abstraction of

parametrized autoregressive sequence models, can capture supports of all weighted

languages ∈ ECCP, which is an abstraction of parametrized energy-based sequence

models, as long as some symbols are latent variables (Theorems 3.3.1 and 3.3.2).

Model family

Compact

parameters?

Efficient

scoring?

Normalization

possible?

Support can be . . .

ELN/ELNCP: Autoregressive models (§2.2.4) ✓ ✓ ✓ some but not all 𝐿 ∈ P
EC/ECCP: Energy-based models (§2.2.3) ✓ ✓ ✗ all 𝐿 ∈ P but no 𝐿 ∈ NPC
Lightly marginalized ELNCP: Latent-variable au-

toregressive models (§3.3)

✓ ✗ ✓ all 𝐿 ∈ NP

Lookup models (§3.4.3) ✗ ✓ ✓ anything

Table 3.1: A feature matrix of parametric model families discussed in this chapter.

The space of unweighted languages. Based on our answers to these questions, we

identify three sequence model families that all more expressive than ELN (§3.4; also

Table 3.1). We characterize these sequence families and connect them to existing models in

the literature. Major findings of this chapter (in terms of the various supports of different

weighted language classes) are summarized in Figure 3.1. We assume in this diagram that
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NP ⊈ P/poly. Each rectangular outline corresponds to a complexity class (named in its lower

right corner) and encloses the languages whose decision problems fall into that class. Each

bold-italic label (colored to match its shape outline) names a model family and encloses

the languages that can be expressed as the support of some weighted language in that

family. All induced partitions in the figure are non-empty sets: shape A properly encloses

shape B if and only if language class A is a strict superset of language class B. As mentioned

in Table 3.1,
1

standard autoregressive models (ELN models) have support languages that

form a strict subset of P (Lemmas 2.2.3 and 2.2.4, Theorem 3.1.1, and §2.2.5.1). ELNCP

models (§2.2.4) extend ELN models by allowing the parameter size to grow polynomially in

string length, allowing them to capture both more languages inside P (Lemma 3.2.1) and

languages outside P (including undecidable but sparse languages) that can be characterized

autoregressively with the help of these compact parameters. All of those languages belong

in the class P/poly. Theorem 3.2.3 establishes that energy-based (EC) and ECCP models go

strictly further than ELN and ELNCP models, respectively (Theorem 3.2.3): they correspond

to the entire classes P and P/poly (Lemma 2.2.4). However, even ECCP does not capture

any NP-complete languages under our assumption NP ⊈ P/poly. Allowing a polynomial

number of latent symbols extends the power further still: lightly marginalized ELNCP

or ECCP distributions cover exactly the languages ∈ NP/poly (Theorem 3.3.2). Finally, if

we were to drop the requirement that the parameters 𝚯 must be compact, we could store

lookup tries to model any weighted language (§3.4.3).

1
Also see Figure 3.1.
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Lookup Models

Lightly Marginalized ELNCP Models

ELN

EC

(all unweighted languages)
<latexit sha1_base64="s1npvV5mqQng659RwU2YXDao540=">AAAB+XicdVDLSgMxFM34rPU16tJNsAjVxZAZa1t3BTcuK9gHtGPJpGkbmskMSaZQhv6JGxeKuPVP3Pk3ZtoKKnogcDjnXu7JCWLOlEbow1pZXVvf2Mxt5bd3dvf27YPDpooSSWiDRDyS7QArypmgDc00p+1YUhwGnLaC8XXmtyZUKhaJOz2NqR/ioWADRrA2Us+2uyHWI4J5Wp8Vm/fnZz27gBxULrmeC5FzidyqhxbkqnIBXQfNUQBL1Hv2e7cfkSSkQhOOleq4KNZ+iqVmhNNZvpsoGmMyxkPaMVTgkCo/nSefwVOj9OEgkuYJDefq940Uh0pNw8BMZjnVby8T//I6iR5U/ZSJONFUkMWhQcKhjmBWA+wzSYnmU0MwkcxkhWSEJSbalJU3JXz9FP5Pmp7jlh3vtlSo1ZZ15MAxOAFF4IIKqIEbUAcNQMAEPIAn8Gyl1qP1Yr0uRles5c4R+AHr7RPtKJM0</latexit>

P(V ⇤)

Figure 3.1: The space of unweighted languages.

3.1 Effects of local normalization

LN weighted languages require each autoregressive factor 𝑝(⋅ ∣ 𝐱<𝑡) to be computed in

finite time. Therefore it may not be surprising that they cannot model weighted languages

where such autoregressive factors are not computable. However, we can construct one

such weighted language that is still ∈ EC:

Theorem 3.1.1. The set {�̃� ∶ �̃� is normalizable, �̃� ∈ EC, �̃� ∉ LN} is not empty.

Proof. Given any unweighted language 𝐿 ⊆ 𝔹∗
, we can define a normalizable weighted
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language �̃� with support 𝐿 by �̃�(𝐱) = 1/3|𝐱|+1 for 𝐱 ∈ 𝐿 and �̃�(𝐱) = 0 otherwise. Moreover, if

𝐿 ∈ P, then �̃� ∈ EC.

For our purposes, we take 𝐿 to consist of all strings of the form 𝐱(1)𝐱(2), for which there

exists a deterministic Turing machine 𝑀 such that 𝐱(1) = enc(𝑀) (where enc is a prefix-free

encoding function) and 𝐱(2) encodes an accepting execution path of 𝑀 on an empty input.

(Such a path may be represented as a sequence of transitions of 𝑀 that begins with an

initial state and ends at an accepting state.) Note that any deterministic TM 𝐱(1) can be

paired with at most one accepting execution path 𝐱(2), and cannot be paired with any 𝐱(2) if

it does not halt.

Clearly 𝐿 ∈ P: given 𝐱 ∈ 𝔹∗
, we can decide whether 𝐱 ∈ 𝐿 by first checking if 𝐱 can be

expressed as a concatenation of strings 𝐱(1) and 𝐱(2) of the required form. Then we build 𝑀

from 𝐱(1) and simulate it to check the transitions in 𝐱(2) on 𝑀 step-by-step. This can be

done in 𝑂(poly(|𝐱|)) total time. We conclude that the �̃� derived from 𝐿 is EC.

Now, 𝑍 (𝐱(1)) > 0 iff 𝑀 halts on the empty input. But this undecidable problem could be

decided if there were an LN weighted language that had support 𝐿, since then 𝑍 (𝐱(1)) /𝑍

could be found as a product of local conditional probabilities, ∏|𝐱(1) |
𝑡=1 𝑝(𝑥

(1)
𝑡 ∣ 𝐱(1)<𝑡 ), that could

each be computed by a Turing machine. Therefore �̃� is not LN.
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3.2 Effects of non-uniform computation

Indeed, as we noted in §2.2.3.1, machine learning models of sequences arguably benefit

from the power of non-uniform models of computation. Below is a summary of this section.

Non-uniform computation does give sequence models additional power (§3.2.1). Nonethe-

less, the limitations introduced by local normalization cannot be entirely mitigated by the

additional power coming from non-uniform computation, if we require the model sizes to

be reasonably small, and that inference from these models is reasonably fast, under the

assumption of NP ⊈ P/poly. More specifically, we will exhibit a weighted language that

cannot be captured by ELNCP languages, regardless of:

∙ the amount of training data,

∙ the amount of compute used to train a sequence model,

∙ and the actual parametrization of the sequence model,

as long as it has a parameter vector size polynomial in the length of the strings being

modeled, and computes local conditional probabilities in time polynomial of string lengths

(i.e., the sequence model ∈ ELNCP).
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3.2.1 ELNCP models are strictly more powerful than

ELN models

ELNCP weighted languages do have more power than ELN weighted languages. In fact, the

compact parameter vectors allow ELNCP weighted languages to capture distributions that

no LN weighted languages can:

Lemma 3.2.1. The set {�̃� ∶ �̃� ∈ EC, �̃� ∈ ELNCP, �̃� ∉ LN} is not empty.

Lemma 3.2.1 justifies why this region is drawn as non-empty in Figure 3.1. Note that

Theorem 3.1.1 can be regarded as a corollary of Lemma 3.2.1.

Proof. The weighted language �̃� constructed in Theorem 3.1.1 is not necessarily ELNCP. To

fix this, we modify the construction to obtain a weighted language �̃�′ with sparse support

𝐿′. We will again be able to show that �̃�′ is EC and not ELN. To show that �̃�′ is also ELNCP,

we will rely on the sparsity of 𝐿′, meaning that prefixes(𝐿′) ≜ {�̂�′ ∶ (∃𝐱′ ∈ 𝐿′) �̂�′ ⪯ 𝐱′}

contains at most 𝑂(poly(𝑛)) strings �̂�′ of length ≤ 𝑛 + 1. Thus, we can use 𝚯q
𝑛 to store all of

those strings �̂�′ in polynomial space, along with their 𝑍 (�̂�′) values.
2

Notice that all strings

�̂�′ ∉ prefixes(𝐿′) have 𝑍 (�̂�′) = 0, so they need not be stored. Now for any �̂�′ of length

≤ 𝑛, a Turing machine that consults 𝜽q
𝑛 can compute 𝑞(𝑥 ∣ �̂�′) = 𝑍�̃�′(�̂�

′𝑥) /𝑍�̃�′(�̂�
′) in time

𝑂(poly(𝑛)) as desired, establishing that �̃�′ is ELNCP.

2
More precisely, the first 𝑏 bits of 𝑍 (�̂�′) ≤ 1 may be stored in 𝚯q

𝑛+𝑏 , when ELNCP is defined as explained

in our “Remark on irrationality” below.
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We may define �̃�′ as follows. Let sparsify(𝐱) be a version of 𝐱 with many extra 0 symbols

inserted: specifically, it inserts 2𝑡 copies of 0 immediately before the 𝑡 th
bit of 𝐱, for all

1 ≤ 𝑡 ≤ |𝐱|. We construct �̃�′ so that �̃�′(sparsify(𝐱)) = �̃�(𝐱). Specifically, let 𝐿′ ≜ sparsify(𝐿).

The inverse function sparsify−1(𝐱′) is defined on exactly 𝐱′ ∈ 𝐿′, and is unique when defined.

For all 𝐱′ ∈ 𝔹∗
, let �̃�′(𝐱′) ≜ �̃�(sparsify−1(𝐱′)) if sparsify−1(𝐱′) is defined, and �̃�′(𝐱′) ≜ 0

otherwise. This can be computed in polytime, so �̃�′ is EC. Also, its support 𝐿′ is sparse as

claimed, so �̃�′ is ELNCP.

Finally, we claim �̃�′ is not LN. A given deterministic Turing machine𝑀 halts on the empty

input iff enc(𝑀) ∈ prefixes(𝐿) iff sparsify(enc(𝑀)) ∈ prefixes(𝐿′) iff 𝑍 ′(sparsify(enc(𝑀))) >

0. But as in the proof of Theorem 3.1.1, this would be decidable if �̃�′ were LN as defined

in §2.2.4, since then we would have a Turing machine to compute the local conditional

probabilities 𝑝′(�̂� 𝑡 ∣ �̂�<𝑡) for �̂� = sparsify(enc(𝑀)).

3.2.2 ELNCP models cannot exactly capture all EC (or

ECCP) distributions

Lemma 3.2.1 states that with the help of compact parameters, ELNCP models can have some

languages ∈ P as their supports which cannot be supports of LN models (which contains

all ELN languages). However, our proof of Lemma 3.2.1 depends on the observation that

compact parameter vectors can encode any sparse language. Yet it is known that sparse

NP-complete languages exist if and only if P = NP (Mahaney, 1982), which implies that
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assuming P ≠ NP, we can no longer use the ‘sparsification’ technique in the proof of

Lemma 3.2.1 to model certificates of any NP-complete language with ELNCP distributions,

since none of them will be sparse. However, all such certificates are verifiable in polynomial

time by definition (and hence model-able by EC distributions). Indeed, if we further assume

NP ⊈ P/poly (§2.2.5.2) — an assumption even stronger than P ≠ NP, yet still believed to be

true by many — we can show there exists a distribution that is EC but not ELNCP.

We prove our claim by defining a certain weighted language �̃� and reducing Sat to

computing certain local conditional probabilities of �̃� (as defined in §2.2.1). Each decision

Sat(𝜙) (where 𝜙 ranges over formulas) corresponds to a particular local conditional

probability, implying that there is no polytime scheme for computing all of these probabilities,

even with polynomially sized advice strings (i.e., parameters).

Without loss of generality, we consider only formulae 𝜙 such that the set of variables

mentioned at least once in 𝜙 is {𝐴1,… , 𝐴𝑗} for some 𝑗 ∈ ℕ; we use |𝜙| to denote the

number of variables 𝑗 in 𝜙. We say that 𝐚 satisfies 𝜙 if 𝐚 ∈ 𝔹|𝜙|
and (𝐴1 = 𝑎1,… , 𝐴|𝜙| = 𝑎|𝜙|)

is a satisfying assignment. Finally, let boldface 𝝓 ∈ 𝔹∗
denote enc(𝜙) where enc is a

prefix-free encoding function. We can now define the unweighted language  = {𝝓𝐚 ∣

𝜙 is a formula and 𝐚 ∈ 𝔹|𝜙|
and 𝐚 satisfies 𝜙} over alphabet 𝔹, which contains each possible

Sat problem concatenated to each of its solutions.
3

We now convert  to a weighted language �̃�, defined by �̃�(𝐱) = �̃�(𝝓, 𝐚) = ( 13 )
|𝐱|+1

for

𝐱 ∈  (otherwise �̃�(𝐱) = 0). �̃� is normalizable since 𝑍 is both finite (𝑍 = ∑𝐱∈𝔹∗ �̃�(𝐱) ≤
3
For example,  contains the string 𝝓𝐚 where 𝝓 = enc((𝐴1 ∨ ¬𝐴2 ∨ 𝐴3) ∧ (𝐴1 ∨ ¬𝐴4)) and 𝐚 = 1101.
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∑𝐱∈𝔹∗( 13 )
|𝐱|+1 = 1) and positive (𝑍 > 0 because the example string in footnote 3 has weight

> 0). The conditional distribution 𝑝(𝐚 ∣ 𝝓) is uniform over the satisfying assignments 𝐚 of

𝝓, as they all have the same length |𝜙|.

�̃� is efficiently computable, and so is 𝑝 = �̃�/𝑍 .
4

Yet deciding whether the local conditional

probabilities of �̃� are greater than 0 is NP-hard. In particular, in Theorem 3.2.2 we show

that Sat can be reduced to deciding whether certain local probabilities are greater than 0,

namely the ones that condition on prefixes �̂� that consist only of a formula: �̂� = 𝝓 for some

𝜙. This implies, assuming NP ⊈ P/poly, that no (𝑀q,𝚯q) can efficiently locally normalize �̃�

with compact parameters. Granted, the restriction of �̃� to the finite set {𝐱 ∈ 𝔹∗ ∶ |𝐱| ≤ 𝑛}

can be locally normalized by some polytime Turing machine 𝑞𝑛, using the same trie trick

sketched in §2.2.3.1. But such tries have sizes growing exponentially in 𝑛, and it is not

possible to produce a sequence of such machines, {𝑞𝑛 ∶ 𝑛 ∈ ℕ}, via a single master Turing

machine 𝑀q
that runs in 𝑂(poly(𝑛)) on 𝜽q

𝑛. That is:

Theorem 3.2.2. Assuming NP ⊈ P/poly, there exists a normalizable weighted language

�̃� ∈ EC that is not ELNCP.

Proof. The unweighted language �̃� defined earlier in this section is efficiently computable

via the following simple algorithm that outputs �̃�(𝐱) given 𝐱 ∈ 𝔹∗
. If 𝐱 has a prefix that

encodes a formula 𝜙, and the remainder of 𝐱 is a satisfying assignment 𝐚 to the variables of

𝜙, then return ( 13 )
|𝐱|+1

. Otherwise return 0. This algorithm can be made to run in polynomial

4
Almost. This 𝑍 could be irrational, but at least it is computable to any desired precision. For any rational

�̂� ≈ 𝑍 , we can say �̂� = �̃�/�̂� ≈ 𝑝 is EC, via a Turing machine 𝑀 �̂�
that stores �̂� .
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time because whether an assignment satisfies a formula can be determined in polynomial

time (a fact that is standardly used to establish that Sat ∈ NP).

Given a formula 𝜙 with variables 𝐴1,… , 𝐴𝑗 , we define 𝜙′ = (¬𝐴1 ∧ ¬𝐴2 ∧ … ∧ ¬𝐴𝑗 ∧

¬𝐴𝑗+1) ∨ (𝐴1 ∧ Shift(𝜙)), where Shift(𝜙) is a version of 𝜙 in which 𝐴𝑖 has been renamed to

𝐴𝑖+1 for all 1 ≤ 𝑖 ≤ 𝑗. It is obvious that 𝜙′
and 𝑝 have the properties stated in the proof

sketch. The strings in  that begin with 𝝓′
are precisely the strings of the form 𝝓′𝐚′ where

𝐚′ is a satisfying assignment of 𝜙′
— which happen just when 𝐚′ = 0𝑗+1 or 𝐚′ = 1𝐚 where 𝐚 is

a satisfying assignment of 𝜙. At least one string in  begins with 𝝓′
, namely 𝝓′0𝑗+1, so

𝑍 (𝝓′) > 0. Moreover, 𝑍 (𝝓′1) > 0 iff 𝜙 has any satisfying assignments. Therefore the local

probability 𝑝(1 ∣ 𝝓′) = 𝑍 (𝝓′1) /𝑍 (𝝓′) is defined (see §2.2), and is > 0 iff Sat(𝜙).

Notice that the formal problem used in the proof is a version of Sat whose inputs are

encoded using the same prefix-free encoding function enc that was used by our definition

of  in §3.2.2. We must choose this encoding function to be concise in the sense that

𝝓 ≜ enc(𝜙) can be converted to and from the conventional encoding of 𝜙 in polynomial

time. This ensures that our version of Sat is ≤𝑃𝑚-interreducible with the conventional

version and hence NP-complete. It also ensures that there is a polynomial function 𝑓 such

that |𝝓′| ≤ 𝑓 (|𝝓|), as required by the proof sketch, since there is a polynomial-time function

that maps 𝝓 → 𝜙 → 𝜙′ → 𝝓′
and the output length of this function is bounded by its

runtime. This is needed to show that our version of Sat is in P/poly.

Specifically, to show that the existence of (𝑀q,𝚯q) implies Sat ∈ P/poly, we use it to

construct an appropriate pair (𝑀,𝚯) such that (𝑀(𝜽𝑛))(𝝓) = Sat(𝜙) if |𝝓| = 𝑛. We define 𝚯
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by 𝜽𝑛 = 𝜽q
𝑓 (𝑛), and observe that |𝜽𝑛| ∈ 𝑂(poly(𝑛)) (thanks to compactness of the parameters

𝚯q
and the fact that 𝑓 is polynomially bounded). Finally, define𝑀(𝜽𝑛) to be a Turing machine

that maps its input 𝝓 of length 𝑛 to 𝝓′
of length ≤ 𝑓 (𝑛), then calls 𝑀q(𝜽𝑛) = 𝑀q(𝜽q

𝑓 (𝑛)) on 𝝓′1

to obtain 𝑝(1 ∣ 𝝓′), and returns true or false according to whether 𝑝(1 ∣ 𝝓′) > 0. Computing

𝝓′
takes time polynomial in 𝑛 (thanks to the properties of enc). Constructing 𝑀q(𝜽 𝑓 (𝑛)) and

calling it on 𝝓′
each take time polynomial in 𝑛 (thanks to the properties of 𝑓 and 𝑀q

).

Remark on conditional models. While we focus on modeling joint sequence proba-

bilities in this work, we note that in many applications it often suffices to just model

conditional probabilities 𝑝(⋅ ∣ �̂�) (Sutskever, Vinyals, and Le, 2014). Unfortunately, our proof

of Theorem 3.2.2 above implies that ELNCPs do not make good conditional models either:

specifically, there exists 𝝓 such that deciding whether 𝑝(1 ∣ 𝝓) > 0 is NP-hard, and thus

beyond ELNCP’s capability.

Remark on irrationality. In our definitions of ECCP and ELNCP languages, we implicitly

assumed that the Turing machines that return weights or probabilities would write them in

full on the output tape (e.g., in the manner of weighted Turing machines introduced in

§2.2.2). Such a Turing machine can only return rational numbers.

But then our formulation of Theorem 3.2.2 allows another proof. We could construct �̃�

such that the local conditional probabilities 𝑝(𝑥 ∣ �̂�) ≜ 𝑍 (�̂�𝑥)/𝑍 (�̂�) are sometimes irrational.

In this case, they cannot be output exactly by a Turing machine, implying that �̃� is not

ELNCP. However, this proof exposes only a trivial weakness of ELNCPs, namely the fact
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that they can only define distributions whose local marginal probabilities are rational.

We can correct this weakness by formulating ELNCP languages slightly differently.

A real number is said to be computable if it can be output by a Turing machine to any

desired precision. That Turing machine takes an extra input 𝑏 which specifies the number

of bits of precision of the output. Similarly, our definitions of ECCP and ELNCP can be

modified so that their respective Turing machines �̃�𝑛 and 𝑞𝑛 take this form, are allowed to

run in time 𝑂(poly(𝑛 + 𝑏)), and have access to the respective parameter vectors 𝚯p
𝑛+𝑏 and

𝚯q
𝑛+𝑏. Since some of our results concern the ability to distinguish zero from small values

(arbitrarily small in the case of Lemma 3.2.1), our modified definitions also require �̃�𝑛 and 𝑞𝑛

to output a bit indicating whether the output is exactly zero. For simplicity, we suppressed

these technical details from our exposition.

Relatedly, in §3.4.3, we claimed that lookup models can fit any weighted language up to

length 𝑛. This is not strictly true if the weights can be irrational. A more precise statement

is that for any weighted language �̃�, there is a lookup model that maps (𝐱, 𝑏) to the first 𝑏

bits of �̃�(𝐱). Indeed, this holds even when �̃�(𝐱) is uncomputable.

Remark on computability. In §2.2.1 we claimed that any weighted language �̃� that

has a finite and strictly positive 𝑍 can be normalized as 𝑝(𝐱) = �̃�(𝐱)/𝑍 . However, 𝑍 may be

uncomputable: that is, there is no algorithm that takes number of bits of precision 𝑏 as

input, and outputs an approximation of 𝑍 within 𝑏 bits of precision. Therefore, even if �̃� is

computable, 𝑝 may have weights that are not merely irrational but even uncomputable. An

example appears in the proof of Lemma 3.2.1. Weighted language classes (e.g. ELNCP) that

70



CHAPTER 3. EXPRESSIVENESS TAXONOMY OF WEIGHTED LANGUAGE CLASSES

only model normalized languages will not be able to model such languages, simply because

the partition function is uncomputable.

However, our proof of Theorem 3.2.2 does not rely on this issue, because the �̃� that

it exhibits happens to have a computable 𝑍 . For any 𝑏, 𝑍 may be computed to 𝑏 bits of

precision as the explicit sum ∑𝐱∶|𝐱|≤𝑁 �̃�(𝐱) for a certain large 𝑁 that depends on 𝑏.

Remark on RNNs. Our proof of Theorem 3.2.2 showed that our problematic language �̃�

is efficiently computable (though not by any locally normalized architecture with compact

parameters). Because this chapter is in part a response to popular neural architectures, we

now show that �̃� can in fact be computed efficiently by a recurrent neural network (RNN)

with compact parameters. Thus, this is an example where a simple globally normalized

RNN parameterization is fundamentally more efficient (in runtime or parameters) than any

locally normalized parameterization of any architecture (RNN, Transformer, etc.).

Since we showed that �̃� is efficiently computable, the existence of an RNN implementa-

tion is established in some sense by the ability of finite rational-weighted RNNs to simulate

Turing machines (Siegelmann and Sontag, 1992), as well as an extension to Chen et al.

(2018b, Thm. 11) to a family of RNNs, where each RNN instance also takes some formula

encoding as input. However, it is straightforward to give a concrete construction, for each

𝑛 ∈ ℕ, for a simple RNN that maps each string 𝐱 ∈ 𝔹𝑛
to �̃�(𝐱). Here �̃�(𝐱) will be either

( 13 )
𝑛+1

or 0, according to whether 𝐱 has the form 𝝓𝐚 where 𝝓 encodes a 3-CNF-Sat formula
5

5
3-CNF-Sat formulae are conjunctive normal form (CNF) Sat formulae, where each clause in a formula

contains no more than 3 variables. Deciding whether a 3-CNF-Sat formula is satisfiable is NP-complete.
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𝜙 that is satisfied by 𝐚.
6

The basic idea is that 𝝓 has 𝑗 ≤ 𝑛 variables, so there are only 𝑂(𝑛3)

possible 3-CNF clauses. The RNN allocates one hidden unit to each of these. When reading

𝝓𝐚, each clause encountered in 𝝓 causes the corresponding hidden unit to turn on, and

then each literal encountered in 𝐚 turns off the hidden units for all clauses that would be

satisfied by that literal. If any hidden units remain on after 𝐱 has been fully read, then

𝝓 was not satisfied by 𝐚, and the RNN’s final output unit should return 0. Otherwise it

should return ( 13 )
𝑛+1

, which is constant for this RNN. To obtain digital behaviors such as

turning hidden units on and off, it is most convenient to use ramp activation functions for

the hidden units and the final output unit, rather than sigmoid activation functions. Note

that our use of a separate RNN 𝑀RNN

𝑛 for each input length 𝑛 is an example of using more

hidden units for larger problems, namely the non-uniform computation paradigm that

we introduced in §2.2.3.1 in order to look at asymptotic behavior. The RNN’s parameter

sequence 𝚯RNN = {𝜽RNN

𝑛 ∣ 𝑛 ∈ ℕ} is obviously compact, as 𝜽RNN

𝑛 only has to store the input

length 𝑛. With our alphabet 𝔹 for �̃�, |𝜽RNN

𝑛 | ∈ 𝑂(log 𝑛).

3.2.3 ELNCP models cannot even capture all EC (or ECCP)

supports or rankings

We can strengthen Theorem 3.2.2 as follows:

6
The restriction to 3-CNF-Sat formulas is convenient, but makes this a slightly different definition of

 and �̃� than we used in the proofs above. Those proofs can be adjusted to show that this �̃�, too, cannot

be efficiently locally normalized with compact parameters. The only change is that in the construction of

Theorem 3.2.2, 𝜙′ must be converted to 3-CNF. The proof then obtains its contradiction by showing that

3-CNF-Sat ∈ P/poly (which suffices since 3-CNF-Sat is also NP-complete).
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Theorem 3.2.3. AssumingNP ⊈ P/poly, there exists an efficiently computable normalizable

weighted language �̃� where there is no ELNCP �̃� such that support(�̃�) = support(�̃�).

Proof. Observe that for any two weighted languages �̃� and �̃� with the same support,

∀�̂� ∈ 𝑉 ∗, 𝑍�̃�(�̂�) > 0 ⟺ 𝑍�̃�(�̂�) > 0 (where 𝑍�̃� and 𝑍�̃� return the prefix probabilities

of �̃� and �̃� respectively). Thus, for any �̂� with 𝑍�̃�(�̂�) > 0, 𝑝(1 ∣ �̂�) ≜ 𝑍�̃�(�̂�1)/𝑍�̃�(�̂�) and

𝑞(1 ∣ �̂�) ≜ 𝑍�̃�(�̂�1)/𝑍�̃�(�̂�) are well-defined and 𝑝(1 ∣ �̂�) > 0 ⟺ 𝑞(1 ∣ �̂�) > 0. If �̃� is ELNCP,

then all such probabilities 𝑞(1 ∣ �̂�) can be computed in polytime with compact parameters,

so it is likewise efficient to determine whether 𝑝(1 ∣ �̂�) > 0. But this cannot be the case

when �̃� is the weighted language used in the proof of Theorem 3.2.2, since that would

suffice to establish that Sat ∈ P/poly, following the proof of that theorem.

To put this another way, there exists an unweighted language in P (namely support(�̃�))

that is not the support of any ELNCP distribution.

If they have different support, normalizable languages also differ in their ranking of

strings:

Lemma 3.2.4. Let �̃�, �̃� be normalizable weighted languages. If ∀𝐱1 ∈ 𝔹∗, ∀𝐱2 ∈ 𝔹∗, �̃�(𝐱1) <

�̃�(𝐱2) ⟺ �̃�(𝐱1) < �̃�(𝐱2), then support(�̃�) = support(�̃�).

Proof. Suppose that the claim is false, i.e., �̃� and �̃� have the same ranking of strings, but

that the supports are different. Then the minimum-weight strings under �̃� must also be

minimum-weight under �̃�. WLOG, there exists 𝐱 ∈ 𝑉 ∗
with �̃�(𝐱) = 0 and �̃�(𝐱) = 𝑐 > 0,

because the supports are different. Then 𝑐 > 0 is the minimum weight of strings in �̃�. But this
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is not possible for a normalizable language �̃�, since it means that 𝑍�̃� ≜ ∑𝐱′∈𝑉 ∗ 𝑞(𝐱′) ≥ ∑𝐱′∈𝑉 ∗ 𝑐

diverges.

Therefore, no ELNCP �̃� captures the string ranking of �̃� from Theorem 3.2.3. And for

some �̃�, any ELNCP �̃� misranks even string pairs of “similar” lengths:

Theorem 3.2.5. Assuming NP ⊈ P/poly, there exists an efficiently computable normaliz-

able weighted language �̃� such that no ELNCP �̃� with support(�̃�) ⊇ support(�̃�) has �̃�(𝐱1) <

�̃�(𝐱2) ⇒ �̃�(𝐱1) < �̃�(𝐱2) for all 𝐱1, 𝐱2 ∈ 𝑉 ∗
. Indeed, any such �̃� has a counterexample where

�̃�(𝐱1) = 0. Moreover, there is a polynomial 𝑓�̃� ∶ ℕ → ℕ such that a counterexample exists

for every 𝐱1 such that �̃�(𝐱1) = 0 and �̃�(𝐱1) > 0, where the 𝐱2 in this counterexample always

satisfies |𝐱2| ≤ 𝑓�̃�(|𝐱1|).

Proof. Let �̃� be the weighted language from Theorem 3.2.3. Given an ELNCP �̃�. By Theo-

rem 3.2.3, support(�̃�) ≠ support(�̃�), so there must exist a string 𝐱1 that is in one support

language but not the other. With the additional assumption that support(�̃�) ⊇ support(�̃�),

it must be that 𝐱1 ∈ support(�̃�), so �̃�(𝐱1) = 0 but �̃�(𝐱1) > 0.

Given any such 𝐱1 with �̃�(𝐱1) = 0 but �̃�(𝐱1) > 0, we must find a 𝐱2 of length 𝑂(poly(|𝐱1|))

with �̃�(𝐱2) > 0 but �̃�(𝐱2) ≤ �̃�(𝐱1).

To ensure that �̃�(𝐱2) > 0, let us use the structure of �̃�. For any 𝑗, we can construct a

tautological formula 𝜙 over variables 𝐴1,…𝐴𝑗 , as 𝜙 = (𝐴1 ∨ ¬𝐴1) ∧⋯ ∧ (𝐴𝑗 ∨ ¬𝐴𝑗). It follows

that �̃�(𝝓𝐚) > 0 for any 𝐚 ∈ 𝔹𝑗
. We will take 𝐱2 = 𝝓𝐚 for a particular choice of 𝑗 and 𝐚.

Specifically, we choose them to ensure that �̃�(𝐱2) ≤ �̃�(𝐱1). Since �̃� is ELNCP, it is

normalizable and hence has a finite 𝑍 . Thus, ∑𝐚∈𝔹𝑗 �̃�(𝝓𝐚) ≤ 𝑍 . So there must exist some
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𝐚 ∈ 𝔹𝑗
such that �̃�(𝝓𝐚) ≤ 𝑍/2𝑗 . We choose that 𝐚, after choosing 𝑗 large enough such that

𝑍/2𝑗 ≤ �̃�(𝐱1). Then �̃�(𝐱2) = �̃�(𝝓𝐚) ≤ 𝑍/2𝑗 ≤ �̃�(𝐱1).

To achieve the last claim of the theorem, we must also ensure that |𝐱2| ∈ 𝑂(poly(|𝐱1|)).

Observe that �̃�(𝐱1) can be computed in polytime (with access to compact parameters), by

Lemma 2.2.3. But this means that the representation of �̃�(𝐱1) > 0 as a rational number must

have ≤ 𝑔(|𝐱1|) bits for some polynomial 𝑔. Then �̃�(𝐱1) ≥ 2−𝑔(|𝐱1 |)), and it suffices to choose

𝑗 = ⌈𝑔(|𝐱1|) + log2 𝑍 ⌉ to ensure that 𝑍/2𝑗 ≤ 2−𝑔|𝐱1 | ≤ �̃�(𝐱1) as required above.

But then 𝑗 ∈ 𝑂(poly(|𝐱1|)). Also, recall that the encoding function enc used in the

construction of �̃� is guaranteed to have only polynomial blowup (see the proof of Theo-

rem 3.2.3). Thus, |𝐱2| = |𝝓| + |𝐚| = |enc(𝜙)| + 𝑗 ∈ 𝑂(poly(𝑗)) ⊆ 𝑂(poly(|𝐱1|)) as required by the

theorem.

Theorem 3.2.5 is relevant if one wishes to train a model �̃� to rerank strings that are

proposed by another method (e.g., beam search on �̃�, or exact 𝑘-best decoding from a

more tractable distribution). If the desired rankings are given by Theorem 3.2.5’s �̃�, any

smoothed
7

ELNCP model �̃� will misrank some sets of candidate strings, even sets all of

whose strings are “close” in length, by failing to rank an impossible string (𝐱1 with �̃�(𝐱1) = 0)

below a possible one (𝐱2 with �̃�(𝐱2) > 0).

7
Smoothing is used to avoid ever incorrectly predicting 0 (a “false negative”) by ensuring support(�̃�) ⊇

support(�̃�). E.g., autoregressive language models often define 𝑞(𝑥 ∣ �̂�) using a softmax over 𝑉 ∪ {eos},

ensuring that 𝑞(𝐱) > 0 for all 𝐱 ∈ 𝑉 ∗
.
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3.2.4 ELNCP models cannot even approximate EC (or

ECCP) distributions

Theorem 3.2.3 implies that there exists �̃� whose local probabilities 𝑝(𝑥 ∣ �̂�) are not ap-

proximated by any ELNCP 𝑞 to within any constant factor 𝜆, since that would perfectly

distinguish zeroes from non-zeroes and the resulting support sets would be equal.
8

However, this demonstration hinges on the difficulty of multiplicative approximation of

zeroes — whereas real-world distributions may lack zeroes. Below we further show that it

is hard even to approximate the non-zero local conditional probabilities (even with the

additional help of randomness).

Theorem 3.2.6. Assuming NP ⊈ P/poly, there exists an efficiently computable weighted

language �̃� ∶ 𝑉 ∗ → ℝ≥0 such that there is no (𝑀q,𝚯q) where 𝚯q = {𝜽q
𝑛 ∣ 𝑛 ∈ ℕ} that

satisfies all of the following properties:

∙ the parameter size |𝜽q
𝑛| grows only as 𝑂(poly(𝑛))

∙ 𝑀q(𝜽q
𝑛) returns a probabilistic Turing machine 𝑞𝑛 in time 𝑂(poly(𝑛))

∙ there exists 𝜆 ≥ 1 such that for each 𝑥 ∈ 𝑉 ∪ {$} and �̂� ∈ 𝑉 ∗
with |�̂�| ≤ 𝑛 and 𝑝(𝑥 ∣ �̂�) > 0,

the probabilistic computation 𝑞𝑛(�̂�𝑥) has probability > 2/3 of approximating 𝑝(𝑥 ∣ �̂�) to

within a factor of 𝜆 (that is, 𝑞𝑛(�̂�𝑥)/𝑝(𝑥 ∣ �̂�) ∈ [1/𝜆, 𝜆])
8
Dropping the normalization requirement on the approximated local probabilities (so that 𝑞 ∉ ELNCP,

and possibly ∑𝑥∈𝑉 𝑞(𝑥 ∣ �̂�) ≠ 1) does not help. Otherwise, again, Sat could be solved in polynomial time

(with the help of polysize advice strings) by using 𝑞(1 ∣ 𝝓′) to determine in the proof of Theorem 3.2.2

whether 𝑝(1 ∣ 𝝓′) > 0.
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∙ 𝑞𝑛 runs on those inputs �̂�𝑥 in time 𝑂(poly(𝑛))

Moreover, the statement above remains true

(a) when the approximation guarantee is only required to hold for prefixes �̂� where {𝐱 ∶

�̂� ⪯ 𝐱} is finite (so 𝑝(𝑥 ∣ �̂�) is computable by brute force)

(b) or, when support(�̃�) = 𝑉 ∗

Lemma 3.2.7. The first part of Theorem 3.2.6 (without the modifications (a) and (b)).

We first prove the first part of Theorem 3.2.6 (which is restated in full below). In this case

we will use a distribution �̃� that does not have support 𝑉 ∗
(so it does not prove modification

(b)).

Proof. We take �̃� to be the weighted language that was defined in §3.2.2, which was already

shown to be efficiently computable. Suppose (𝑀q,𝚯q, 𝜆) is a counterexample to Lemma 3.2.7.

Choose integer 𝑘 ≥ 1 in a manner (dependent only on 𝜆) to be described at the end of the

proof.

Suppose we would like to answer Sat where 𝜙 is a formula with variables 𝐴1,… , 𝐴𝑗 .

Define 𝜙′ = (¬𝐴1 ∧ ¬𝐴2 ∧… ∧¬𝐴𝑗 ∧ ¬𝐴𝑗+1 ∧ ¬𝐴𝑗+𝑘) ∨ (𝐴1 ∧ Shift(𝜙)). Note that 𝜙′
augments 𝜙

with 𝑘 additional variables, namely 𝐴1 and 𝐴𝑗+2,…,𝑗+𝑘 . For 𝑘 = 1, this is the same construction

as in the proof of Theorem 3.2.2. Let 𝑛 = |𝝓′| and note that 𝑛 is polynomial in the size of 𝜙

(holding 𝑘 constant).
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The strings in  = support(�̃�) that begin with 𝝓′
are precisely the strings of the form

𝝓′𝐚′ where 𝐚′ is a satisfying assignment of 𝜙′
. This is achieved precisely when 𝐚′ = 0𝑗+𝑘 or

𝐚′ = 1𝐚�⃗� where 𝐚 is a satisfying assignment of 𝜙 and �⃗� ∈ 𝔹𝑘−1
.

By our definition of �̃�, all strings in  that begin with 𝝓′
have equal weight under �̃�. Call

this weight𝑤 .
9

Clearly𝑍 (𝝓′0) = 𝑤 , and𝑍 (𝝓′1) = 𝑤⋅2𝑘−1⋅(number of satisfying assignments of 𝜙).

Recall that 𝑝(0 ∣ 𝝓′) = 𝑍 (𝝓′0)/(𝑍 (𝝓′0) + 𝑍 (𝝓′1)). Let us abbreviate this quantity by 𝑝.

It follows from the previous paragraph that if 𝜙 is unsatisfiable, then 𝑝 = 1, but if 𝜙 is

satisfiable, then 𝑝 ≤ 1/(1+2𝑘−1). By hypothesis, 𝑝 is approximated (with error probability < 1/3)

by the possibly random quantity (𝑀q(𝜽q
|𝝓′ |))(𝝓

′0), which we abbreviate by 𝑞, to within a

factor of 𝜆. That is, 𝑝 ∈ [𝑞/𝜆, 𝜆𝑞]. By choosing 𝑘 large enough
10

such that [𝑞/𝜆, 𝜆𝑞] cannot

contain both 1 and 1/(1+2𝑘−1), we can use 𝑞 to determine whether 𝑝 = 1 or 𝑝 ≤ 1/(1+2𝑘−1). This

allows us to determine Sat(𝜙) in polynomial time with error probability < 1/3, since by

hypothesis 𝑞 is computable in polynomial time with compact parameters. This shows

that Sat ∈ BPP/poly = P/poly (Adleman, 1978), implying NP ⊆ P/poly, contrary to our

assumption. (BPP/poly is similar to P/poly but allows𝑀q
to be a bounded-error probabilistic

Turing machine.)

Based on Lemma 3.2.7, we then proceed to prove Theorem 3.2.6:

Theorem 3.2.6. Assuming NP ⊈ P/poly, there exists an efficiently computable weighted

language �̃� ∶ 𝑉 ∗ → ℝ≥0 such that there is no (𝑀q,𝚯q) where 𝚯q = {𝜽q
𝑛 ∣ 𝑛 ∈ ℕ} that

9
Specifically, each such string has length 𝑛 + 𝑗 + 𝑘, so �̃� gives it a weight of 𝑤 = ( 13 )

𝑛+𝑗+𝑘+1
.

10
It suffices to ensure that 1 + 2𝑘−1 > 𝜆2, so take any 𝑘 > 1 + log2(𝜆2 − 1).

78



CHAPTER 3. EXPRESSIVENESS TAXONOMY OF WEIGHTED LANGUAGE CLASSES

satisfies all of the following properties:

∙ the parameter size |𝜽q
𝑛| grows only as 𝑂(poly(𝑛))

∙ 𝑀q(𝜽q
𝑛) returns a probabilistic Turing machine 𝑞𝑛 in time 𝑂(poly(𝑛))

∙ there exists 𝜆 ≥ 1 such that for each 𝑥 ∈ 𝑉 ∪ {$} and �̂� ∈ 𝑉 ∗
with |�̂�| ≤ 𝑛 and 𝑝(𝑥 ∣ �̂�) > 0,

the probabilistic computation 𝑞𝑛(�̂�𝑥) has probability > 2/3 of approximating 𝑝(𝑥 ∣ �̂�) to

within a factor of 𝜆 (that is, 𝑞𝑛(�̂�𝑥)/𝑝(𝑥 ∣ �̂�) ∈ [1/𝜆, 𝜆])

∙ 𝑞𝑛 runs on those inputs �̂�𝑥 in time 𝑂(poly(𝑛))

Moreover, the statement above remains true

(a) when the approximation guarantee is only required to hold for prefixes �̂� where {𝐱 ∶

�̂� ⪯ 𝐱} is finite (so 𝑝(𝑥 ∣ �̂�) is computable by brute force)

(b) or, when support(�̃�) = 𝑉 ∗

Proof. It remains to show that the statement remains true with modification (a) and

with modification (b). For (a), the proof of Lemma 3.2.7 suffices, since it reduces Sat to

approximate local probability queries of the stated form. That is, the true local probabilities

𝑝(𝑥 ∣ �̂�) can be computed with finite summations, thanks to the structure of our example

language �̃�, which guarantees that the prefix �̂� can only continue with suffixes of a fixed

length that is easily determined from �̂�.

For modification (b), again let 𝑉 = 𝔹 = {0, 1}. Choose some 𝜖 > 0 (any choice will do),
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and let

�̃�1(𝐱) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 13 )
|𝐱+1|

if 𝐱 = 𝝓𝐚 where 𝝓 = enc(𝜙)

and 𝐚 satisfies 𝜙

0 otherwise

�̃�2(𝐱) = ( 19 )
|𝐱+1| > 0

�̃�(𝐱) = �̃�1(𝐱) + 𝜖 ⋅ �̃�2(𝐱)

We use 𝑍1, 𝑍2, and 𝑍 respectively to denote normalizing constants of these three weighted

languages. Note that �̃�1 is the weighted language that was previously used in the proofs of

Theorem 3.2.2 and Lemma 3.2.7. Our new �̃� is intended to be very similar while satisfying

the additional condition (b). It is easy to show that �̃� is efficiently computable, much as

we showed for �̃�1 in Theorem 3.2.2. Also, �̃� is normalizable, since 𝑍 = 𝑍1 + 𝜖 ⋅ 𝑍2, where

𝑍1 ≤ ( 13 )/(1 −
2
3 ) = 1 and 𝑍2 = ( 19 )/(1 −

2
9 ) =

1
7 are both finite.

The proof proceeds as in Lemma 3.2.7, with 𝜙′
constructed from 𝜙 as before. Recall

that 𝜙 has 𝑗 variables, 𝜙′
has 𝑗 + 𝑘 variables, and |𝝓′| = 𝑛. We may assume WLOG that the

encoding function enc is such that an encoded formula always has at least as many bits as

the number of variables in the formula, so 𝑛 ≥ 𝑗 + 𝑘.

Notice that 𝑍1(𝝓′) sums over the satisfying assignments of 𝜙′
, and there may be as few

as one of these (if 𝜙 is unsatisfiable). By contrast, 𝑍2(𝝓′) sums over an infinite number of

continuations with positive probability. The faster decay rate of
1
9 in �̃�2 was chosen to keep
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𝑍2(𝝓′) small relative to 𝑍1(𝝓′) despite this. Specifically,

𝑍1(𝝓′0) = ( 13 )
𝑛+𝑗+𝑘+1

𝑍1(𝝓′1) = ( 13 )
𝑛+𝑗+𝑘+1 ⋅ 2𝑘−1

⋅ (# of satisfying assignments of 𝜙)

𝑍2(𝝓′0) = ( 19 )
𝑛 ⋅ 1

9 ⋅ (
1
9 /(1 −

2
9 ))

= 1
7 ⋅ (

1
3 )

2(𝑛+1)

< 1
7 ⋅ 𝑍1(𝝓′0)

(because 2(𝑛 + 1) > 𝑛 + 𝑗 + 𝑘 + 1)

𝑍2(𝝓′1) = 𝑍2(𝝓′0)

As in the proof of Lemma 3.2.7, we will show that 𝑝(0 ∣ 𝝓′) is much larger when 𝜙 is

unsatisfiable. Recall that 𝑍 (�̂�) = 𝑍1(�̂�) + 𝜖 ⋅ 𝑍2(�̂�). When 𝜙 has zero satisfying assignments,

𝑝(0 ∣ 𝝓′) =
𝑍 (𝝓′0)

𝑍 (𝝓′0) + 𝑍 (𝝓′1)

=
𝑍 (𝝓′0)

𝑍1(𝝓′0) + 𝜖 ⋅ 𝑍2(𝝓′0) + 𝜖 ⋅ 𝑍2(𝝓′1)

>
𝑍 (𝝓′0)

𝑍1(𝝓′0) + 2 ⋅ 𝜖7 ⋅ 𝑍1(𝝓′0)
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whereas if 𝜙 has at least one satisfying assignment, then

𝑝(0 ∣ 𝝓′) =
𝑍 (𝝓′0)

𝑍 (𝝓′0) + 𝑍 (𝝓′1)

<
𝑍 (𝝓′0)

𝑍1(𝝓′0) + 𝑍1(𝝓′1)

≤
𝑍 (𝝓′0)

𝑍1(𝝓′0) + 2𝑘−1𝑍1(𝝓′0)

This rewrites both probabilities in terms of 𝑍⋅(𝝓′0) quantities, which do not depend on the

number of satisfying assignments. So now we can see that the first probability is at least

(1+2𝑘−1) / (1+ 2𝜖
7 ) times as large as the second probability. Choose 𝑘 large enough

11
such that

[𝑞/𝜆, 𝜆𝑞] cannot contain both probabilities, and complete the proof as in Lemma 3.2.7.

3.3 Effects of (discrete) latent variables

Autoregressive models have 𝑍 = 1 for any setting of the parameters (or at least any setting

that guarantees consistency: see footnote 7). Clearly 𝑍 = 1 ensures that 𝑍 is both finite and

tractable. Can we find a model family that retains this convenience (unlike EBMs), while

still being expressive enough to have any non-empty language in P as support?

Autoregressive latent-variable models form such a family. As in directed graphical

models, the use of latent variables provides a natural way to model partial observations of

an underlying stochastic sequence of events. We will model an observed string 𝐱 of length

𝑛 as a function of a latent string 𝐳 of length 𝑂(poly(𝑛)), and let the weighted language

11
It suffices to ensure that (1 + 2𝑘−1)/(1 + 2𝜖

7 ) > 𝜆
2
, so take any 𝑘 > 1 + log2(𝜆2 ⋅ (1 +

2𝜖
7 ) − 1).
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of 𝐳 be ∈ ELNCP. As in EBMs, the probability 𝑝(𝐱) can be computationally intractable,

allowing these models to break the expressivity bottleneck of ordinary autoregressive

models. However, the intractability no longer comes from exponentially many summands

in the denominator 𝑍 (which is a constant), but rather from exponentially many summands

in the numerator — namely, the summation over all latent 𝐳 that could have produced

𝐱. Notice that as a result, even unnormalized string weights are now hard to compute,

although once computed they are already normalized.

Formally, we define marginalized weighted languages. We say that �̃� is a marginal-

ization of the weighted language 𝑟 if it can be expressed as �̃�(𝐱) = ∑𝐳∶𝜇(𝐳)=𝐱 𝑟(𝐳), where

𝜇 ∶  → 𝑉 ∗
is some function (the marginalization operator). We say it is a light

marginalization if |𝐳| ∈ 𝑂(poly(|𝜇(𝐳)|)) and 𝜇 runs in time 𝑂(poly(|𝐳|)).Typically 𝜇(𝐳) ex-

tracts a subsequence of 𝐳; it can be regarded as keeping the observed symbols while

throwing away a polynomially bounded number of latent symbols.

Light marginalizations of ELN distributions are a reasonable formalization of latent-

variable autoregressive models. They are more powerful than ELN distributions, and even

include some distributions that (by Lemma 2.2.4) are not even ELNCP or ECCP:

Theorem 3.3.1. There exists a light marginalization 𝑝 of an ELN distribution, such that

support(𝑝) is an NP-complete language.

Proof. We will construct 𝑝 such that support(𝑝) is the NP-complete language Sat of all

satisfiable boolean formulas. The idea is to construct an ELN distribution 𝑟 that can

autoregressively generate any assignment 𝐚 followed by any formula 𝜙 that is satisfied by
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𝐚. Thus, if we delete the 𝐚 prefixes, the support consists of exactly the satisfiable formulas

𝜙 (or more precisely, their encodings 𝝓).

To be more precise, we will have support(𝑟) be the language

𝐿 = {𝐚#𝝓 ∣ 𝐚 ∈ 𝔹∗
and 𝜙 is a formula satisfied by 𝐚}.

This is defined similarly to the support language 𝐿 in §3.2.2, but with the order of 𝝓 and

𝐚 crucially swapped: 𝑟 will now generate the “solution” 𝐚 before the “problem” 𝝓. The

alphabet 𝑉 of this language contains at least the symbols {0, 1, #}, where # is a separator

symbol, and any other symbols needed to encode 𝜙 as 𝝓. The marginalization operator 𝜇

maps 𝐚#𝝓 to 𝝓.

Let 𝑗 = |𝐚|. As in §3.2.2, we will require 𝜙 to use all of the variables 𝐴1,… , 𝐴𝑗 (and only

those variables), implying that |𝝓| ≥ 𝑗. This ensures that marginalizing over the 𝑗 + 1 latent

symbols is only light marginalization since 𝑗 + 1 + |𝝓| ∈ 𝑂(poly(|𝝓|)). For convenience, we

will also require 𝜙 to be a CNF formula. These requirements shrink support(𝑝) but do not

affect its NP-completeness.

The remaining challenge is to construct an autoregressive distribution 𝑟 whose support

is 𝐿. We can think of this distribution as describing an efficient procedure for randomly

generating a string from left to right so that the procedure generates the 𝑡 th
symbol in

time 𝑂(poly(𝑡)), terminates with probability 1,
12

has positive probability of producing any

12
Phase 1 almost surely terminates after a finite number of bits. Phase 2 almost surely terminates after a

finite number of clauses, and each clause almost surely terminates after a finite number of literals. “Almost

surely” means “with probability 1.”
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string in 𝐿, and has zero probability of producing any string not in 𝐿. Below we give such a

procedure.
13

1. First, the procedure generates 𝐚# as a sequence of random symbols from {0, 1, #},

making a uniform draw at each step. It stops immediately after generating # for the

first time. The string generated before # is called 𝐚 and we let 𝑗 = |𝐚|. For example,

𝐚 = 010 and 𝑗 = 3.

2. Second, the procedure must generate the encoding 𝝓 of a random CNF formula 𝜙 that

is satisfied by 𝐚, such as (𝐴2 ∨ ¬𝐴3 ∨ ¬𝐴2 ∨ 𝐴2) ∧ (¬𝐴1) in our example. This involves

generating a random sequence of 0 or more satisfied clauses connected by ∧. At each

step, the procedure decides whether to generate a new clause or end the formula.

The probability of generating a new clause is ordinarily 1/2. However, this probability

is 1 if the previous clauses do not yet mention all the variables 𝐴1,… , 𝐴𝑗 .

How does it generate each satisfied clause? This involves generating a sequence

of literals connected by ∨, at least one of which must be true. At each step of this

subroutine, it uniformly chooses an integer 𝑖 ∈ [1, 𝑗], and then flips a fair coin to

decide whether to add the literal 𝐴𝑖 or ¬𝐴𝑖 to the current clause. If the clause is now

satisfied by 𝐚 (i.e., at least one of the literals is true), it then flips another fair coin to

decide whether to end the clause.

𝑟 is ELN because there exists a Turing machine that computes from input �̂�𝑥 — in time

13
Our presentation here makes use of an infinite alphabet that includes symbols such as 𝐴𝑖 and ¬𝐴𝑖 for

all 𝑖 ∈ ℕ>0, as well as symbols such as 0, 1, ∧, ∨. We implicitly invoke some prefix-free encoding scheme to

translate each symbol into a fixed string over the finite alphabet 𝑉 .
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𝑂(poly(|�̂�|))— the probability that the next symbol generated after the prefix �̂� would be 𝑥 ,

under the above procedure. As discussed in footnote 7, that probability equals 𝑟(𝑥 ∣ �̂�)—

which is what our Turing machine is required to return — because the above procedure

almost surely terminates (footnote 12), ensuring that 𝑟 is a consistent probability distribution

over 𝑉 ∗
(that is, ∑𝐱∈𝑉 ∗ 𝑟(𝐱) = 1).

Our proof of Theorem 3.3.1 relies on special structure of a certain NP-complete language

(Sat) and does not evidently generalize to all languages in NP.

However, light marginalizations of ELNCP distributions are more powerful still,
14

and

can have any language ∈ NP or even NP/poly (§2.2.5.1) as support:

Theorem 3.3.2. The following statements are equivalent for any nonempty 𝐿 ⊆ 𝑉 ∗
:

(a) 𝐿 ∈ NP/poly.

(b) 𝐿 is the support of a light marginalization of an ELNCP distribution.

(c) 𝐿 is the support of a light marginalization of an ECCP weighted language.

Proof. (b) implies (c) since any ELNCP distribution is an ECCP weighted language (Lemma 2.2.3).

(c) implies (a) by Lemma 3.3.3 below. Finally, (a) implies (b) by Lemma 3.3.4 below.

Lemma 3.3.3. For any ECCP weighted language 𝑟 , if �̃� is a light marginalization of 𝑟 , then

support(�̃�) ∈ NP/poly.

14
The capacity established by Theorem 3.3.2 does not need the full power of marginalization. We could

similarly define light maximizations of ELNCP distributions, �̃�(𝐱) = max𝐳∶𝜇(𝐳)=𝐱 𝑟(𝐳). Replacing sum by max

does not change the support.
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Notice that this lemma concerns the class NP/poly, not P/poly (see §2.2.5.1). The proof

is straightforward.

Proof. Suppose 𝑟 is ECCP via (𝑀 r̃, 𝜽 r̃), and 𝜇 is the marginalization operator such that

�̃�(𝐱) = ∑𝐳∶𝜇(𝐳)=𝐱 𝑟(𝐳). By the light marginalization assumption, there is a polynomial 𝑓 such

that |𝐳| ≤ 𝑓 (|𝜇(𝐳)|).

To prove support(�̃�) ∈ NP/poly, we must show that there exists (𝑀,𝚯) such that for

all 𝑛 ≥ 0, a nondeterministic Turing machine 𝑀𝑛 can be constructed as 𝑀(𝜽𝑛) in time

𝑂(poly(𝑛)), which can in turn decide in time 𝑂(poly(𝑛)) whether �̃�(𝐱) > 0 for any 𝐱 with

|𝐱| = 𝑛.

Deciding �̃�(𝐱) > 0 means deciding whether (∃𝐳 ∈ 𝑉 ∗) 𝜇(𝐳) = 𝐱 and 𝑟(𝐳) > 0. But if |𝐱| = 𝑛,

the first condition 𝜇(𝐳) = 𝐱 implies |𝐳| ≤ 𝑓 (|𝜇(𝐳)|) = 𝑓 (|𝐱|) = 𝑓 (𝑛). Thus, we need 𝑀𝑛 to

nondeterministically check only the 𝐳 of length up to 𝑓 (𝑛) to see whether 𝜇(𝐳) = 𝐱 and

𝑟(𝐳) > 0.

How can 𝑀𝑛 check a string 𝐳 of length 𝑚? It can decide the first condition 𝜇(𝐳) = 𝐱 in

time 𝑂(poly(𝑚)), since the marginalization operator 𝜇 is a polytime function. To decide the

second condition 𝑟(𝐳) > 0, it must construct the (deterministic) Turing machine 𝑀 r̃(𝜽 r̃
𝑚)

and then apply it to 𝐳 to obtain 𝑟(𝐳): since 𝑟 is ECCP, both steps take time 𝑂(poly(𝑚)) =

𝑂(poly(𝑓 (𝑛))) ⊆ 𝑂(poly(𝑛)) as required.

However, this means that 𝑀𝑛 = 𝑀(𝜽𝑛) must have access to the parameter vectors 𝜽 r̃
𝑚

for all 𝑚 ≤ 𝑓 (𝑛). We therefore make 𝜽𝑛 include this collection of parameter vectors. Each

|𝜽 r̃
𝑚| ∈ 𝑂(poly(𝑚)) ⊆ 𝑂(poly(𝑛)) since 𝑟 is ECCP. So |𝜽𝑛| ∈ 𝑂(poly(𝑛)) as required.
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Lemma 3.3.4. For any 𝐿 ∈ NP/poly, there exists a light marginalization 𝑝 of an ELNCP

distribution, such that support(𝑝) = 𝐿.

Lemma 3.3.4 resembles Theorem 3.3.1, but it constructs distributions for all 𝐿 ∈ NP/poly,

not just for one particular 𝐿 ∈ NPC. The proof is similar but more complicated. In both

cases, the goal is to demonstrate how an ELNCP distribution 𝑟 can define a left-to-right

stochastic string generation process such that the suffix of the generated string must be in

𝐿 and can be any element of 𝐿.

Our string generation process in this case is inspired by rejection sampling, a widely

used method for sampling from an energy-based model with support 𝐿. The standard

scheme is to first sample a string 𝐱 from a tractable distribution 𝑞 such that support(𝑞) ⊇ 𝐿,

then accept the sample with an appropriate probability, which is 0 if 𝐱 ∉ 𝐿. The process

is repeated until a sample is finally accepted. There is no guarantee that this standard

scheme will terminate in polynomial time, however. Fortunately, in our setting, we are not

trying to match our sampling distribution 𝑝 to a given energy-based model, but simply

match its support to a given language 𝐿. We make use of the polysize parameter vectors of

ELNCP languages to store certain ‘fallback strings’ that are guaranteed to be in the desired

language 𝐿. Wherever ordinary rejection sampling would reject a string and try generating

another, we switch to generating a stored fallback string of an appropriate length. This

scheme places all of the rejected probability mass on the small set of fallback strings (in

contrast to rejection sampling, which in effect throws away this mass and renormalizes).

The advantage is that it does not iterate indefinitely. At a high level, 𝑟 is a distribution over
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strings 𝐳 that record traces of this generative story we describe above.

Proof. WLOG we assume 𝐿 uses the alphabet 𝑉 = {0, 1, #}. In the case where 𝐿 is finite,

the result is trivial. We simply define 𝑟(𝐱) = 1/|𝐿| for 𝐱 ∈ 𝐿 and 𝑟(𝐱) = 0 otherwise. We then

take 𝑝 = 𝑟 (a trivial marginalization). It is easy to show that 𝑟 is ELN, and therefore ELNCP

as desired, by constructing an appropriate Turing machine that maps �̂�𝑥 to 𝑟(𝑥 ∣ �̂�) in time

𝑂(|�̂�𝑥 |), for any �̂� that is a prefix of some string in 𝐿 and any 𝑥 ∈ 𝑉 ∪ {eos}. The finite state

table of the Turing machine includes states that correspond to all possible strings �̂�𝑥 , with

transitions arranged in a trie. It reads the input string �̂�𝑥 from left to right to reach the

state corresponding to �̂�𝑥 . If it detects the end of the input while in that state, it writes

𝑟(𝑥 ∣ �̂�) on the output tape.

Now we consider the case where 𝐿 is infinite. For each 𝑗 ∈ ℕ≥0, let the ‘fallback string’

𝐱(𝑗) be some string in 𝐿 of length ≥ 𝑗. For definiteness, let us take it to be the shortest such

string, breaking ties lexicographically. At least one such string does exist because 𝐿 is

infinite, so 𝐱(𝑗) is well-defined.

Also, since 𝐿 ∈ NP/poly (§2.2.5.1), let (𝑀,𝚯) be an ordered pair and 𝑓 be a polynomial

such that 𝑀𝑗 = 𝑀(𝜃𝑗) nondeterministically accepts 𝐚 within ≤ 𝑓 (𝑗) steps iff 𝐚 ∈ 𝐿.

As in the proof of Theorem 3.3.1, we now describe a procedure for randomly generating

a string 𝐳 from left to right. 𝐳 will have the form 𝐚#𝐛#𝑐𝐝, where 𝐝 ∈ 𝐿 and the latent

substring 𝐚#𝐛#𝑐 will be removed by the marginalization operator 𝜇.

1. First we generate a random string 𝐚 ∈ 𝔹∗
followed by #, just as in the proof of

Theorem 3.3.1. Again let 𝑗 = |𝐚|.
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2. Next, we must consider whether 𝐚 ∈ 𝐿. We generate a random computation path 𝐛 of

𝑀𝑗 on input 𝐚 until it either accepts (in which case we then generate #1 to record

acceptance of 𝐚) or has run for 𝑓 (𝑗) steps without accepting (in which case we then

generate #0 to record rejection).

3. In the former case (𝑐 = 1) we finish by deterministically generating 𝐝 ≜ 𝐚 ∈ 𝐿. In the

latter case (𝑐 = 0), 𝐚 ∉ 𝐿, so we fall back and finish by deterministically generating

𝐝 ≜ 𝐱(𝑗) ∈ 𝐿.

Let 𝑟(𝐳) be the probability that the above procedure generates 𝐳. support(𝑟) is then the

set of strings that can be generated by the above procedure. The marginalized language

𝜇(support(𝑟)) keeps just the 𝐝 parts of those strings. It consists of all strings 𝐚 that are

accepted by at least one path 𝐛 of 𝑀|𝐚| (which are exactly the strings in 𝐿) together with the

fallback strings (which form a subset of 𝐿). Thus, 𝜇(support(𝑟)) = 𝐿 as desired.

We wish to show that 𝑟 is ELNCP. In other words, some Turing machine 𝑀q
efficiently

locally normalizes 𝑟 with compact parameters 𝚯q
, as defined in §2.2.4. The parameters will

be used to store information about the infinite set of fallback strings.

In particular, for each 𝑛, 𝜽q
𝑛 must have enough information to construct a Turing machine

𝑞𝑛 = 𝑀q(𝜽q
𝑛) such that 𝑞𝑛(�̂�𝑧) returns 𝑟(𝑧 ∣ �̂�) for all 𝑧 ∈ 𝑉 ∪ {eos} and all �̂� with |�̂�| ≤ 𝑛

and 𝑍 (�̂�) > 0. Here 𝑍 (�̂�) > 0 means that �̂� is a prefix of a string 𝐳 = 𝐚#𝐛#𝑐𝐝 that could be

generated by the above procedure. The computation 𝑞𝑛(�̂�𝑧) proceeds by simulating the

sequence of choices in the above procedure that would be required to generate �̂�, and

then returning the probability that the procedure would generate symbol 𝑧 next. That

90



CHAPTER 3. EXPRESSIVENESS TAXONOMY OF WEIGHTED LANGUAGE CLASSES

probability equals 𝑟(𝑧 ∣ �̂�) as desired because the above procedure almost surely terminates

(as explained at the end of the proof of Theorem 3.3.1).

In general, the computation 𝑞𝑛(�̂�𝑧) may have to construct 𝑀𝑗 = 𝑀(𝜃𝑗) and simulate it

on 𝐚 (for 𝑗 = |𝐚|) if 𝑧 falls in the 𝐛#𝑐 portion of �̂�, and it may have to look up a character

of the fallback string 𝐱(𝑗)eos if 𝑧 falls in the 𝐝 portion of �̂� or terminates that portion

with 𝑧 = eos. Fortunately 𝑗 < 𝑛, and fortunately if the computation looks up the 𝑡 th

character of 𝐱(𝑗)eos then 𝑡 < 𝑛. Thus, constructing and simulating 𝑀𝑗 can be done in time

𝑂(poly(𝑗)) ⊆ 𝑂(poly(𝑛)), and looking up the 𝑡 th
character of 𝐱(𝑗)eos can be achieved with

access to the first 𝑛 characters of each of 𝐱(1),… , 𝐱(𝑛), which can be stored by 𝜽q
𝑛 in space

𝑂(𝑛2). It follows that 𝑀q
can construct and apply 𝑞𝑛 in polynomial time with access to

compact parameters 𝚯q
, so 𝑟 is ELNCP.

3.4 Three expressive parametrizations of se-

quence model families

Theoretical results from §§3.1–3.3 imply there are three weighted language classes whose

expressiveness surpass that of ELNCP— which again is the abstraction of autoregressive

parametric sequence model families (with the possibility of the use of a longer parameter

vector on harder datasets). In this section, we connect these three weighted language

classes to existing sequence model families (that we identify), and discuss the trade-offs
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they have to make, for an expressiveness greater than autoregressive sequence models.

3.4.1 Energy-based models (EBMs)

Energy-based models (LeCun et al., 2006) of discrete sequences (Rosenfeld, Chen, and

Zhu, 2001; Sandbank, 2008; Huang et al., 2018) traditionally refer to the EC models of

§2.2.3. Only the unnormalized probabilities �̃�𝜽 (𝐱) are required to be efficiently computable.

Lemmas 2.2.3 and 2.2.4 showed that this model family contains all ELN languages and

can achieve any support in P. While EBMs are known for their flexible model-specifying

mechanisms, in Corollary 5.6.2.1 we formally show that a capacity gap exists between EBMs

and autoregressive models (and therefore autoregressive approximations of EBMs (Khalifa,

Elsahar, and Dymetman, 2021) in general will be imperfect.) Specifically, Theorem 3.2.2

shows that it also contains languages that are not ELN or even ELNCP: intuitively, the

reason is that the sums 𝑍 (�̂�) needed to compute the local normalizing constants (see §2.2)

can be intractable.

If we generalize energy-based sequence models to include all ECCP models — that is, we

allow non-uniform computation with compact parameters — then Lemmas 2.2.3 and 2.2.4

guarantee that they can capture all ELNCP languages and furthermore all languages in

P/poly (though still not NP-complete languages).
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3.4.2 Autoregressive latent-variable sequence models

Theorems 3.3.1 and 3.3.2 make use of unrestricted latent-variable autoregressive models.

There exist more practical restricted families of such models that admit tractable computation

of 𝑝(𝐱) (Lafferty, McCallum, and Pereira, 2001; Rastogi, Cotterell, and Eisner, 2016; Wu,

Shapiro, and Cotterell, 2018; Buys and Blunsom, 2018). Such models are EC (and indeed,

typically ELN) — but this limits their expressivity, by Theorem 3.2.2. Both Lin et al. (2019)

and Buys and Blunsom (2018) observed that such models yield worse empirical results than

models that do not have tractable exact inference methods. The tractability requirement is

dropped in “self-talk” or “chain-of-thought” (blixt, 2020; Gontier et al., 2020; Shwartz et al.,

2020; Wei et al., 2022), where a neural autoregressive language model generates an analysis

of the prefix �̂� via latent intermediate symbols before predicting the next output symbol.
15

We remark that for autoregressive models, the position of the latent variables is sig-

nificant. Marginalizing out latent variables at the end of the string adds no power. More

precisely, if an ELNCP distribution is over strings 𝐳 of the form 𝐱#𝐲, then its marginalization

via 𝜇(𝐱#𝐲) = 𝐱 can be expressed more simply as an ELNCP language. Thus, by Theorem 3.2.3,

marginalizations of such distributions cannot have arbitrary NP languages as support. Our

proofs of Theorems 3.3.1 and 3.3.2 instead use latent strings of the form 𝐲#𝐱, where all

latent variables precede all observed ones (as in Kingma and Welling, 2014). (This simple

15
Here the marginal distribution of the next observed symbol can require superpolynomial time to com-

pute (if #P ≠ FP, which follows from NP ⊈ P/poly). Theorem 3.2.2 could likewise be evaded by other autore-

gressive approaches that invest superpolynomial computation in predicting the next symbol (Graves, 2016).

Each autoregressive step might explicitly invoke lookahead or reasoning algorithms, just as feed-forward

network layers can invoke optimizers or solvers (Amos and Kolter, 2017; Wang et al., 2019).
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design can always be used without loss of generality.) Trying to reorder those latent strings

as 𝐱#𝐲 while preserving their weights would have yielded a non-ELNCP distribution 𝑝(𝐱#𝐲)

(because if it were ELNCP, then 𝑝(𝐱) would be ELNCP also, and we know from Lemma 2.2.4

that it cannot be for any distribution whose support is an NP-complete language).

How about lightly marginalizing ECCP languages instead of ELNCP ones? This cannot

model any additional unweighted languages, by Theorem 3.3.2. But it may be able to

model more probability distributions. One can easily construct a light marginalization 𝑝 of

an ECCP distribution such that #(𝜙) = 𝑐𝑛 ⋅ 𝑝(𝝓), where #(𝜙) is the number of satisfying

assignments of 𝜙 and the constant 𝑐𝑛 depends only on 𝑛 = |𝝓|. We conjecture that this is

not possible with lightly marginalized ELNCP distributions.

3.4.3 Lookup models

§2.2.3.1 noted that with exponential growth in stored parameters, it is possible to fit any

weighted language up to length 𝑛, with local probabilities computed in only 𝑂(𝑛) time by

lookup. Of course this rapidly becomes impractical as 𝑛 increases, even if the amount of

training data increases accordingly. However, there has been some recent movement toward

storage-heavy models. Such models are typically semiparametric: they use a parametric

neural model, such as an autoregressive model, together with an external knowledge base

of text strings or factoids that are not memorized in the layer weights. The neural model

generates queries against the knowledge base and combines their results. Examples include

𝑘NNLMs (Khandelwal et al., 2020), semiparametric LMs (Yogatama, Masson d’Autume, and
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Kong, 2021), and retrieval-augmented generation models (Lewis et al., 2020). The knowledge

base grows linearly with the training data rather than compressing the data into a smaller

parameter vector. It is in fact a copy of the training data, indexed to allow fast lookup (Indyk

and Motwani, 1998). (Preparing the index is much cheaper than neural network training.)

Access to the large knowledge base may reduce the amount of computation needed to find

the local conditional probabilities, much as in the trie construction of §2.2.3.1.

3.5 Related work

Chen et al. (2018b) show that it is hard to map RNN parameters to properties of the resulting

autoregressive weighted language, such as consistency (𝑍 = 1). We focus on cases where

the RNN parameters are already known to be consistent, so the RNN efficiently maps a

string �̂� to its local conditional distribution 𝑝(⋅ ∣ �̂�). Our point is that for some weighted

languages, this is not possible (even allowing polynomially larger RNNs for longer strings),

so consistent RNNs and their ilk cannot be used to describe such languages.

In a Bayes network — which is really just an autoregressive model of fixed-length

strings — approximate marginal inference is NP-hard (Roth, 1996). Assuming NP ⊈ P/poly

and the grid-minor hypothesis, Chandrasekaran, Srebro, and Harsha (2008, Theorem 5.6)

further showed that for any infinite sequence of graphs 𝐺1, 𝐺2,… where 𝐺𝑛 has treewidth 𝑛,

there is no sequence of algorithms 𝑀1, 𝑀2,… such that 𝑀𝑛 performs approximate marginal

inference in time 𝑂(poly(𝑛)) on graphical models of structure 𝐺𝑛. This remarkable negative
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result says that in any graph sequence of unbounded treewidth, approximating the normal-

izing constant for 𝐺𝑛 given arbitrary parameters is hard (not 𝑂(poly(𝑛))), even with advice

strings. Our negative result (Theorem 3.2.6) focuses on one particular infinite weighted

language, showing that approximating local conditional probabilities given an arbitrary

length-𝑛 prefix is hard in the same way. (So this language cannot be captured by an RNN,

even with advice strings.)

While we only show superpolynomiality results under the assumption NP ⊈ P/poly,

both Chandrasekaran, Srebro, and Harsha (2008) and Kwisthout, Bodlaender, and Gaag

(2010) were able to further sharpen their hardness results under the stronger exponential

time hypothesis (ETH) (Impagliazzo and Paturi, 1999). We leave possible sharpening of our

results with the consideration of ETH as future work.

3.6 Conclusion

Autoregressive models are suited to those probability distributions whose prefix probabilities

are efficiently computable. This efficiency is convenient for training and sampling. But

unless we sacrifice it and allow runtime or parameter size to grow superpolynomially

in input length, autoregressive models are less expressive than models whose prefix

probabilities expensively marginalize over suffixes or latent variables.

All model families we have discussed in this chapter can be seen as making compromises

between different desiderata (Table 3.1). Natural follow-up questions include ‘Are there
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model families that win on all fronts?’ ‘What are other modeling desiderata?’

While some languages ∈ P cannot be supports of ELNCPs, we do not know if the same

can be said for most languages ∈ P. This problem seems to be closely related to the average

complexity of NP-complete languages, where most questions remain open (Levin, 1986;

Bogdanov and Trevisan, 2006).

97



Chapter 4

Residual energy-based sequence

models

In this chapter, we describe a particular design of energy-based sequence models: residual

energy-based sequence models (REBMs). While in § 3 we argue that energy-based

sequence models are much more expressive than autoregressive sequence models (Corol-

lary 5.6.2.1 and Theorem 3.2.2), they are in general intractable, unless we limit their

expressiveness, and/or the maximum string length that we seek to model.
1

We empirically

demonstrate that with both restrictions imposed, energy-based sequence models do provide

marginal, yet statistically significant improvement over autoregressive baselines over

several datasets, and on two different neural architectures.

1
We discuss these restrictions in further detail in § 5.
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4.1 Design of the REBM architecture

Residual energy-based models (REBMs) (Bakhtin et al., 2021)
2

are a simple hybrid

architecture:

𝑝𝜽 (𝐱) ∝ �̃�𝜽 (𝐱) ≜ 𝑝0(𝐱) ⋅ exp 𝑔𝜽 (𝐱)

This simply multiplies our previous weight by a new factor 𝑝0(𝐱). The base model 𝑝0 ∶

 → (0, 1] is a locally normalized neural sequence model (ELN model) that was pretrained

on the same distribution. 𝑔𝜽 ∶ 𝑉 ∗ → ℝ is a learnable function (with parameters 𝜽) that is

used to adjust 𝑝0, yielding a weighted language �̃�𝜽 with the same support  .

4.1.1 Modeling finite subsets of infinite languages

The experiments of this chapter are conducted on datasets where we only observe strings

that are finitely long. Given a possibly infinite language  , we use the notation ≤𝑇 =

{𝐱 ∶ 𝐱 ∈  , |𝐱| ≤ 𝑇} for the subset of strings that are most 𝑇 symbols long. Our learned

sequence model will have a support ⊆ ≤𝑇 . Specific values of 𝑇 for datasets used in our

experiments are listed in §4.3.1.

2
We independently conceived of and implemented the REBM idea proposed in Bakhtin et al. (2021).

Details of neural architecture choice, model parameter sizes, training regimen, and evaluation differ between

our work and theirs, which also reported positive empirical results (on different datasets). We regard the

two independent positive findings as a strong indication that the REBM design is effective.
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4.1.2 Design of base models 𝑝0

𝑝0 can be any distribution over ≤𝑇
3

provided that we can sample from it, and evaluate

𝑝0(𝐱), ∀𝐱 ∈ ≤𝑇 , both in 𝑂(poly(|𝐱|)). In this work, we experiment with two designs of 𝑝0:

GRU- and Transformer-based locally normalized language models. GRU-based models are

used in WikiText and Yelp experiments.

The GRU-based 𝑝0’s are parametrized with 2-layer GRUs with 500 hidden units, and

word embeddings of dimension size 500.

As for Transformer-based 𝑝0’s, we make use of Grover models (Zellers et al., 2019),

which effectively are GPT-2 models (Radford et al., 2019) trained on the aforementioned

RealNews dataset. In this work, we experiment with the ‘base’ variant of public available

weights, which are 12-layered Transformers, with 12 heads, and 768 hidden units.

4.1.3 Design of 𝑔𝜽

We formulate 𝑔𝜽 (𝐱) as a summation of scores at positions 1… |𝐱|, passed through an

activation function 𝑓 :

𝑔𝜽 (𝐱) = 𝑓 (

|𝐱|

∑
𝑖=1

𝑔𝑡(𝐱; 𝜽))
. (4.1)

3
Note that since 𝑝0 does not have support over  , it has to assign 𝑝(eos ∣ 𝐱1…𝑇 ) = 1, which is generally

not an issue.
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To ensure learnability, we experiment with two variants of 𝑓 , both of which have constrained

ranges:

∙ tanh: 𝑓 (𝑥) = 2 ⋅ tanh(𝑥)

∙ softplus: 𝑓 (𝑥) = − log(1 + exp(𝑥 + 𝑠))

The former one is bounded between (−2, 2), while the second one has range (−∞, 0). The

offset term 𝑠 in the softplus activation function determines initial values of 𝑍𝜽 . In this

chapter we set 𝑠 = 20.

The architecture design of 𝑔𝑡(𝐱; 𝜽) follows their base model counterparts: we implement

𝑔𝑡(𝐱; 𝜽) as Bi-GRU for GRU base models; and bi-directional Transformer discriminators for

Transformer ones. In both cases, 𝑔𝑡(𝐱; 𝜽) is the score of 𝑥𝑡 in context.

4.1.4 Training procedure

Maximum-likelihood parameter estimation (MLE) can be expensive in an EBM because

the likelihood formula involves the expensive summation 𝑍 = ∑𝐱∈𝑉 ∗ �̃�𝜽 (𝐱), even when 𝑍

is computable. We therefore opt to train our model using the ranking variant of noise

contrastive estimation (NCE) (Ma and Collins, 2018), which does not require samples

from 𝑝0 and has a simple form for residual LMs. Using 𝑝0 as a noise distribution, NCE

training requires minimizing the following single-sequence loss, in expectation over the
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true distribution 𝑝, where 𝐱 is drawn:

nce(𝜽 , 𝐱, 𝑝0, 𝐾 ) = − log
�̃�𝜽
𝑝0
(𝐱)

∑𝐾
𝑘=0

�̃�𝜽
𝑝0
(𝐱(𝑘))

, (4.2)

where 𝐱(0) ≜ 𝐱,
�̃�𝜽
𝑝0
(𝐱) ≜ �̃�𝜽 (𝐱)

𝑝0(𝐱)
, and 𝐱(1)… 𝐱(𝐾 ) ∼ 𝑝0. Since �̃�𝜽 (𝐱) = 𝑝0(𝐱) ⋅ exp 𝑔𝜽 (𝐱), we have

�̃�𝜽
𝑝0
(𝐱) = exp 𝑔𝜽 (𝐱). The NCE minimization objective (4.2) now reduces to the simple form

nce(𝜽 , 𝐱, 𝑝0, 𝐾 ) = −𝑔𝜽 (𝐱) + log(exp 𝑔𝜽 (𝐱) +
𝐾

∑
𝑘=1

exp 𝑔𝜽 (𝐱(𝑘))). (4.3)

Notice that minimizing the expected loss with stochastic gradient descent methods

nce defined in equation (4.3) requires only evaluating sequence probabilities under 𝑔𝜽 ,

and tuning its parameters, but not the base model 𝑝0. We can just draw the noise samples

from 𝑝0. This way we do not need to backpropagate through parameters of the base model

𝑝0, which can speed up training considerably when 𝑝0 is backed by a huge network. In

fact, the training of 𝑔𝜽 can be completely agnostic to the design of 𝑝0, allowing for the

application of finetuning any locally normalized 𝑝0.

Given the same discriminator 𝑔𝜽 , the difference of KL-divergence between the true

model 𝑝 and residual language models �̃�′𝜽 (𝐱) = 𝑝′0(𝐱) ⋅ exp 𝑔𝜽 (𝐱), and the KL-divergence

between the true model and �̃�′′𝜽 (𝐱) = 𝑝′′0 (𝐱) ⋅ exp 𝑔𝜽 (𝐱), defined with base models 𝑝′0 and 𝑝′′0

respectively, can be written as

KL[𝑝||𝑝′𝜽] − KL[𝑝||𝑝′′𝜽 ] = KL[𝑝||𝑝′0] − KL[𝑝||𝑝′′0 ] + log
𝑍 ′

𝑍 ′′ , (4.4)
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where 𝑍 ′ = 𝔼𝐱∼𝑝′0[exp 𝑔𝜽 (𝐱)], and 𝑍 ′′
is similarly defined with 𝑝′′0 . As a direct result of

equation (4.4), we can see that finding 𝑝′′0 where KL[𝑝||𝑝′′0 ] < KL[𝑝||𝑝′0] implies improvement

in KL[𝑝||𝑝′′𝜽 ] over KL[𝑝||𝑝′𝜽], under some conditions:

Proposition 4.1.1. If ∃𝑘 > 0 such that

𝔼𝐱∼𝑝′0
[exp 𝑔𝜽 (𝐱)]

𝔼𝐱∼𝑝′′0
[exp 𝑔𝜽 (𝐱)]

> exp(−𝑘) and KL[𝑝||𝑝′0]−KL[𝑝||𝑝′′0 ] > 𝑘

then KL[𝑝||𝑝′𝜽] > KL[𝑝||𝑝′′𝜽 ].

Proof.

KL[𝑝||𝑝′𝜽] − KL[𝑝||𝑝′′𝜽 ]

= 𝔼
𝐱∼𝑝

[log 𝑝′′𝜽 (𝐱) − log 𝑝′𝜽 (𝐱)]

= 𝔼
𝐱∼𝑝

[log
𝑝′′0 (𝐱) exp 𝑔𝜽 (𝐱)

∑𝐱′∈≤𝑇
𝑝′′0 (𝐱) exp 𝑔𝜽 (𝐱)

− log
𝑝′0(𝐱) exp 𝑔𝜽 (𝐱)

∑𝐱′∈≤𝑇
𝑝′0(𝐱) exp 𝑔𝜽 (𝐱)

]

= 𝔼
𝐱∼𝑝

[log
𝑝′′0 (𝐱) exp 𝑔𝜽 (𝐱)
𝔼𝐱′∼𝑝′′0 [exp 𝑔𝜽 (𝐱)]

− log
𝑝′0(𝐱) exp 𝑔𝜽 (𝐱)
𝔼𝐱′∼𝑝′0[exp 𝑔𝜽 (𝐱)]

]

= 𝔼
𝐱∼𝑝

[log 𝑝′′0 (𝐱) − log 𝑝′0(𝐱)]

+ 𝔼
𝐱∼𝑝

[log 𝔼
𝐱′∼𝑝′0

[exp 𝑔𝜽 (𝐱)] − log 𝔼
𝐱′∼𝑝′′0

[exp 𝑔𝜽 (𝐱)]]

= KL[𝑝||𝑝′0] − KL[𝑝||𝑝′′0 ]

+ log
𝔼𝐱′∼𝑝′0[exp 𝑔𝜽 (𝐱)]
𝔼𝐱′∼𝑝′′0 [exp 𝑔𝜽 (𝐱)]

. (4.5)

Plugging assumptions

𝔼𝐱∼𝑝′0
[exp 𝑔𝜽 (𝐱)]

𝔼𝐱∼𝑝′′0
[exp 𝑔𝜽 (𝐱)]

> exp(−𝑘) and KL[𝑝||𝑝′0] − KL[𝑝||𝑝′′0 ] > 𝑘 into equa-

103



CHAPTER 4. RESIDUAL ENERGY-BASED SEQUENCE MODELS

tion (4.5), KL[𝑝||𝑝′𝜽] − KL[𝑝||𝑝′′𝜽 ] > 0.

Proposition 4.1.1 suggests a training heuristics where we first train the base model

𝑝0, then finetune 𝑔𝜽 : under a roughly uniform 𝑔𝜽 (e.g. when 𝜽 is newly initialized),

𝔼𝐱∼𝑝′0
[exp 𝑔𝜽 ]/𝔼𝐱∼𝑝′′0

[exp 𝑔𝜽 ] ≈ exp(0); so improvements on the inclusive KL-divergence of base

model KL[𝑝||𝑝0] will mostly translate to improvement in KL[𝑝||�̃�𝜽]. Optimizing the base

model (i.e. finding 𝑝′′0 such that KL[𝑝||𝑝′′0 ] < KL[𝑝||𝑝′0]) is much easier than directly mini-

mizing KL[𝑝||𝑝′𝜽]: the former can be done by minimizing empirical cross entropy, which

is computationally efficient, while the latter involves an intractable partition function

∑𝐱∈≤𝑇
�̃�′𝜽 (𝐱).

Pseudocode for fine-tuning 𝑔𝜽 is listed in Algorithm 1.

Algorithm 1: Pseudocode for training 𝑔𝜽
Input:

∙ Training/validation corpora {train,dev}

∙ base model 𝑝0 ∶ ≤𝑇 → [0, 1]

∙ initial parameter vector 𝜽0 ∈ 𝔹𝑑

∙ noise sample size 𝐾 ∈ ℕ

Output: unnormalized residual language model �̃�𝜽 ∶ ≤𝑇 → [0, 1]
𝜽 ← 𝜽0 ;

/* nce is defined in equation (4.3) */
while ∑𝐱∈

dev

nce(𝜽 , 𝐱, 𝑝0, 𝐾 ) is still decreasing do

foreach 𝐱 ∈ shuffle(train) do

∇𝜽nce = ∇𝜽nce(𝜽 , 𝐱, 𝑝0, 𝐾 );
𝜽 ← update-gradient(𝜽 ,∇𝜽nce);

end

end

return 𝐱 ↦ 𝑝0(𝐱) + exp 𝑔𝜽 (𝐱);
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4.1.5 Computing normalized probabilities

The unnormalized probability �̃�𝜽 (𝐱) (in equation (4.1)) can be evaluated easily, and should

suffice for (re)ranking purposes (e.g. for ASR and MT applications). However, the normalized

probability 𝑞𝜽 (𝐱) ≜ �̃�𝜽 (𝐱)
∑𝐱 �̃�𝜽 (𝐱)

does require computing the partition function 𝑍𝜽 . An unbiased

importance sampling estimate of ∑𝐱∈≤𝑇
�̃�𝜽 (𝐱) is

𝑍𝜽 = ∑
𝐱∈≤𝑇

�̃�𝜽 (𝐱)

= ∑
𝐱∈≤𝑇

𝑝0(𝐱) exp 𝑔𝜽 (𝐱)

= 𝔼
𝐱∼𝑝0

[exp 𝑔𝜽 (𝐱)]

≈
𝑀

∑
𝑚=1

exp 𝑔𝜽 (𝐱(𝑚))
𝑀

, (4.6)

where 𝐱(1)… 𝐱(𝑀) ∼ 𝑝0.

4.2 Comparison between REBMs and autore-

gressive models

We evaluate the effectiveness of REBMs on two different neural architectures (GRU- and

Transformer-based) and 3 datasets: WikiText (Merity et al., 2017), Yelp (Yelp Open Dataset),

and RealNews (Zellers et al., 2019), on the task of modeling sequence probabilities. An
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Experiment (Architecture) Model Best configura-

tion (according to

devset)

log likelihood improvement (95% CI) perplexity improvement

RealNews (Transformer) 𝑝𝜽 4-layer, tanh (−0.18, −0.13), 𝜇 = −0.15 .03%
RealNews (Transformer) 𝑝′0 N/A N/A .00%

WikiText (GRU) 𝑝𝜽 1-layer/500, soft-

plus

(−1.85, −1.54), 𝜇 = −1.69 1.44%

WikiText (GRU) 𝑝′0 N/A N/A .50%

Yelp (GRU) 𝑝𝜽 2-layer/500, soft-

plus

(−1.89, −1.67), 𝜇 = −1.80 1.82%

Yelp (GRU) 𝑝′0 N/A N/A .49%

Table 4.1: Residual energy-based model �̃�𝜽 improvements over autoregressive base models

𝑝0. The perplexity numbers are per-token, and log likelihood improvements are per sequence

(in nats).

REBM �̃�𝜽 has two components, 𝑔𝜽 and 𝑝0, and we would like to see how �̃�𝜽 competes

against 𝑝0 itself. We do not further tune 𝑝0 while training 𝑝𝜽 . As a fair comparison, we also

see how 𝑝′0 compares against 𝑝0, where 𝑝′0 is simply a version of 𝑝0 that has been trained as

many additional epochs as were used to train 𝑝𝜽 .

𝑝0 models are pretrained on moderately large corpora (in GRU cases) or a very large

corpus (in the Transformer case).
4

We compare residual energy-based models �̃�𝜽 to further-

fine-tuned base models 𝑝′0, on conservatively estimated (i.e., the low end of 95% confidence

interval) token perplexity and bootstrap-sampled log likelihood improvements. The results

are in Table 4.1.
5

Residual energy-based models show consistent perplexity improvement

compared to 𝑝′0 that are trained on the same data using the same maximum numbers of

iterations. Although the improvement in log-likelihood of 𝑝𝜽 over 𝑝0 is modest (especially

for RealNews experiments, where 𝑝0 is a very strong baseline), we verify that these

4
In the Transformer case we simply take 𝑝0 to be the Grover (Zellers et al., 2019) pretrained language

model, which is based on the GPT-2 (Radford et al., 2019) architecture and performs competitively on news

article generation.

5
We only report each dataset’s best model (according to validation data) in this table. See §4.3 for exper-

imental details.
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improvements are all statistically significant (𝑝 < 0.05) using bootstrapped test datasets.

We experiment with different designs of the discriminator 𝑔𝜽 , evaluating the effec-

tiveness of bounding 𝑔𝜽 (§4.1.3) and varying its number of parameters. We find that in

Transformer-based experiments, bounding 𝑔𝜽 considerably helps with performance; but

the opposite happens for GRU-based models. We speculate that this is due to the base

models’ performance: the Transformer base models have high parameter count and were

trained on a lot of data; and the true distribution 𝑝 likely is relatively similar to 𝑝0, and

benefits from a small hypothesis space. On the other hand our GRU-based 𝑝0 has neither

the capacity, nor the huge amount of training data. As a result, the unbounded variant 𝑔𝜽

(and 𝑞𝜽 ) may end up learning a better approximation of 𝑝.

4.3 Experimental details

4.3.1 Datasets

Residual language model experiments are conducted on these datasets:

∙ Segmented WikiText: we take the standard WikiText-2 corpus (Merity et al., 2017),

and segment it into sequences at new line breaks, followed by BPE tokenization. We

discard all empty lines, and any line that starts with the ‘=’ token (which signifies a

header line). In effect, we obtain sequences that are mostly entire paragraphs. We

also only keep lines that are shorter than 800 tokens. Because of our preprocessing,
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Segmented WikiText loses much interparagraph context information, and doesn’t

have the ‘simple’ header sequences that were in the original WikiText corpus, and is

much harder to language-model.

∙ Yelp: the Yelp dataset (Yelp Open Dataset) contains business reviews. Each sequence

is a review. As in Segmented WikiText, we keep only reviews shorter than 800 tokens.

∙ RealNews: we make use of the standard RealNews corpus comes from (Zellers

et al., 2019), which contains news articles that are up to 1, 024 tokens long.

In all experiments we tokenize with BPE tokenizers derived from the GPT-2 language

models: the GRU models use Huggingface’s implementation
6

and the Transformers use

Grover’s
7
. Number of sequences in preprocessed datasets are listed in Table 4.2.

Train Dev Test

RealNews 3, 855 1, 533 6, 158
WikiText 18, 519 878 2, 183
Yelp 10, 951 9, 964 994

Table 4.2: Number of sequences in preprocessed datasets (for training and tuning the

discriminators 𝑔𝜽 , and evaluation).

4.3.2 Pretraining base models 𝑝0

We use a pretrained Grover model as the base model in RealNews experiments. For GRU-

based experiments, we train base models on WikiText and Yelp datasets using separate

6https://github.com/huggingface/transformers
7https://github.com/rowanz/grover
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training and validation splits than those of the discriminator 𝑔𝜽 (Table 4.3). The base models

are periodically (every 1, 000 iterations) evaluated on the validation split for early stopping

(with patience equal to 10 epochs). The base models 𝑞𝜽 achieve 113.98 for Segmented

WikiText, and 110.89 in test set perplexity, respectively. Note that these base models are

further fine-tuned on additional datasets in our comparison against residual language

models.

Train Dev

WikiText 17, 556 1, 841
Yelp 9, 954 1, 000

Table 4.3: Number of sequences in preprocessed datasets (for training and tuning the base

model 𝑞). Note that we do not train our own base models for RealNews, but use one of the

pretrained models provided by (Zellers et al., 2019).

4.3.3 Metrics

We evaluate the relative performance of residual language models against autoregres-

sive models (i.e. fine-tuned base models) on two metrics, log likelihood and perplexity

improvement, which are approximated as follows:

∙ Approximate log likelihood improvement: since 𝑝, 𝑝𝜽 and 𝑞0 are all distributions

over≤𝑇 , we can quantitatively evaluate their difference in log likelihood. We measure
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the difference between KL[𝑝||𝑝𝜽] and KL[𝑝||𝑝0]:8

KL[𝑝||𝑝𝜽] − KL[𝑝||𝑝0]

= 𝔼
𝐱∼𝑝

[log 𝑝𝜽 (𝐱) − log 𝑝0(𝐱)]

= 𝔼
𝐱∼𝑝

[log �̃�𝜽 (𝐱) − log 𝑝0(𝐱)] − log𝑍𝜽

= 𝔼
𝐱∼𝑝

[𝑔𝜽 (𝐱)] − log𝑍𝜽

≈
∑𝐱∈test

𝑔𝜽 (𝐱)
|test|

− log𝑍�̂�𝑀 , (4.7)

where 𝑍�̂�𝑀 is estimated using equation (4.6). A negative value of log likelihood

difference indicates that �̃�𝜽 approximates 𝑝 better than 𝑝0 in terms of KL-divergence.

∙ Perplexity improvement: perplexity is a common language modeling metric.

Following (Rosenfeld, Chen, and Zhu, 2001), we compute

perplexity improvement of 𝑝𝜽

=
exp || log𝑍�̂�𝑀

𝑤(test)

exp ∑𝐱∈
test

𝑔𝜽 (𝐱)
𝑤(test)

, (4.8)

where 𝑤() is the total token count of dataset , and || is the number of sequences

of . 𝑍�̂�𝑀 is ecomputed §4.1.5

Both evaluation metrics involve estimating the partition function with 𝑍�̂�𝑀 . For the per-

8
Note that 𝑝0 here is the base model component of �̃�𝜽 . While comparing between residual language

models and autoregressive models, we also finetune 𝑝0 on additional data to get a new model 𝑞′0, which has

different parameters than 𝑝0.
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plexity improvement metric, we obtain 32 estimates of 𝑍�̂�𝑀 , which are normally distributed,

and compute equation (4.8) using 𝑍�̂�𝑀 the conservative end of a 95% confidence level. We

set 𝑀 = 512 in this work. To account for variance in our test datasets, we further make

use of bootstrapping estimation for log likelihood improvement: we bootstrap-sample

1, 000 subsamples for each test dataset, and compute equation (4.7) for each datapoint in

the Cartesian product (1, 000 × 32 in total). We then report results at the 2.5% and 97.5%

percentiles.

4.3.4 Hyperparameters

Transformer experiments. We train our models on 64 GPUs across 8 nodes, with a

total batch size of 64 × 8 × 2 = 1, 024, and with 1 noise sequence (𝐾 = 1 in §4.1.4) per batch.

We use an initial learning rate of 5𝑒 − 5. The rest of the hyperparameters largely follow

settings in (Zellers et al., 2019). Optimization is done with the Grover implementation of

AdaFactor.

GRU experiments. We train our models on 8 GPUs on a single node, with a total batch

size of 8 × 2 = 16, and with 25 noise sequences (𝐾 = 25 in §4.1.4) per batch. We have

an initial learning rate of 1𝑒 − 4. Upon no improvement on validation data, we half the

learning rate, with patience = 1. The model parameters are 𝑙2 regularized with a coefficient

of 1𝑒 − 5. We also apply dropout regularization with 𝑝 = 0.5. Optimization is done with

PyTorch-supplied Adam.
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4.3.5 Configurations

We study the effects of these configurations:

∙ Bounding 𝑔𝜽 : we note in §4.1.3 that with the strong hypothesis that the base model

𝑝0 has bounded error, 𝑔𝜽 will have a bounded range, and leads to a much smaller

hypothesis space. In this work we experiment with both bounded and unbounded

𝑔𝜽 ’s, with ranges (−∞, 0) and (−2, 2) respectively. More details can be found in §4.1.3.

∙ Model capability of 𝑔𝜽 : we hypothesize that the expressiveness of 𝑔𝜽 does not

need to be as rich as the parametrization of 𝑝0, since 𝑔𝜽 essentially only has to tell

whether the sequence 𝐱 comes from 𝑝 or 𝑝0. For the GRU + WikiText experiments, we

experiment with {1, 2}-layer GRU models of 𝑔𝜽 . For 1-layer models, we additionally ex-

periment with a setup that has only 250 hidden units. For the Transformers/RealNews

dataset, we experiment with {12, 4}-layer Transformer models.

4.3.6 Log likelihood improvements under different con-

figurations

We also see in Table 4.4 that using tanh as the activation function 𝑓 does better than

softplus for Transformers; but performs very poorly for GRUs. We also observe degeneracy

problems. We speculate that our Transformer-based base models 𝑞𝜽 have already learned

a good approximation of the true distribution; and limiting the model capacity of 𝑔𝜽 in
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Model Size Activation

log likelihood improvement

95% CI 𝜇

RealNews (Transformers)

12-layer softplus (−0.13, 0.08) −0.09
12-layer tanh (−0.14, −0.10) −0.12
4-layer softplus (−0.15, 2.62) −0.02
4-layer tanh (−0.18, −0.13) −0.16

WikiText (GRUs)

2-layer / 500 tanh (−0.00, 0.00) −0.00
2-layer / 500 softplus (−1.32, −0.85) −1.18
1-layer / 500 tanh (−0.79, −0.64) −0.71
1-layer / 500 softplus (−1.85, −1.54) −1.69
1-layer / 250 tanh (−0.02, 0.02) −0.00
1-layer / 250 softplus (−1.85, −1.46) −1.67

Yelp (GRUs)

2-layer / 500 tanh (−0.03, 0.01) −0.02
2-layer / 500 softplus (−1.89, −1.67) −1.80
1-layer / 500 tanh (−0.65, −0.57) −0.61
1-layer / 500 softplus (−2.62, −2.03) −2.43
1-layer / 250 tanh (−0.00, 0.00) −0.00
1-layer / 250 softplus (−2.25, −1.99) −2.13

Table 4.4: Comparison of different configurations.

exchange of smaller variance results in a favorable trade-off, and vice versa for GRUs.

Regarding discriminator capability: we see that performance is not sensitive to model

size. Our best Transformers run actually is from the smaller-model runs. And the 1-layer

500-unit GRU models achieve best performance. Overall, results in Table 4.4 suggests that

performance is sensitive to the choice of model configuration.
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4.4 Conclusion

In this chapter, we have experimented with a particular family of energy-based sequence

models — REBMs — and showed their effectiveness over two different neural architectures

and 3 datasets. Our improvements over the autoregressive baseline models are statistically

significant, yet marginal.

A major limitation of our REBMs is that they define finite-support distributions over

strings with maximum length 𝑇 ∈ ℕ (§4.1.1). With a predefined 𝑇 that is large enough we

may handle paragraph- or document-level language modeling well. However for some

applications it is difficult to set 𝑇 beforehand: for example, a path in a finite-state machine

can go through a cycle arbitrarily many times. If we were to model a path distribution

using an REBM, we effectively disallow cycles.

So, can we relax the constraint that the REBM distribution has finite support? In § 5,

we will see that the answer is unfortunately no, unless we are willing to cripple model

expressiveness in significant ways.
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Chapter 5

Uncomputability and

inapproximability of the partition

functions of EC languages

One of the conclusions of § 3 is that energy-based sequence models are strictly more

expressive than autoregressive sequence models. As Theorems 3.1.1, 3.2.2, 3.2.3 and 3.2.6

and Lemmas 3.2.4 and 3.2.7 imply, there are distributions which cannot be captured by any

autoregressive sequence models, while being model-able by energy-based sequence models.

Because of expressiveness concerns, it may be desirable to parametrize energy-based

sequence models as neural networks, to ensure that they can capture interaction between

symbols over an arbitrarily long distance (e.g., as required to model the formal language we

construct in the proof of Theorem 3.2.2).
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Contemporary neural networks have been shown to be very powerful. In particular,

some popular parametric sequence model families (§2.3), such as RNNs (Siegelmann and

Sontag, 1995) and Transformers (Bhattamishra, Patel, and Goyal, 2020; Pérez, Barceló,

and Marinkovic, 2021), have been formally shown to recognize recursively enumerable

languages: given any Turing machine 𝑀 , there is a parameter vector 𝜽 ∈ 𝚯, where 𝚯 is a

parametric sequence model family (§2.3), such that the parametrized sequence model 𝑁𝜽

recognizes the same language as 𝑀 does.
1

In other words, these sequence model families

are Turing-complete.

It is therefore intuitive that energy-based sequence models, backed by such powerful

neural networks, can model any weighted language ∈ EC. That is, these parametric sequence

model families are EC-complete (§2.3.2). And indeed, we have shown that a particular

class of Transformers are EC-complete (Theorem 2.3.2). It would seem assuring to work

with such model families: assuming there exists an algorithm that computes true string

probabilities in polytime,
2

the model family 𝚯 is well-specified — that is, there exists 𝜽 ∈ 𝚯

such that 𝑁𝜽 defines the true weighted language. Moreover, one may assume that given we

can sample from 𝑝𝜽𝑀 , we would be able to use consistent estimators to find 𝜽 ′ ∈ 𝚯, where

𝜽 ′ ≈ 𝜽𝑀 .

Unfortunately, we find that with such an expressive distribution family 𝚯 (e.g., when 𝚯

is EC-complete), whether the identifiability assumption holds — required for most consistent

1
We refer the interested reader to Pérez, Barceló, and Marinkovic (2021) for technical details.

2
By definition, string weights �̃�(𝝎) in an EC weighted language can be computed in 𝑂(poly(|𝝎|)). But

those are not necessarily normalized probabilities 𝑝(𝝎). Therefore, the algorithm that computes 𝑝(𝝎) may

need the normalizing constant 𝑍 = ∑ �̃�(𝝎) memorized, in order to compute 𝑝(𝝎) in 𝑂(poly(|𝝎|)).
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estimators (Lehmann and Casella, 2006) — itself is undecidable (Turing, 1937). Moreover,

likelihood-based model selection
3

on any held-out data is also undecidable (i.e., there is no

algorithm that decides which model is better in finite time). Even worse, likelihood-based

model selection is not possible for certain subsets 𝚯′ ⊆ 𝚯 either — even when 𝚯′
itself is

not necessarily expressive (e.g., 𝚯′
correspond to a finite set of fixed-size Transformer

EBMs, which cannot parametrize all EBMs that require more parameters). We construct

one such ‘pathological’ distribution 𝜽 ′ ∈ 𝚯′ ⊊ 𝚯 as a Transformer EBM.

These negative results stem from the uncomputability and inapproximability of 𝑍

(first introduced in §2.2.1). A main technical contribution of this chapter is that there

is no algorithm (either deterministic or randomized) that can approximate 𝑍 well, even

when we limit ourselves to fairly restrictive parametric sequence model families. Since

statistical procedures are also algorithms, common randomized estimates are not useful in

this scenario, either — however, we will see that for less expressive model families, such

uncomputability issues do not arise. Our negative results are summarized in Table 5.1. To

ensure that we can compare the goodness of different parameter vectors with confidence,
4

we have no choice but to resort to less expressive string distributions (§5.6).

3
We note that the term model selection has some subtle ambiguation in the literature: some authors

(Bishop and Nasrabadi, 2006, Ch. 1) use it to refer to the decision problem that which system is the best. On

the other hand, some authors (Nishii, 1988) use it to refer to the computation of model selection criteria

of different systems, where the best system is often implicitly assumed to be the system with the highest

criterion value. In this chapter, we adopt the first meaning — namely we use the term ‘model selection’ to

refer to the decision problem. Specifically, we opt for one of the simpler model selection variants: likelihood-

based model selection in this chapter. In §5.5.2 we will further discuss why the model selection criteria may

not be useful, even when they are well-defined.

4
Of course, likelihood-based model selection (and computing 𝑍�̃�) are not always needed — for example,

simply deciding whether �̃�(𝐱1) > �̃�(𝐱2) for two given strings 𝐱{1,2}. In such case the uncomputability issues

we discuss are not a concern.
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exact asymptotic

deterministic ✗ (Theorem 5.2.1) ✓ (§5.4; but no useful guarantee in finite

time)

randomized ✗ (Theorem 5.3.2) ?; but ✗ for rejection sampling (Theo-

rem 5.4.1) and ✗ for importance sampling

(Theorem 5.4.2) when paired with autore-

gressive proposal distributions

Table 5.1: Summary of negative results: neither deterministic or randomized algorithms

can estimate EBM partition functions accurately. On the other hand, popular sampling

schemes such as rejection and importance sampling require their autoregressive proposal

distributions to be uncomputable.

The chapter is structured as follows. In §5.1 we formally define computable estimates.

In §§5.2–5.4 we describe our main technical results: there exist pathological EBM sequence

models that have uncomputable partition functions, which cannot be approximated well

under stochastic estimates, and do not have asymptotic estimates that have any good

guarantees. In §5.5 we that argue our negative results make likelihood-based model selection

impossible for expressive model families, and discuss why common estimation methods fail.

Finally, we discuss three ‘palliative’ parametrization choices in §5.6, which all guarantee

computable partition functions, at the cost of expressiveness.

5.1 Estimators

A main result of this work is that partition functions in an EC-complete family are

uncomputable. Moreover, randomness does not help estimation; and correct asymptotic

estimators are not useful. We define these estimators here in order to discuss the power of
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different estimators concretely.

Let 𝚯 be a parametric family. The function 𝑓 ∶ 𝚯 → ℚ is an exact estimator if there

exists a weighted deterministic Turing machine that takes 𝜽 as input and, before halting in

finite time, outputs 𝑓 (𝜽) ∈ ℚ.

Many estimation procedures are anytime algorithms: they do not have a predetermined

runtime, and they can be stopped at any time before completion to produce a valid output.

Output quality of an anytime algorithm may improve with increased runtime. Moreover,

many of these algorithms have asymptotic guarantees, in that their outputs are optimal in

some sense (e.g., consistency) in the limit. We capture these algorithms with asymptotic

estimators: a function 𝑓 (𝜽) is an asymptotic estimator if there exists a weighted Turing

machine that takes both 𝜽 and an index 𝑖 as input, then outputs a value 𝑓�̃�,𝑖 ∈ ℚ in finite

time, such that the outputs converge toward 𝑓 (𝜽) as 𝑖 increases toward infinity. (An example

is �̂� asym introduced at §5.4.)

We now extend both exact and asymptotic estimators to the stochastic case, where

we compute the estimates using randomized algorithms instead of deterministic ones. As

is conventional for randomized algorithms, we assume the use of probabilistic Turing

machines. These have access to an infinitely long random tape. The tape describes an

infinite binary sequence from tossing a fair two-sided coin infinitely many times. We

call the random tape distribution 𝑝𝜏 .5 We define a randomized exact estimator 𝐟 as a

5
Formally speaking, we define a probability space (Ω,,ℙ) where Ω = 𝔹ℕ

is our sample space,  =
{𝐴𝐛 ∶ 𝐴𝐛 is the set of all sequences ∈ Ω that have prefix 𝐛 ∈ 𝔹∗} is our event space, and ℙ(𝐴) = 2−𝑛 where

𝑛 is the length of the longest shared prefix of 𝐴, is our probability function (Stroock, 2014).
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weighted Turing machine with two input tapes — the random tape 𝜏 ∈ 𝔹ℕ
, and an input

tape that has 𝜽 — and outputs 𝑓 (𝜽 , 𝜏 ) in finite time. Likewise, we say 𝐟𝜽 ,𝑖 is a randomized

asymptotic estimator if there exists a function 𝑓 (𝜽) ∈ ℝ and a weighted Turing machine

that takes (𝜽 , 𝑖), 𝜏 on two input tapes, so that for all random Boolean tapes 𝜏 ∈ 𝔹ℕ
, we

converge with lim𝑖→∞ 𝑓𝜽 ,𝑖,𝜏 = 𝑓 (𝜽). Many Monte Carlo estimators can be seen as randomized

asymptotic estimators, including rejection sampling and importance sampling estimators.

5.2 Expressiveness and uncomputability: patho-

logical EBMs

5.2.1 Expressive sequence distributions

To illustrate the uncomputability issues of energy-based models, we construct families of

string distributions that are expressive: they require the full power of an EC-complete

sequence model family.

We define 𝑘 = {�̃�𝑀,𝑘 ∶ 𝑘 ∈ ℚ>0} to be a set of weighted languages, where �̃�𝑀,𝑘 is

parametrized by deterministic Turing machine 𝑀 that takes an empty string as input

(‘input-free’). Let 𝐿𝑀 ⊆ 𝔹∗
be a prefix-free Boolean language of computation sequences of a
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Turing machine 𝑀 — that is, encodings of the trace of 𝑀 ’s operations. We define

�̃�𝑀,𝑘(𝐱) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/3|𝐱|+1 + 𝑘 if 𝐱 ∈ 𝐿𝑀 , and 𝐱 encodes a valid accepting

trace of 𝑀 .

1/3|𝐱|+1 otherwise.

(5.1)

The weight of any string 𝐱, where |𝐱| = 𝑛, under �̃�𝑀,𝑘 can be computed in time 𝑂(poly(𝑛)),

by verifying whether 𝐱 is an accepting execution trace of 𝑀 , from the initial state to an

halting state. That is, �̃� ∈ EC (§2.2.3). We also know that for any (deterministic) machine 𝑀 ,

the language’s partition function 𝑍�̃�𝑀,𝑘
exists, and it must equal either 1 or 1 + 𝑘, since there

is either one halting trace (𝑍�̃�𝑀,𝑘
= 1 + 𝑘), or none (𝑍�̃�𝑀,𝑘

= 1). Therefore, each �̃� ∈ 𝑘 defines

a string distribution.

Since for all 𝑘 ∈ ℚ>0, 𝑘 ⊂ EC, all weighted languages �̃�𝑀,𝑘 have an equivalent parameter

vector 𝜽𝑀,𝑘 in any EC-complete family 𝚯. Also, since each 𝑘 is a bijection between the

set of all input-free Turing machines and a subset of 𝚯, it follows that there is no exact

estimator (§5.1) of the partition function of any EC-complete family (e.g., Transformer

EBMs (Theorem 2.3.2)), by a reduction from Halt:
6

Theorem 5.2.1. Let 𝚯 be a parametric EC-complete sequence model family. And let 𝚯𝑘 ⊂ 𝚯

be bijective with 𝑘 . There is no 𝑘 ∈ ℚ>0 for which there exists an exact estimator �̂� 𝑘 that

takes as input 𝜽 ∈ 𝚯𝑘 as input, and computes �̂� 𝑘(𝜽) = 𝑍�̃�𝜽 in finite time.

6
Speaking loosely, Halt is the task of recognizing (deciding) whether a given program on an ideal

computer will properly terminate in finite time or not (Sipser, 2013; Arora and Barak, 2009).
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Proof. We can reduce Halt to computing our partition function. For the sake of contra-

diction, let us assume that for some 𝑘 ∈ ℚ>0, the exact estimator �̂� 𝑘 exists. Our reduction

from Halt of input-free Turing machines is as follows: Given any deterministic input-free

Turing machine 𝑀 , we build a weighted deterministic Turing machine: 𝑀 ′
(§2.2.2). 𝑀 ′

takes as input 𝐱 ∈ 𝔹∗
, and outputs �̃�𝑀,𝑘(𝐱) as defined in equation (5.1).

7

𝑀 ′
always returns a weight for 𝐱 in polytime. By the assumptions of EC-complete

families (§2.3.2), we can build a parameter vector 𝜽 ∈ 𝚯 such that �̃�𝑀 ′ = �̃�𝜽 . Since from the

definitions of 𝑘 we know �̃�𝑀 ′ = �̃�𝑀,𝑘 , we have 𝜽 ∈ 𝚯𝑘 .

We have thus completed our reduction: if �̂� 𝑘 — which by definition is a computable

function — existed, we could decide whether any given input-less deterministic Turing

machine 𝑀 halts, by first constructing the weighted Turing machine 𝑀 ′
, then the corre-

sponding 𝜽 . By our assumption, �̂� 𝑘(�̃�𝜽 ) = 𝑘 + 1 if and only if ∃𝐱 ∈ 𝔹∗
that is an accepting

path of 𝑀 ′
, which is true if and only if 𝑀 halts for some finite steps. Since whether 𝑀 halts

is undecidable, we have arrived at a contradiction (Turing, 1937; Sipser, 2013). Therefore

for all 𝑘 ∈ ℚ, the algorithm �̂� 𝑘 does not exist.

We note that the uncomputability of partition functions has also been observed in other

expressive model families, where Turing completeness also arises (Kempe, Champarnaud,

and Eisner, 2004; Chiang and Riley, 2020).

7
Specifically, 𝑀 ′

returns weight 1/3|𝐱|+1 + 𝑘 when 𝐱 encodes an accepting trace of 𝑀 ′
. Otherwise, 𝑀 ′

outputs weight 1/3|𝐱|+1.
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5.2.2 An EBM whose partition function is uncomputable

Theorem 5.2.1 states there is no estimator that ‘works’ for a subset of parameter vectors.

While every 𝑘 is much smaller than its superset EC, 𝑘 is still (countably) infinite. Here

under the assumption that ZFC is consistent, we construct one weighted language �̃� ∈ 1

(for simplicity; it holds for arbitrary 𝑘), where no provably correct (under ZFC) algorithm

can compute 𝑍�̃�:

Theorem 5.2.2. Assuming ZFC is a consistent axiomatic system, there exists an ECweighted

language �̃� ∈ 1 such that (a) 𝑍�̃� = 1, but (b) ZFC ⊬ (𝑍�̃� = 1).

Proof. Our proof hinges on Gödel’s second incompleteness theorem: no consistent axiomatic

system which includes Peano arithmetic (e.g., ZFC) can prove its own consistency. We need

a Turing machine 𝑀𝑏 that enumerates all provable propositions under ZF, and halts if and

only if 𝑀𝑏 proves the proposition 1 = 0. One such 𝑀𝑏 with 7, 918 states has been built by

Yedidia and Aaronson (2016).
8

𝑀𝑏 is an input-free deterministic Turing machine. We construct a weighted Turing

machine 𝑀 ′
from 𝑀𝑏, in the manner of the proof of Theorem 5.2.1. We let 𝑀 ′

return

weight 1 + 1/3|𝐱|+1, in the case 𝑀𝑏 halts with trace 𝐱. 𝑀 ′
returns a weight in polytime, and

therefore defines a weighted language �̃� ∈ 1 ⊂ EC. We know from the definitions of 1 that

𝑍�̃� ∈ {1, 2}. Furthermore, under our assumption that ZFC is consistent, we know 𝑍�̃� ≠ 2,

otherwise there would have existed a proof that 0 = 1. Therefore, 𝑍�̃� = 1.

8
Subsequent efforts have led to a construction of 𝑀𝑏 with 748 states: https://

turingmachinesimulator.com/shared/vgimygpuwi.
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Assume to the contrary that there exists a proof that 𝑍�̃� = 1 in ZFC. Then we know 𝑀𝑏

did not halt — in other words, there is no proof that 0 = 1 under ZFC. Therefore, this proof

would also imply that ZFC is consistent, which violates Gödel’s second incompleteness

theorem.

The existence of �̃� suggests that if there is an algorithm that approximates 𝑍�̃� , and

produces a witness of its approximation quality, then this algorithm will not work on any

set of parameter vectors that can parametrize �̃�— even when this algorithm may work for

some subsets of 𝚯. This is useful in allowing us to show negative results regarding finite

subsets of 𝚯. §5.2.3 gives one such example.

5.2.3 Negative results in finite parameter subspaces

In §5.2.2, we mention that the pathological EBM �̃� can show negative results regarding

finite subsets of 𝚯. Here, we provide a concrete example.

Corollary 5.2.2.1. Assuming ZFC axioms and assuming they are consistent, there exists

𝜽 ∈ 𝚯 such that 𝑍�̃�𝜽 ∈ ℚ>0 exists, but there is no algorithm �̂� proof that takes 𝜽 ∈ 𝚯 as input,

and outputs a set of strings {𝐱𝑛 ∶ 𝑛 < 𝑁}, 𝑁 ∈ ℕ where

∙ there is a proof that ∑𝑁
𝑛=1 �̃�𝜽 (𝐱) ≥ 1/2𝑍�̃�𝜽 ; or

∙ there is a proof that ∑𝑁
𝑛=1 �̃�𝜽 (𝐱) < 1/2𝑍�̃�𝜽 .

124



CHAPTER 5. UNCOMPUTABILITY AND INAPPROXIMABILITY OF THE PARTITION

FUNCTIONS OF EC LANGUAGES

Proof. Assuming to the contrary that �̂� proof existed. We construct 𝜽 ∈ 𝚯 such that ∀𝐱 ∈

𝔹∗, �̃�𝜽 (𝐱) = �̃�(𝐱). Either proof resulting from �̂� proof(𝜽): {𝐱𝑛 ∶ 𝑛 < 𝑁} can be used to prove

or disprove the consistency of ZFC.

Corollary 5.2.2.1 states that there exists a ‘problematic EBM’ — namely �̃�— where we

cannot guarantee to well approximate its partition function, by accumulating finitely many

string weights, regardless of the manner of accumulation (i.e., how we choose strings) or

the number of strings we enumerate over.

5.3 No randomized algorithm can estimate 𝑍

accurately

We’ve shown by Theorem 5.2.1 that for an EC-complete family, there are no exact estimators

than can get 𝑍 perfectly right. In this section, we show that no randomized exact estimator

for this is unbiased. Further, there isn’t even an estimator whose bias is within some factor

𝜖, regardless of the variance’s magnitude.

Lemma 5.3.1. Let 𝚯 be an EC-complete parametric family. There is no multiplicative factor

𝜖 ∈ ℚ>1 for which every 𝜽 ∈ 𝚯 can have its partition function approximated with �̂�𝜖(𝜽)

within a factor of 𝜖 — with probability greater than 2/3. That is, we cannot have

𝑃 ((1/𝜖)𝑍�̃�𝜽 ≤ �̂�𝜖(𝜽) ≤ 𝜖𝑍�̃�𝜽) > 2/3. (5.2)
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Proof. In this proof, we make use of the distribution family 𝜖2 (§5.2.1). We assume to

the contrary that a multiplicative bound 𝜖 satisfying equation (5.2) exists. Recall that our

assumptions state that 𝑃 (1/𝜖 ≤ �̂�𝜖 (𝜽)/𝑍�̃�𝜽 ≤ 𝜖) > 2/3.9 Let 𝑀 be an input-free Turing machine.

And let �̃�𝜽 = �̃�𝑀,𝜖2 ∈ 𝜖2 where 𝜽 ∈ 𝚯. If the Turing machine 𝑀 halts, 𝑍�̃�𝑀,𝜖2
= 1 + 𝜖2;

therefore, 𝑃 ((1 + 𝜖2)1/𝜖 ≤ �̂�𝜖(𝜽) ≤ (1 + 𝜖2)𝜖) > 2/3. Similarly, if 𝑀 does not halt, we have

𝑍�̃�𝑀,𝜖2
= 1; therefore, 𝑃 (1/𝜖 ≤ �̂�𝜖(𝜽) ≤ 𝜖) > 2/3. By combining the two conditions, we know

that 𝑃 (𝕀(𝑀 halts)) = 𝑃 (𝕀(�̂�𝜖(𝜽) ≥ 𝜖 + 1/𝜖 ∧ �̂�𝜖(𝜽) > 𝜖)) = 𝑃 (𝕀(�̂�𝜖(𝜽) ≥ 𝜖 + 1/𝜖)).

Therefore, given (1/𝜖)𝑍�̃�𝜽 ≤ �̂�𝜖(𝜽) ≤ 𝜖𝑍�̃�𝜽 , we can decide if 𝑀 halts by checking if

�̂�𝜖(𝜽) ≥ 𝜖 + 1/𝜖. Since the condition (1/𝜖)𝑍�̃�𝜽 ≤ �̂�𝜖(𝜽) ≤ 𝜖𝑍�̃�𝜽 only holds 2/3 of all time, we then

derandomize the randomized �̂�𝜖 to get a deterministic estimator of 𝑍 that has bounded error:

recall that a randomized exact estimator finishes computation in finite time, regardless of

the content of the random tape 𝜏 . Therefore, there are only finitely many finitely long

possible ‘random’ sequences that �̂� 𝜖 will read, which we can enumerate. More concretely:

𝑃(�̂�𝜖(𝜽) ≥ 𝜖 + 1/𝜖) = 𝔼
𝜏 [𝕀(�̂� 𝜖(𝜽 , 𝜏 ) ≥ 𝜖 + 1/𝜖)]

= ∑
𝜏∈𝔹𝑚𝜽 ,𝜖

1/2𝑚𝜽 ,𝜖𝕀(�̂� 𝜖(𝜽 , 𝜏 ) ≥ 𝜖 + 1/𝜖) (5.3)

where 𝑚𝜽 ,𝜖 ∈ ℕ is the maximum prefix length of the random tape that �̂� 𝜖(𝜽 , 𝜏 ) will use

on any 𝜏 ∈ 𝔹ℕ
. Again 𝑚𝜽 ,𝜖 is guaranteed to exist because of our assumption that �̂� 𝜖(𝜽 , 𝜏 )

9
As is common, e.g., in defining the complexity class BPP (Arora and Barak, 2009), the fraction 2/3 is

arbitrary. Any proportion bounded away from 1/2 will work.
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ends in finite time. Since equation (5.3) is a finite sum of computable functions, it is also

computable.

From the computability of equation (5.3), it follows that we can derive a deterministic

algorithm from �̂�𝜖 that decides whether an arbitrary input-free Turing machine halts, which

is not possible. Therefore, there is no 𝜖 ∈ ℚ>1, such that the randomized exact estimator �̂�𝜖

satisfies the multiplicative bound 𝑃 (1/𝜖 ≤ �̂�𝜖 (𝐺)/𝑍 ≤ 𝜖) > 2/3 for all 𝜽 ∈ 𝚯.

Taken together, Theorem 5.2.1 and Lemma 5.3.1 state that no exact estimator �̂� —

whether randomized or deterministic — can approximate 𝑍 with good confidence. In

Theorem 5.3.2 below, we will make an even stronger claim: regardless of the dispersion

magnitude, it is impossible to bound the mean of random exact estimators of 𝑍 to within

any (computable) multiplicative factor. This is because the mean of �̂�𝜖 can be computed in

finite time, by derandomizing �̂�𝜖 similarly to our proof of Lemma 5.3.1:

Theorem 5.3.2. Let 𝚯 be an EC-complete parametric family. There is no multiplicative

bound 𝜖 ∈ ℚ>1 such that there exists a randomized exact estimator �̂�𝜖 that guarantees 1/𝜖 ≤

𝔼[�̂�𝜖 (𝜽)]/𝑍�̃�𝜽 ≤ 𝜖, for every 𝜽 ∈ 𝚯 where �̃�𝜽 is normalizable.

Proof. We define 𝜏 to be distributed according 𝑝𝜏 . Therefore the mean 𝔼[�̂�𝜖(𝜽)] can be

expanded as 𝔼𝜏∼𝑝𝜏 [�̂�𝜖(𝜽)] = ∑𝜏∈𝔹ℕ 𝑝𝜏 (𝜏 )�̂� 𝜖(𝜽 , 𝜏 ). Following the same derandomization tech-

nique in the proof of Lemma 5.3.1, we can find some 𝑚 ∈ ℕ such that ∑𝜏∈𝔹ℕ 𝑝𝜏 (𝜏 )�̂� 𝜖(𝜽 , 𝜏 ) =

∑𝜏∈𝔹𝑚 1/2𝑚�̂� 𝜖(𝜽 , 𝜏 ) in finite time. And subsequently, we can compute 𝔼[�̂�𝜖(𝜽)] exactly in

finite time. Let the exact estimator be 𝑍 𝜖 . We then have 𝑍 𝜖(𝜽) = 𝔼[�̂�𝜖(𝜽)].
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Assuming to the contrary that we could guarantee 1/𝜖 ≤ 𝑍 𝜖(𝜽) ≤ 𝜖. Since 𝑍 𝜖 is a

deterministic estimator, we can write 𝑃 (1/𝜖 ≤ 𝑍 𝜖(𝜽) ≤ 𝜖) = 1, which contradicts Lemma 5.3.1.

Therefore such an estimator 𝑍 𝜖(𝜽) does not exist.

5.4 Common asymptotic estimates do not give

useful guarantees

Let’s now recap the progress we’ve made so far. We’ve shown that no (deterministic)

exact estimator can get 𝑍 exactly right in general (Theorem 5.2.1), lest it need to solve

Halt. Further, no randomized exact estimator can approximate it within any given relative

tolerance, with good confidence (Theorem 5.3.2).

But what about asymptotic estimators? We do know there are correct asymptotic

estimators of 𝑍 . For example, consider the following asymptotic estimator �̂� (𝜽) backed

by a weighted Turing machine that takes 𝜽 ∈ 𝚯 and 𝑖 ∈ ℕ as inputs, and returns 𝑓𝜽 ,𝑖 ≜

∑𝐱∶𝐱∈𝔹∗,|𝐱|≤𝑖 �̃�𝜽 (𝐱). We have lim𝑖→∞ �̂� 𝜽 ,𝑖 = 𝑍�̃�𝜽 , so �̂� is asymptotically correct. However, �̂� asym

does not have a convergence rate guarantee: for any 𝑖 ∈ ℕ, ‖�̂� 𝜽 ,𝑖 − 𝑍�̃�𝜽 ‖ is uncomputable.

We also do not know how much can we improve our estimator when we increment 𝑖. As

Corollary 5.2.2.1 suggests, we likely cannot have such a guarantee.

In this section, we formalize this intuition for two popular asymptotic estimators:

rejection and importance sampling methods (with other asymptotic estimators left as future

work). Specifically, we show that any parametric family that is able to parametrize �̃� from
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§5.2.2 cannot have provably useful locally normalized distributions (§2.2.4) as proposal

distributions.

5.4.1 Rejection sampling estimator of𝑍 cannot be guar-

anteed to be possible

Rejection sampling (Owen, 2013) is a common exact sampling method, applicable even

when we cannot sample from an unnormalized distribution �̃�. We instead sample from an

easy-to-sample distribution 𝑞, then stochastically reject samples, to ensure the probability

that a sample 𝐱 is kept is proportional to �̃�(𝐱).

For rejection sampling to work, the candidate 𝑞’s support must contain the target �̃�’s

entire support, so that all true points can be sampled. We also need some finite constant 𝑐

so that 𝑐𝑞 envelops �̃�:

∃𝑐 ∈ ℝ>0 such that ∀𝐱 ∈ 𝔹∗, (�̃�(𝐱)/𝑞(𝐱)) ≤ 𝑐.

We will show that for certain EBMs, one cannot formally guarantee the existence of an

eligible 𝑞 ∈ LN using only ZFC.

Theorem 5.4.1. Using ZFC as our axiom set and assuming ZFC is consistent, then there

exists a normalizable EC weighted language �̃�, where there does not exist a consistent locally

normalized proposal distribution 𝑞 ∈ LN, and 𝑐𝑞 ∈ ℚ>0, such that it can be proven ∀𝐱 ∈ 𝔹∗
,

�̃�(𝐱)/𝑞(𝐱) ≤ 𝑐𝑞 .
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Proof. By contradiction; let �̃� = �̃�, where �̃� was first introduced in §5.2.2. Assume that there

exists 𝑞 ∈ LN where it is proven that ∀𝐱 ∈ 𝔹∗
, �̃�(𝐱)/𝑞(𝐱) < 𝑐, where 𝑐 ∈ ℚ>0.

We can either prove ZFC is consistent, or is inconsistent, as follows:

1. By our assumptions, 𝑞 ∈ LN scores every string 𝐱 as 𝑞𝜽 (𝐱)𝑓 (𝜽) ∈ ℚ>0. Also, because

𝑞 is consistent and locally normalized, there exists 𝑛 ∈ ℕ such that we can prove

∀𝐱 ∈ >𝑛{𝐱 ∶ 𝐱 ∈ 𝔹∗, |𝐱| > 𝑛}, 𝑞(𝐱) < 1/𝑐 (Proposition 2.2.1). We will just prove the

existence of 𝑛 constructively by enumerating the strings in 𝔹∗
in increasing length.

Let the complement set ≤𝑛 = 𝔹∗ − >𝑛.

2. The proof then examines the finitely many strings in ≤𝑛.

(a) If any of these strings 𝐱′ has �̃�(𝐱′) > 1, then we know 𝐱′ encodes an accepting

trace of 𝑀𝑏 (§5.2.2). Therefore, 𝑀𝑏 halts, which implies there is a proof of the

inconsistency of ZFC (from 𝐱′).

(b) If none of these strings ∈ ≤𝑛 has �̃�(𝐱) > 1, then we know there is also no string

𝐱′′ ∈ >𝑛, such that �̃�(𝐱′′) > 1. This is because of our assumption 𝑐 ≥ �̃�(𝐱)/𝑞(𝐱),

which in turn means that �̃�(𝐱) is less than 1 on these long strings >𝑛. Therefore,

𝑀𝑏 does not halt, which implies there is no proof of the inconsistency of ZFC —

in other words, ZFC is consistent.

Assuming ZFC is consistent, neither a proof of ZFC, or a disproof of ZFC, is possible. We

have therefore arrived at a contradiction. Therefore, 𝑞 does not exist.
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Theorem 5.4.1 implies that there is no way of ensuring rejection sampling works, not

only for any EC-complete families, but also for any parametric family that can parametrize

�̃�.

5.4.2 Importance sampling estimator of𝑍 cannot be guar-

anteed to be effective.

Similar to the case of rejection sampling, one cannot guarantee an importance-sampling

estimator of 𝑍 to be ‘good’ — in this case, we mean that there cannot be a proof that the

importance sampling variance is finite.

We first formalize importance sampling estimators of 𝑍 as randomized asymptotic

estimators (§5.1). Let

�̂�
𝑞
𝜽 ,𝑁 =

1
𝑁

𝑁

∑
𝑛=1

�̃�𝜽 (𝐱(𝑛))
𝑞(𝐱(𝑛))

be an 𝑁 -sample importance sampling estimator of 𝑍�̃�𝜽 under 𝑞, so all 𝐱(𝑛) are samples from

𝑞 ∈ LN.

We generally want to minimize the variance of �̂�
𝑞
𝜽 ,𝑁 under 𝑞: Var𝑞 (�̂�

𝑞
𝜽 ,𝑁) (Owen and

Zhou, 2000). And we certainly do not want Var𝑞 (�̂�
𝑞
𝜽 ,𝑁) = ∞. Unfortunately, for certain

EBMs, we cannot guarantee there is a good locally normalized proposal distribution that

has finite variance:

Theorem 5.4.2. Let 𝚯 be an EC-complete parametric family. Assuming ZFC axioms and

assuming they are consistent, there exists 𝜽 ∈ 𝚯 where there does not exist a consistent
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locally normalized “proposal” distribution 𝑞 ∈ LN such that it can be proven under ZFC that

Var𝑞 (�̂�
𝑞
𝜽 ,𝑁) < 𝑐 ≠ ∞, where 𝑐 ∈ ℚ>0.

Proof. let �̃� = �̃�, where �̃� is first introduced in §5.2.2. Assume that there exists 𝑞 ∈ LN

where it is proven that Var𝑞(�̂�
𝑞
𝜽 ,𝑁 ) = 𝜎 2 < 𝑐 ∈ ℚ<0 ≠ ∞.

We have

Var𝑞(�̂�
𝑞
𝜽 ,𝑁 )

≜
1
𝑁

{

∑
𝐱∈𝔹∗ [(

�̃�𝜽 (𝐱)
𝑞(𝐱) )

2

𝑞(𝐱)
]
− 𝑍�̃�𝜽

2

}

=
𝑍 2
�̃�𝜽

𝑁 (
∑
𝐱∈𝔹∗

𝑝2𝜽 (𝐱)
𝑞(𝐱)

− 1
)

= 𝜎 2,

where 𝑝𝜽 (𝐱) ≜ �̃�𝜽 (𝐱)
𝑍�̃�𝜽

. After some manipulation, we have

∑
𝐱∈𝔹∗

𝑝2𝜽 (𝐱)
𝑞(𝐱)

=
𝑁𝜎 2 + 𝑍�̃�𝜽

2

𝑍�̃�𝜽
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑠≤𝑁𝑘+1

.

Since ∀𝐱 ∈ 𝔹∗, 𝑝
2
𝜽 (𝐱)
𝑞(𝐱) ≥ 0, we have

∀𝐱 ∈ 𝔹∗,
𝑝2𝜽 (𝐱)
𝑞(𝐱)

≤ 𝑠; (5.4)
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in particular, if 𝐱′ encodes a halting trace of 𝑀𝑏, from §5.2.1 we know

𝑝𝜽 (𝐱′) =
�̃�𝜽 (𝐱′)
𝑍�̃�𝜽

=
1 + ( 1

3)
|𝐱′ |+1

2

> 1/2. (5.5)

Combining equations (5.4) and (5.5), we have for any halting trace 𝐱′ of 𝑀𝑏,

𝑠 ≥
𝑝2𝜽 (𝐱′)
𝑞(𝐱′)

>
1/4

𝑞(𝐱′)
.

After some more arrangement,

𝑞(𝐱′) ≥
1
4𝑠

≥
1

4(𝑁𝜎 2 + 1)
≥

1
4(𝑁𝑐 + 1)

> 0.

As in the proof of Theorem 5.4.1, the existence of such a 𝑞 allows us to either prove or

disprove the consistency of ZFC. For the sake of completeness, we include a proof sketch

below:

1. By our assumptions, 𝑞 ∈ LN scores every string 𝐱 as 𝑞𝜽 (𝐱)𝑓 (𝜽) ∈ ℚ>0. Also, because

𝑞 is consistent and locally normalized, there exists 𝑛 ∈ ℕ such that we can prove

∀𝐱 ∈ >𝑛{𝐱 ∶ 𝐱 ∈ 𝔹∗, |𝐱| > 𝑛}, 𝑞(𝐱) < 1
4(𝑁𝑐+1) (Proposition 2.2.1). We will just prove the

existence of 𝑛 constructively by enumerating the strings in 𝔹∗
in increasing length.

Let the complement set ≤𝑛 = 𝔹∗ − >𝑛.
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2. The proof then examines the finitely many strings in ≤𝑛.

(a) If any of these strings 𝐱′ has �̃�𝜽 (𝐱′) > 1, then we know 𝐱′ encodes an accepting

trace of 𝑀𝑏 (§5.2.2). Therefore, 𝑀𝑏 halts, which implies there is a proof of the

inconsistency of ZFC.

(b) If none of these strings ∈ ≤𝑛 has �̃�𝜽 (𝐱) > 1, then we know there is also no string

𝐱′′ ∈ >𝑛, such that �̃�𝜽 (𝐱′′) > 1, since �̃�𝜽 (𝐱′) > 1 ⟺ �̃�(𝐱′) > 1 ⟺ 𝑀𝑏 halts;

and we have already shown that for any accepting trace 𝐱′ of 𝑀𝑏 , 𝑞(𝐱′) ≥ 1/4(𝑁𝑐+1).

Therefore,𝑀𝑏 does not halt, which implies there is no proof of the inconsistency

of ZFC — and therefore ZFC is consistent.

Assuming ZFC is consistent, neither a proof of ZFC, or a disproof of ZFC, is possible. We

have therefore therefore arrived at a contradiction. Therefore, such a 𝑞 does not exist.

5.5 Uncomputable𝑍 causes parameter estima-

tion problems

Theorems 5.2.1 and 5.2.2 state that it is generally impossible to estimate partition functions

in an expressive parametric family, such as certain subsets of an EC-complete family. Here

we show how parameter estimation is made difficult as well: parameter identifiability

is formally undecidable for an EC-complete family. Likelihood-based model selection is

not possible, either, despite attempts to circumvent this (Table 5.2). Negative results in
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this section are particularly relevant to practitioners who seek to design a parametric

model family of energy-based sequence models — they must proactively limit the family’s

expressiveness so that it cannot capture certain ‘pathological’ weighted languages, otherwise

there will be no likelihood-based model selection algorithm for this family. We will further

show that these pathological weighted languages are not that exotic (§5.5.3): they can

be captured by fixed-size Transformer EBMs. This also implies that there is generally no

likelihood-based model selection algorithm for fixed-size Transformer EBMs.

5.5.1 Parameter identifiability under EC-complete fam-

ilies is undecidable

Parameter identifiability refers to the property that two different parameter vectors define

different string distributions (Lehmann and Casella, 2006). But we in general cannot

ascertain whether this condition holds, even for finite subsets of an EC-complete family:

Theorem 5.5.1. Let 𝚯 be an EC-complete family. There is no algorithm that takes 𝜽1 ∈ 𝚯,

𝜽2 ∈ 𝚯 as input, and decides whether �̃�𝜽1 and �̃�𝜽2 are the same weighted language.

Proof. Assuming to the contrary that such an algorithm Distinct exists. We would be

able to reduce Halt of input-free Turing machines to Distinct: we first construct 𝜽1 ∈ 𝚯

such that �̃�𝜽1(𝐱) = 1/3|𝐱|+1. We then construct 𝜽2 ∈ 𝚯 such that �̃�𝜽2 = �̃�𝑀,1 ∈ 1 (§5.2.1).

Distinct(𝜽1, 𝜽2) is YES if and only if 𝑀 halts.

By Theorem 5.5.1, we know whether two parameter vectors within an expressive
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sequence model family identify with the same distribution is undecidable. Since identi-

fiability is a necessary condition of the existence of a consistent estimator (Martín and

Quintana, 2002), it is therefore impossible to formally prove an estimator’s consistency for

EC-complete sequence model families.

5.5.2 Deciding which model is better is generally im-

possible for EC-complete sequence model fami-

lies

The negative results of §5.5.1 might not deter adventurous machine learning practitioners:

‘off-label’ use of parameter estimators that are not known to be consistent is quite common

in the machine learning literature — one usually just selects the best model 𝜽 ∗
among

finitely many candidates (say {𝜽1 … 𝜽𝑁}) that achieves highest held-out likelihood: 𝜽 ∗ =

argmax𝜽𝑛∶1≤𝑛≤𝑁 ∏𝐱∈ 𝑝𝜽𝑛 (𝐱), where  is a finite set of strings.

The activity of choosing the best model out of a set of candidates can be characterized

as model selection. How best is defined may differ across tasks. In this chapter we assume

the criterion of held-out log likelihood. And we call our model selection task likelihood-

based model selection. It is often desirable if we can do likelihood-based model selection,

deterministically and in finite time (i.e., as an exact estimator).
10

Following Theorems 5.3.2

10
Alternatively, one may also consider model selection as deterministic or probabilistic anytime algo-

rithms, which correspond to deterministic and randomized asymptotic estimators (Table 5.1). These estima-

tors likely exist, in contrast to the negative results in Theorem 5.5.2.
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and 5.5.2, it may not seem surprising that for any fixed data sample and any constant

𝑐 ≥ 1, there is no algorithm that can approximate held-out likelihood for all models in

an EC-complete family 𝚯.
11

Below we formally show that log-likelihood-based model

selection is generally impossible for EC-complete sequence model families:

Theorem 5.5.2. For any �̃� ∈ EC and for any EC-complete family 𝚯, there is no algorithm

Better�̃� that takes two parameter vectors 𝜽1 ∈ 𝚯, 𝜽2 ∈ 𝚯, and returns YES if KL(𝑝||𝑝𝜽1) ≥

KL(𝑝||𝑝𝜽2), and NO otherwise, where 𝑝, 𝑝𝜽1 , 𝑝𝜽2 are string distributions defined by �̃�, �̃�𝜽1 , �̃�𝜽2

respectively.

Proof. By contradiction; assume that for some �̃� ∈ EC, Better�̃� exists. We know there

exists a weighted Turing machine (also denoted as �̃�) that on any string 𝐱, terminates in

𝑂(poly(|𝐱|)) and outputs �̃�(𝐱) (§2.2.2).

We show how we can reduce from Halt to Better�̃� . Given any arbitrary input-less

Turing machine 𝑀 , we can define a new weighted Turing machine �̃�′𝑀 that on input string

𝐱, �̃�′𝑀 first simulates �̃� on it and keeps a record of �̃�(𝐱) somewhere on the tape. �̃�′𝑀 then

verifies whether 𝐱 is an encoded accepting trace of 𝑀 . If 𝐱 is indeed an encoded accepted

trace of 𝑀 , �̃�′𝑀 outputs �̃�(𝐱) + 1. Otherwise �̃�′𝑀 outputs �̃�(𝐱).

Let 𝜽1 ∈ 𝚯 parametrize �̃�′𝑀 , and let 𝜽2 ∈ 𝚯 parametrize �̃�, such that �̃�𝜽1(𝐱) = �̃�
′
𝑀 (𝐱), �̃�𝜽2(𝐱) =

�̃�(𝐱), ∀𝐱 ∈ 𝔹∗
.

11
A proof sketch is as follows: For any deterministic Turing machine 𝑀 and any normalized distribution

𝑞0, let 𝑞 be a variant of 𝑞0 defined by �̃�(𝐱) = 𝑞0(𝐱) + 𝑐2 if 𝐱 is out-of-sample and is an accepting trace of 𝑀
on empty input, else �̃�(𝐱) = 𝑞0(𝐱). So the 𝑁 -sample likelihood of 𝑞 will vary by a factor of (1 + 𝑐2)𝑁 > 𝑐2
according to whether 𝑀 halts on an out-of-sample input. We can easily determine whether 𝑀 halts on an

in-sample input. So if there were a 𝑐-approximation algorithm, we could determine whether 𝑀 halts or not.
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We know that KL(𝑝||𝑝) = 0 for any distribution 𝑝. better�̃�(𝜽1, 𝜽2) returns YES if

and only if KL(𝑝||𝑝𝜽1) = 0 ≥ KL(𝑝||𝑝𝜽2), which implies that �̃�𝜽2 and �̃�𝜽1 define the same

distribution, which in turn implies that ∀𝐱 ∈ 𝔹∗, �̃�(𝐱) = �̃�′𝑀 (𝐱), and that 𝑀 never halts.

Similarly, Better�̃�(𝜽1, 𝜽2) returns NO if and only if 𝑀 halts. We have thus completed our

reduction from Halt; and therefore algorithm Better�̃� does not exist for any �̃� ∈ EC.

A ‘best effort’ non-terminating program exists for likelihood-based model selec-

tion — but it may not be useful. One may wonder why we need a likelihood-based

model selection algorithm (which by definition terminates in finite time) — why cannot we

resort to a ‘best effort’ approximation? Indeed, if we were to drop the assumption that

Better�̃� is an algorithm, one could simply implement it as a program that has a loop which

is potentially infinite. The program would brute force through all strings ∈ 𝔹∗
to improve

its estimate of either 𝑝𝜽1 or 𝑝𝜽2 , and stop its execution either when it could confidently make

a decision, or when it was interrupted
12

by the user the time they deemed opportune — by

which time the program would use the collected samples to make best effort estimates of

held-out likelihood and decide, before finally stopping.

Unfortunately, there are two issues that stop the program we described above to be

useful:

∙ Theorem 5.5.2 implies that there are certain 𝜽 ’s which would make the program

stuck in an infinite loop, and must be interrupted to get it out of the loop.

12
If this program were to be run on a real-life computer (that somehow magically had access to infinite

storage and power, to keep the program running indefinitely), a user could interrupt, e.g., by sending the

SIGINT signal using the key combination CTRL - C (IEEE, 2018).
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∙ The ‘best effort estimates’ derived are not useful, in the sense we could not establish

any confidence interval — otherwise we could also have decided Halt by using the

derandomization technique (as in our proof of Theorem 5.3.2). Therefore, we could

not vouch for the decision we made using them, either.

Analogously, one can show that while there do exist consistent model selection criteria

that are based on the maximum likelihood principle (e.g., BIC (Nishii, 1984)), accurate

approximation of these criteria may not be computed in finite-time for an EC-complete

family, which render them not particularly useful, for a similar reason. Finally, the undecid-

ability of likelihood-based model selection implies practitioners cannot have a confidence

interval-based argument that goes like ‘with 95% confidence, �̃�𝜽1 is a better approximation

than �̃�𝜽2 of the true distribution 𝑝’: such arguments rely on the uniform convergence of

estimates (e.g., Heinrich and Kahn (2018)). Even if such formal results existed for some

EC-complete families — that variance of sample likelihood decreases asymptotically in

sample size at a known rate — we still cannot establish any confidence interval, simply

because we cannot compute sample likelihood.

5.5.3 Impossibility of likelihood-based model selection

in fixed-size Transformer EBM families

Theorem 5.5.3 is a sibling theorem to Theorem 5.5.2. Just as we show 𝑍�̃� is uncomputable

(§5.2.2), we can prove that likelihood-based model selection is not only impossible for
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EC-complete parametric families (where the length of a parameter vector is unbounded),

but also impossible for fixed-size Transformer EBMs with a large enough embedding size.
13

Theorem 5.5.3. Assuming ZFC as our axiomatic system, for any �̃� ∈ EC, there exists 𝑑0 ∈ ℕ

such that for all 𝑑 ≥ 𝑑0, �̃� can be captured by one-encoder-layer four-decoder-layer Trans-

former networks 𝚯(𝑑)
(Theorem 2.3.2) with embedding size 𝑑 , where there is no provably cor-

rect algorithm Better�̃�,𝑑 that takes two parameter vectors 𝜽1 ∈ 𝚯(𝑑)
, 𝜽2 ∈ 𝚯(𝑑)

, and returns

YES if KL(𝑝||𝑝𝜽1) ≥ KL(𝑝||𝑝𝜽2), and NO otherwise, where 𝑝, 𝑝𝜽1 , 𝑝𝜽2 are string distributions

defined by �̃�, �̃�𝜽1 , �̃�𝜽2 respectively.

Proof. Let 𝑀𝑏 be the input-free unweighted Turing machine we built in our proof of

Theorem 5.2.2, whose behavior is independent of ZFC. Let 𝑀0 be any weighted Turing

machine that defines the EC weighted language �̃�. And let𝑀1 be a weighted Turing machine

that weights 𝐱 as �̃�(𝐱) + 1 if and only if 𝐱 encodes an accepting trace of 𝑀𝑏; and 𝑀1 weights

𝐱 as �̃�(𝐱) otherwise. Since checking whether 𝐱 is a valid trace of 𝑀𝑏 is in 𝑂(poly(|𝐱|)), 𝑀1

defines an EC weighted language.

Let 𝑝𝑀1 be the string distribution defined by 𝑀1. By an argument similar to our proof of

Theorem 5.5.2, no algorithm that is provably correct can decide if KL(𝑝||𝑝𝑀1) ≥ KL(𝑝||𝑝).

We note that for any weighted Turing machine 𝑀 with fewer than 𝑛 states, we can

build another weighted Turing machine 𝑀 ′
which has 𝑛 states, such that 𝑀 and 𝑀 ′

define

the same weighted language, simply by having (finitely many) additional unreachable

states in 𝑀 ′
. Since any weighted Turing machine with 𝑛 states can be implemented as a

13
We use 𝚯(𝑑)

to denote a Transformer family with embedding size 𝑑 .
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1-encoder-layer-4-decoder-layer Transformer networks with an embedding size ∈ 𝑂(𝑛), it

follows that there exists 𝑑0 ∈ ℕ such that both 𝑀0 and 𝑀1 can be encoded as parameter

vectors within a fixed-size model family with 𝑑 ≥ 𝑑0.

5.6 Palliative alternatives

What is a practitioner to do, given that this class of models is unlearnable in general? We

emphasize that a model family does not have to be EC-complete to suffer from model

selection problems (§5.5.2) — for example, model selection is also impossible for fixed-size

Transformer networks with large enough 𝑑’s, by an extension to Theorem 5.5.2 (see

Theorem 5.5.3 in §5.5.3).
14 15

In other words, to ensure the problem of uncomputability

does not haunt us, the best we can do is to cripple �̃� so severely that uncomputability is

impossible.

We identify three palliative choices that restrict the family of EBMs. Each cripples the

model �̃� in its own way, affording computability at the cost of expressiveness. The choice

of triage infuses the model with an inductive bias; we must tailor our models based on our

prior beliefs about the problem domain.

14
In addition to model selection issues, it may also be difficult to acquire unbiased gradients of log𝑍 :

∇ (log𝑍 ) ≜ 1/𝑍∇𝑍 , which are needed for MLE-based training.

15
Limiting ourselves to small 𝑑’s to avoid uncomputability issues may not be practical; we leave finding

the largest 𝑑 that provably does not involve uncomputability problems — if it is even possible — as future

work.
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Restricting support(�̃�) to be finite. If �̃� assigns non-zero weights to only finitely many

strings, then 𝑍�̃� is a finite sum of rational numbers, and is also rational. Here, sampling-based

inference and estimation methods return to their usefulness. One way to ensure support(�̃�)

is finite is by upper-bounding the maximum string length (e.g., (Bakhtin et al., 2021)).

The finite-support restriction imposes an obvious limitation that it cannot handle long

strings. Moreover, while 𝑍�̃� is computable when support(�̃�) is finite, this quantity can still be

practically inapproximable, assuming that �̃� is expressive (e.g., �̃� is an EC weighted language

that has finite support), except for very short strings. Let 𝑛 be the longest string under �̃� to

have non-zero weight. Assuming NP ⊈ P/poly, no randomized estimator of 𝑍�̃� that is a

good approximation can have a guaranteed 𝑂(poly(𝑛)) time complexity (Chandrasekaran,

Srebro, and Harsha, 2008). However, if �̃� has limited expressiveness (e.g., when �̃� is an Ising

model where a string weight is the sum of pairwise weights), then FPRAS algorithms for

approximating 𝑍�̃� may exist when �̃� describe a low-degree (≤ 2) graph (Jerrum and Sinclair,

1993; Luby and Vigoda, 1999). However, for high-degree graphs (≥ 3) it can be shown no

FPRAS algorithm for approximating 𝑍�̃� exists, assuming RP ≠ NP (Galanis, Stefankovic,

and Vigoda, 2016).

Autoregressive parametrization of �̃�. An alternative choice is to confine ourselves

to autoregressive models, i.e., locally normalized string distributions (§2.2.4). Under an

autoregressive model 𝑝, 𝑍𝑝 = 1 by definition. We also note that any (unnormalized)

distribution �̃� obtained by removing probability mass from 𝑝 will have a computable
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partition function, as long as �̃� ∈ EC:

Theorem 5.6.1. Let 𝑝 be any LNweighted language. Any �̃� ∈ ECwhere ∀𝐱 ∈ 𝑉 ∗, �̃�(𝐱) ≤ 𝑝(𝐱)

has a computable 𝑍�̃� .

Proof. We prove Theorem 5.6.1 by constructing an algorithm �̂� �̃� ∶ ℚ>0 → ℚ≥0 that

approximates 𝑍�̃� within any desired positive rational error 𝜖: namely |�̂� �̃�(𝜖) − 𝑍�̃� | ≤ 𝜖.

Let �̂� 𝑛 = ∑𝑛
𝓁=0∑𝐱∶|𝐱|=𝓁 𝑝(𝐱). We first observe that lim𝑛→∞ 𝑍𝑛 = 1 by Proposition 2.2.1. In

other words, lim𝑛→∞ 1 − �̂� 𝑛 = 0, or equivalently, given any 𝜖 > 0, there exists 𝑛 ∈ ℕ such

that for all 𝑛′ ≥ 𝑛, 𝑛′ ∈ ℕ, (1 − �̂� 𝑛′) < 𝜖.

Therefore, given any 𝜖 > 0, ∃𝑛 ∈ ℕ that divides 𝔹∗
in two sets: ≥𝑛 = {𝐱 ∶ 𝐱 ∈ 𝔹∗, |𝐱| ≥

𝑛}, where ∑𝐱∈≥𝑛
𝑝(𝐱) < 𝜖, and <𝑛 = 𝔹∗ −≥𝑛. We are guaranteed to find 𝑛 by enumerating

all candidates from ℕ.

We can thus implement �̂� �̃� as the following program: given 𝜖 ∈ ℚ>0, we first find the

smallest 𝑛 ∈ ℕ, and partition 𝔹∗
into two sets <𝑛, ≥𝑛 as we described in the previous

paragraph. We then return �̂� �̃�(𝜖) = ∑𝐱∈<𝑛
�̃�(𝐱).

We argue that �̂� �̃� is a computable function. We first repeat that since 𝑛 ∈ ℕ exists,

we will find 𝑛 in finite time, simply by enumerating. And since the set <𝑛 ⊂ 𝔹∗
is finite,

�̂� �̃�(𝜖) = ∑𝐱∈<𝑛
�̃�(𝐱) can computed in finite time (under our assumption �̃� ∈ EC, ∀𝐱 ∈ 𝔹∗

, �̃�(𝐱)

can be computed in time 𝑂(poly(|𝐱|))). Since the program we described above terminates in

finite time, �̂� �̃� is a computable function.

What remains is to show that the approximation error |𝑍�̃� − �̂� �̃�(𝜖)| is no greater than 𝜖;

i.e., that |𝑍�̃� − �̂� �̃�(𝜖)| ≤ 𝜖.
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It is easy to show that 0 ≤ 𝑍�̃�−�̂� �̃�(𝜖), after which we only need to show that𝑍�̃�−�̂� �̃�(𝜖) ≤ 𝜖.

Expressing both terms as sums, we have that ∑𝐱∈𝔹∗ �̃�(𝐱) −∑𝐱∈<𝑛
�̃�(𝐱) = ∑𝐱∈≥𝑛

�̃�(𝐱), which

is a sum of nonnegative terms and thus nonnegative.

To show that 𝑍�̃� − �̂� �̃�(𝜖) ≤ 𝜖, we express both terms as sums again:

∑
𝐱∈𝔹∗

�̃�(𝐱) − ∑
𝐱∈<𝑛

�̃�(𝐱) = ∑
𝐱∈≥𝑛

�̃�(𝐱).

By the definition of �̃�, we have ∑𝐱∈≥𝑛
�̃�(𝐱) ≤ ∑𝐱∈≥𝑛

𝑝(𝐱). The right-hand side is equal to

1−�̂� 𝑛, which by construction is less than 𝜖. Therefore, by substituting to get𝑍�̃�−�̂� �̃�(𝜖) ≤ 1−�̂� 𝑛

and using the transitive property of inequality, we have that 𝑍�̃� − �̂� �̃�(𝜖) < 𝜖. Combined

with the previous paragraph’s result, we have shown that |𝑍�̃� − �̂� �̃�(𝜖)| ≤ 𝜖.

Theorem 5.6.1 implies that conditionalization operations on 𝑝, which remove strings

from the support of 𝑝 to get weighted language �̃�, result in a computable 𝑍�̃� (as long as

we can decide which strings are removed); and such a �̃� is therefore not subjected to the

limitations of Theorem 5.3.2.

Theorem 5.6.1 also implies that �̃�ELN we have just described above has a computable

partition function:

Theorem 5.6.2. Let 𝑍 be the partition function of �̃�ELN. 𝑍 is computable.

Proof. Let 𝑝(𝐱) = 1/3|𝐱|+1. 𝑝 ∈ ELN ⊂ LN because 𝑝(⋅ ∣ �̂�) = 1/3 for all valid prefixes �̂�. Since

�̃�ELN ∈ EC by Lin et al. (2021, Theorem 5) and ∀𝐱 ∈ 𝔹∗, �̃�ELN(𝐱) ≤ 𝑝(𝐱), we have 𝑍 is
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computable by Theorem 5.6.1.

Similarly, the ‘sparse version’ of �̃�ELN introduced in (Lin et al., 2021, Theorem 6) can be

shown to have a computable partition function as well.

Since one of our goals is to clearly demonstrate that we can construct a single weighted

language ∈ EC that has an uncomputable partition function assuming ZFC (e.g., �̃� in §5.2.2),

we define weighted languages in 𝑘 to have at most one ‘high’ weight, as opposed to �̃� in

Lin et al. (2021, Theorem 5), where each 𝐱(1) that encodes a halting machine has a ‘high

weight’ suffix 𝐱(2).

In fact, under our construction we can directly show EC ≠ ELN, using the uncom-

putability of �̃� from Theorem 5.2.2:

Corollary 5.6.2.1 (EC ≠ ELN under ZFC; slightly weaker version of Theorem 5 in (Lin

et al., 2021)). Assuming the axiomatic system of ZFC, EC ≠ ELN.

Proof. We know there exists a weighted language �̃� ∈ EC (§5.2.2) that has an uncomputable

partition function. Since �̃� ∈ EC, �̃�(𝐱) ∈ ℚ≥0, ∀𝐱 ∈ 𝔹∗
. Therefore for all strings 𝐱 ∈ 𝔹∗

,

𝑏(𝐱) = �̃�(𝐱)/𝑍�̃� is an uncomputable number.

Assuming to the contrary that �̃� ∈ ELN. By definition 𝑏(𝐱) = ∏ 𝑏(𝑥𝑡 ∣ 𝐱<𝑡), where

each 𝑏(𝑥𝑡 ∣ 𝐱<𝑡) ∈ ℚ≥ and is computable. Since the set of computable numbers is closed

under multiplication, 𝑏(𝐱) would also be computable, which contradicts our assumption.

Therefore �̃� ≠ ELN, which implies EC ≠ ELN.

Unlike the ‘finite support’ fix, an autoregressively parametrized (or subsequently
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conditionalized) �̃� can have an infinite support. A conditionalized �̃� can have an intractable

(but computable) partition function, and they are still subject to the expressive limitations

imposed on LN languages: namely there is an EC language whose string weight rankings

cannot be honored by any such conditionalized �̃� (Lin et al., 2021).

�̃� as low-treewidth factor graph grammars. Finally, we may limit ourselves to weighted

languages defined by low-treewidth factor graph grammars (Chiang and Riley, 2020). Factor

graph grammars generalize factor graphs, which cover many classes of graphical sequence

models, such as 𝑛-gram, HMM, and whole-sentence language models (Jelinek, 1980; Kuhn,

Niemann, and Schukat-Talamazzini, 1994; Rosenfeld, Chen, and Zhu, 2001), linear CRF

models (Lafferty, McCallum, and Pereira, 2001), and weighted FSAs in general (Dreyer and

Eisner, 2009): a factor graph grammar describes a (possibly infinite) set of factor graphs,

generated from a hyperedge replacement graph grammar.

Assuming that an FGG 𝐺 contains at most one 𝑛-observed-node factor graph for all

𝑛 ∈ ℕ, it then defines a weighted language �̃�𝐺(𝐱) = ∏𝜓∈Ψ|𝐱|
𝜓 , where factor 𝜓 is a positive

function of nodes. The treewidth of an FGG 𝑊 (𝐺) is the maximum number of nodes any 𝜓

can be a function of, and Ψ|𝐱| is the set of all factors of string length |𝐱|.

If 𝑍�̃�𝐺 ∈ ℝ exists, it can be computed exactly by an algorithm, in time exponential in

𝑊 (𝐺) following (Chiang and Riley, 2020). Exact computation of 𝑍�̃�𝐺 may be manageable as

long as 𝑊 (𝐺) is small, which would allow us to exactly compute held-out data likelihood,

and also train with a (marginalized) MLE objective function. However, limiting 𝑊 (𝐺)

directly limits the expressiveness of �̃�.
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5.7 Related work

Turing completeness of formal languages and associated uncomputability issues emerge

repeatedly in computer science. For example, Turing completeness may emerge as an

unwanted side effect in programming languages, since it implies undecidability. One of the

best known examples is the Turing completeness of the C++ grammar (Veldhuizen, 2003;

Josh, 2013), which makes both parsing and compiling C++ programs undecidable. Similar

problems exist for Java (Grigore, 2016) and Haskell with (unrestricted) instance declarations

(Wansbrough, 1998). Another example is the (possibly inadvertently introduced) Turing

completeness of the page fault handling mechanism on modern computer systems, which

raises security concerns in the context of trusted computing (Bangert et al., 2013).

Our work is not the first to discuss the consequences of computability in machine

learning: assuming we can acquire training data from an oracle, under a supervised learning

setting, recognition of an undecidable language is PAC-learnable (Lathrop, 1996). (Agarwal

et al., 2020) extended the definition of PAC learnability (Valiant, 1984) to computable

learners. By contrast, we are focused on the computability of EBMs for sequences, such as

a language model as a component of a larger system for automatic speech recognition.

Designing an appropriate, efficient loss functional is a challenge that several prior works

have compared. With the plethora of learning strategies for EBMs, it is untenable to point

out the deficiency in each. Table 5.2 gives a handful of examples; none share the four

properties we desire:
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Technique

Energy-

based (i.e.,

globally

normalized)

Infinite

language

support

Scoring

function has

unbounded

treewidth Consistency

Noise-contrastive estimation ((Ma and

Collins, 2018); used in (Lin et al., 2021;

Bakhtin et al., 2021)) ✓ ✗ ✓ ✓

MLE with variable elimination in factor

graph grammars ((Chiang and Riley, 2020);

used in (Eisner, 2001; Finkel, Kleeman, and

Manning, 2008), inter alia) ✓ ✓ ✗ ✓

MLE with autoregressive parametrization

(Mikolov et al., 2010) ✗ ✓ ✓ ✓

Contrastive divergence (Hinton, 2002) ✓ ✓ ✓ ✗

Contrastive estimation (Smith and Eisner,

2005) ✓ ✓ ✓ ✗

Table 5.2: Deficiencies of some common alternatives to overly expressive EBMs.

1. Global normalization (without which the model would be in LN)

2. Support over infinite languages (of finite strings)

3. Unbounded treewidth in the function assigning weights to strings

4. Estimator consistency (i.e., asymptotic guarantee to recover the true parameters).

In § 3 we noted autoregressive factors of EC languages can be uncomputable (see

also Theorem 5.6.2). We also noted that a weighted language can have an uncomputable

partition function (presumably resulting from the sum over infinitely many string weights).

But we did not dwell on the question whether such a weighted language could lie within the

EC class, much less providing a constructive proof (see also Corollary 5.6.2.1). Instead, we

emphasized that under the assumption that oracular access to trained parameter strings is

possible, arbitrarily good approximations of the (possibly uncomputable) partition function
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can be memorized in the (autoregressive) model parameters. There is an interesting

constrast between the stances of these two chapters: in § 3 we saw the uncomputability of

𝑍 as a trivial issue from the model capacity viewpoint, since good approximations take few

bits in the parameters to store. On the other hand, we see that the uncomputability problem

can be a parameter estimation disaster — there will be no guarantee of good approximations

can be found in finite time at all.

5.8 Conclusion and future work

Energy-based models are posed as an efficient tool for decision problems, circumventing

probabilities and expensive normalization (LeCun et al., 2006). Extending this vision to

generic sequence models, though, can involve complexity/computability problems that

are difficult, or even impossible. We’ve shown that as energy-based sequence models

become more powerful, the partition function becomes uncomputable — even when we are

restricted to polytime-computable weighted languages. More precisely, we have shown in

this chapter that exact estimators, even if randomized, cannot have accuracy guarantees

(§5.3). We also show that we will not be able to derive some popular asymptotic estimators

either (§§5.4.1 and 5.4.2). Parameter identifiability is undecidable, which makes formally

proving estimator consistency impossible as well (§5.5.1). Furthermore, deciding which

model achieves lower held-out likelihood is generally impossible, even if we limit ourselves

to fixed-size sequence model families (§5.5.3).
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This chapter continues a discussion started by § 3, who posture energy-based models as

a more powerful alternative to autoregressive sequence models. Autoregressive sequence

models, after all, have wide adoption and empirical successes (Radford et al., 2019; Brown

et al., 2020). By contrast, more general neural energy-based sequence models have not

caught on. Why not? We give unlearnability — due to uncomputability — as a possible

explanation: unless we give up the ability to learn parameters from data, we likely cannot

use the full expressiveness afforded by powerful neural networks. Just like the model

capacity problems brought up in § 3, this result is independent of the amount of training

data.

Nonetheless, we emphasize that our results do not invalidate the findings of § 3:

regardless of the actual neural parametrization, autoregressive models can never capture

certain distributions that energy-based models can. Instead, one of our main messages

is that we may not be able to find those EBM parameters in finite time, if we do not know

what the parameters are. Of course, if we know the task perfectly well and can in fact

manually assign the model parameters, we will not need to learn from data at all. The middle

ground — when we have some prior knowledge about the task, but cannot really design

the parameter vectors — is an interesting direction for future work: the three palliative

alternatives outlined in §5.6 do not take task-specific information into account at all. Can

we do better than that, without suffering uncomputability problems?

There are also some other possible directions for future work: for example, while

we have shown that any subfamily of EC that contains certain pathological parameter
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vectors will have undecidable problems when it comes to comparing model performance

on held-out data likelihood, we stopped short at identifying a subfamily of EC that does

not suffer from this problem, while being more expressive than LN. Another possible

research direction is formally proving/disproving that every estimator will stop being

useful on overly expressive EBMs: while we have looked into some well-known estimators

in Table 5.2, the list is far from exhaustive. For example, one may consider an extension of

noise-contrastive estimation for weighted languages that have an infinite support. Would

such a method work? However, we again point out the impossibility of confidently choosing

a good model using held-out data will remain a problem, even if such an estimator were to

exist.

Results from this chapter are largely theoretical. However, they do justify a preference of

autoregressive latent-variable sequence models (§3.4.2), over the other expressive sequence

model families identified in §3.4, as a more practical expressive weighted language class:

unlike energy-based sequence models (including energy-based latent-variable sequence

models), autoregressive latent-variable sequence models have computable partition func-

tions. Their conditional distributions also have computable partition functions due to

Theorem 5.6.1, as long as it is decidable to tell whether a string is within support. Our

parametrization of neural finite-state machines (§ 7) is based on this observation.
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Chapter 6

Amortized inference with neural

particle smoothing

Earlier in this thesis we have discussed expressiveness problems of sequence model families

(§§ 3–5). In this chapter, we focus on a specific inference problem: sampling from conditional

sequence distributions. Such distributions arise when we fix some variables in a joint

distribution to known values. Many common machine learning techniques and applications

require sampling from such conditional distributions (a more thorough exploration is in

§6.1.3).

There are well-known generic Monte Carlo methods for sampling from such distribu-

tions (Doucet and Johansen, 2009). In this chapter, we describe neural particle smoothing,

a class of specialized Monte Carlo methods that are more sample-efficient, by 1) learning

‘smarter’ heuristics that better match the target distribution, and 2) by leveraging the
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monotonic alignment between observed and unobserved variables.

6.1 Introduction

Many structured prediction problems in NLP can be reduced to labeling a length-𝑇 input

string 𝐱 with a length-𝑇 sequence 𝐲 of tags. In some cases, these tags are annotations such

as syntactic parts of speech. In other cases, they represent actions that incrementally build

an output structure: IOB tags build a chunking of the input (Ramshaw and Marcus, 1999),

shift-reduce actions build a tree (Yamada and Matsumoto, 2003), and finite-state transducer

arcs build an output string (Pereira and Riley, 1997).

One may wish to score the possible taggings using a recurrent neural network, which

can learn to be sensitive to complex patterns in the training data. A globally normalized

conditional probability model is particularly valuable because it quantifies uncertainty

and does not suffer from label bias (Lafferty, McCallum, and Pereira, 2001); also, such

models often arise as the predictive conditional distribution 𝑝(𝐲 ∣ 𝐱) corresponding to

some well-designed generative model 𝑝(𝐱, 𝐲) for the domain. In the neural case, however,

inference in such models becomes intractable. It is hard to know what the model actually

predicts and hard to compute gradients to improve its predictions.

In such intractable settings, one generally falls back on approximate inference or

sampling. In the NLP community, beam search and importance sampling are common.

Unfortunately, beam search considers only the approximate-top-𝑘 taggings from an expo-
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nential set (Wiseman and Rush, 2016), and importance sampling requires the construction

of a good proposal distribution (Dyer et al., 2016).

In this work we exploit the sequential structure of the tagging problem to do sequential

importance sampling, which resembles beam search in that it constructs its proposed

samples incrementally — one tag at a time, taking the actual model into account at every

step. This method is known as particle filtering (Doucet and Johansen, 2009). We extend it

here to take advantage of the fact that the sampler has access to the entire input string as it

constructs its tagging, which allows it to look ahead or — as we will show — to use a neural

network to approximate the effect of lookahead. Our resulting method is called neural

particle smoothing.

6.1.1 What this chapter provides

For 𝐱 = 𝑥1 ⋯ 𝑥𝑇 , let 𝐱∶𝑡 and 𝐱𝑡∶ respectively denote the prefix 𝑥1 ⋯ 𝑥𝑡 and the suffix 𝑥𝑡+1⋯ 𝑥𝑇 .

We develop neural particle smoothing — a sequential importance sampling method

which, given a string 𝐱, draws a sample of taggings 𝐲 from 𝑝𝜃 (𝐲 ∣ 𝐱), where |𝐲| = |𝐱| = 𝑇 .

Our method works for any conditional probability model of the quite general form
1

𝑝𝜃 (𝐲 ∣ 𝐱) def∝ exp𝐺𝑇 (6.1)

where 𝐺 is an incremental stateful global scoring model that recursively defines scores 𝐺𝑡

1
A model may require for convenience that each input end with a special end-of-sequence symbol: that

is, 𝑥𝑇 = eos.
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of prefixes of (𝐱, 𝐲) at all times 0 ≤ 𝑡 ≤ 𝑇 :
2

𝐺𝑡 ≜ 𝐺𝑡−1 + 𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) (with 𝐺0 ≜ 0) (6.2)

𝐬𝑡 ≜ 𝑓𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) (with 𝐬0 given) (6.3)

These quantities implicitly depend on 𝐱, 𝐲 and 𝜃 . Here 𝐬𝑡 is the model’s state after

observing the pair of length-𝑡 prefixes (𝐱∶𝑡 , 𝐲∶𝑡). 𝐺𝑡 is the score-so-far of this prefix pair,

while 𝐺𝑇 −𝐺𝑡 is the score-to-go. The state 𝐬𝑡 summarizes the prefix pair in the sense that the

score-to-go depends only on 𝐬𝑡 and the length-(𝑇 − 𝑡) suffixes (𝐱𝑡∶, 𝐲𝑡∶). The local scoring

function 𝑔𝜃 and state update function 𝑓𝜃 may be any functions parameterized by 𝜃 — perhaps

neural networks. We assume 𝜃 is fixed and given.

This model family is expressive enough to capture any desired 𝑝(𝐲 ∣ 𝐱). Why? Take any

distribution 𝑝(𝐱, 𝐲) with this desired conditionalization (e.g., the true joint distribution) and

factor it as

log 𝑝(𝐱, 𝐲)= ∑𝑇
𝑡=1 log 𝑝(𝑥𝑡 , 𝑦𝑡 ∣ 𝐱∶𝑡−1, 𝐲∶𝑡−1)

= ∑𝑇
𝑡=1 log 𝑝(𝑥𝑡 , 𝑦𝑡 ∣ 𝐬𝑡−1)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

use as 𝑔𝜃 (𝐬𝑡−1,𝑥𝑡 ,𝑦𝑡 )

= 𝐺𝑇 (6.4)

by making 𝐬𝑡 include as much information about (𝐱∶𝑡 , 𝐲∶𝑡) as needed for (6.4) to hold

(possibly 𝐬𝑡 = (𝐱∶𝑡 , 𝐲∶𝑡)).3 Then by defining 𝑔𝜃 as shown in (6.4), we get 𝑝(𝐱, 𝐲) = exp𝐺𝑇

2
Note that we parametrize𝐺𝑡 and 𝐬𝑡 to take the new increments (𝑥𝑡 , 𝑦𝑡 ), rather than prefixes (𝐱∶𝑡+1, 𝐲∶𝑡+1)

as arguments at time step 𝑡 , since both functions can already have access to (𝐱∶𝑡−1, 𝐲∶𝑡−1) through 𝐬𝑡−1.

3
Furthermore, 𝐬𝑡 could even depend on all of 𝐱 (if 𝐬0 does), allowing direct expression of models such as

stacked BiRNNs.
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and thus (6.1) holds for each 𝐱.

6.1.2 Relationship to particle filtering

Our method is spelled out in §6.4 (one may look now). It is a variant of the popular

particle filtering method that tracks the state of a physical system in discrete time (Ristic,

Arulampalam, and Gordon, 2004). Our particular proposal distribution for 𝑦𝑡 can be found in

equations (6.5), (6.6), (6.28) and (6.29). It considers not only past observations 𝐱∶𝑡 as reflected

in 𝐬𝑡−1, but also future observations 𝐱𝑡∶, as summarized by the state �̄�𝑡 of a right-to-left

recurrent neural network 𝑓 that we will train:

�̂� 𝑡 ≜ ℎ𝜙(�̄�𝑡+1, 𝑥𝑡+1) + �̂� 𝑡+1 (6.5)

�̄�𝑡 ≜ 𝑓 𝜙(�̄�𝑡+1, 𝑥𝑡+1) (with 𝐬𝑇 given) (6.6)

Conditioning the distribution of 𝑦𝑡 on future observations 𝐱𝑡∶ means that we are doing

“smoothing” rather than “filtering” (in signal processing terminology). Doing so can reduce

the bias and variance of our sampler. It is possible so long as 𝐱 is provided in its entirety

before the sampler runs — which is often the case in NLP.

6.1.3 Applications

Why sample from 𝑝𝜃 at all? Many NLP systems instead simply search for the Viterbi

sequence 𝐲 that maximizes 𝐺𝑇 and thus maximizes 𝑝𝜃 (𝐲 ∣ 𝐱). If the space of states 𝐬 is small,
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x1=“On” x2=“Thursday” … xt-1=“Fed” xt=“raised” xt+1=“interest” xt+2=“rates” …

y1=“PREP” y2=“N” … yt-1=“N”

yt=“ADJ”

…

yt=“V”

yt+1=“V”

…

yt+1=“N”

…

yt+2=“N”

yt+2=“N”

Ht

x

y

gθ(st-1, xt, yt)

Gt-1

Figure 6.1: Sampling a single particle from a tagging model. 𝑦1,… , 𝑦𝑡−1 (orange) have

already been chosen, with a total model score of 𝐺𝑡−1, and now the sampler is constructing

a proposal distribution 𝑞 (purple) from which the next tag 𝑦𝑡 will be sampled. Each 𝑦𝑡 is

evaluated according to its contribution to 𝐺𝑡 (namely 𝑔𝜃 ) and its future score 𝐻𝑡 (blue). The

figure illustrates quantities used throughout this chapter, beginning with exact sampling

in equations (6.8)–(6.13). Our main idea (§6.3) is to approximate the 𝐻𝑡 computation (a

log-sum-exp over exponentially many sequences) when exact computation by dynamic

programming is not an option. The form of our approximation uses a right-to-left recurrent

neural network but is inspired by the exact dynamic programming algorithm.

this can be done efficiently by dynamic programming (Viterbi, 1967); if not, then 𝐴∗
may

be an option (see §6.2). More common is to use an approximate method: beam search, or

perhaps a sequential prediction policy trained with reinforcement learning. Past work has

already shown how to improve these approximate search algorithms by conditioning on

the future (Bahdanau et al., 2017; Wiseman and Rush, 2016).

Sampling is essentially a generalization of maximization: sampling from exp 𝐺𝑇
temperature

approaches maximization as temperature → 0. It is a fundamental building block for

other algorithms, as it can be used to take expectations over the whole space of possible

𝐲 values. Below we review how sampling is crucially used in minimum-risk decoding,

supervised training, unsupervised training, imputation of missing data, pipeline decoding,

and inference in graphical models.
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6.1.3.1 Minimum-risk decoding

Given a loss function and 𝐱, minimum-risk decoding seeks the output

argmin
𝐳

∑
𝐲
𝑝𝜃 (𝐲 ∣ 𝐱) ⋅ loss(𝐳 ∣ 𝐲) (6.7)

In the special case where loss(𝐳 ∣ 𝐲) simply asks whether 𝐳 ≠ 𝐲, this simply returns the

“Viterbi” sequence 𝐲 that maximises 𝑝𝜃 (𝐲 ∣ 𝐱). However, it may give a different answer if

the loss function gives partial credit (when 𝐳 ≈ 𝐲), or if the space of outputs 𝐳 is simply

coarser than the space of taggings 𝐲— for example, if there are many action sequences 𝐲

that could build the same output structure 𝐳. In these cases, the optimal 𝐳 may win due

to the combined support of many suboptimal 𝐲 values, and so finding the optimal 𝐲 (the

Viterbi sequence) is not enough to determine the optimal 𝐳.

The risk objective (6.7) is a expensive expectation under the distribution 𝑝𝜃 (𝐲 ∣ 𝐱). To

approximate it, one can replace 𝑝𝜃 (𝐲 ∣ 𝐱) with an approximation �̂�(𝐲) that has small support

so that the summation is efficient. Particle smoothing returns such a �̂�— a non-uniform

distribution (6.31) over 𝑀 particles. Since those particles are randomly drawn, �̂� is itself

stochastic, but 𝔼[�̂�(𝐲)] ≈ 𝑝𝜃 (𝐲 ∣ 𝐱), with the approximation improving with the quality of

the proposal distribution (which is the focus of this work).
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6.1.3.2 Supervised training

In supervised training of the model (6.1) by maximizing conditional log-likelihood, the

gradient of log 𝑝(𝐲∗ ∣ 𝐱) on a single training example (𝐱, 𝐲∗) is ∇𝜃 log 𝑝𝜃 (𝐲∗ ∣ 𝐱) = ∇𝜃𝐺∗
𝑇 −

∑𝐲 𝑝𝜃 (𝐲 ∣ 𝐱) ⋅∇𝜃𝐺𝑇 . The sum is again an expectation that can be estimated by using �̂�. Since

𝔼[�̂�(𝐲)] ≈ 𝑝𝜃 (𝐲 ∣ 𝐱), this yields a stochastic estimate of the gradient that can be used in the

stochastic gradient ascent algorithm (Robbins and Monro, 1951).
4

6.1.3.3 Unsupervised training

In unsupervised or semi-supervised training of a generative model 𝑝𝜃 (𝐱, 𝐲), one has some

training examples where 𝐲∗ is unobserved or observed incompletely (e.g., perhaps only 𝐳 is

observed). The Monte Carlo EM algorithm for estimating 𝜃 (Wei and Tanner, 1990) replaces

the missing 𝐲∗ with samples from 𝑝𝜃 (𝐲 ∣ 𝐱, partial observation) (this is the Monte Carlo

“E step”). This multiple imputation procedure has other uses as well in statistical analysis

with missing data (Little and Rubin, 1987).

4
Notice that the gradient takes this “difficult” form only because the model is globally normalized. If we

were training a locally normalized conditional model (McCallum, Freitag, and Pereira, 2000), or a locally

normalized joint model like equation (6.4), then sampling methods would not be needed, because the gradi-

ent of the (conditional or joint) log-likelihood would decompose into 𝑇 “easy” summands that each involve

an expectation over the small set of 𝑦𝑡 values for some 𝑡 , rather than over the exponentially larger set of

strings 𝐲. However, this simplification goes away outside the fully supervised case, as the next paragraph

discusses.
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6.1.3.4 Inference in graphical models

Modular architectures provide another use for sampling. If 𝑝𝜃 (𝐲 ∣ 𝐱) is just one stage in an

NLP annotation pipeline, Finkel, Manning, and Ng (2006) recommend passing a diverse

sample of 𝐲 values on to the next stage, where they can be further annotated and rescored or

rejected. More generally, in a graphical model that relates multiple strings (Bouchard-Côté

et al., 2007; Dreyer and Eisner, 2009; Cotterell, Sylak-Glassman, and Kirov, 2017), inference

could be performed by particle belief propagation (Ihler and McAllester, 2009; Lienart, Teh,

and Doucet, 2015), or with the help of stochastic-inverse proposal distributions (Stuhlmüller,

Taylor, and Goodman, 2013). These methods call conditional sampling as a subroutine.

6.2 Exact sequential sampling

To develop our method, it is useful to first consider exact samplers. Exact sampling is

tractable for only some of the models allowed by §6.1.1. However, the form and notation of

the exact algorithms in §6.2 will guide our development of approximations in §6.3.

An exact sequential sampler draws 𝑦𝑡 from 𝑝𝜃 (𝑦𝑡 ∣ 𝐱, 𝐲∶𝑡−1) for each 𝑡 = 1,… , 𝑇 in

sequence. Then 𝐲 is exactly distributed according to 𝑝𝜃 (𝐲 ∣ 𝐱).
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For each given 𝐱, 𝐲∶𝑡−1, observe that

𝑝𝜃 (𝑦𝑡 ∣ 𝐱, 𝐲∶𝑡−1) (6.8)

∝ 𝑝𝜃 (𝐲∶𝑡 ∣ 𝐱) = ∑𝐲𝑡∶ 𝑝𝜃 (𝐲 ∣ 𝐱) (6.9)

∝ ∑𝐲𝑡∶ exp𝐺𝑇 (6.10)

= exp (𝐺𝑡 + log∑𝐲𝑡∶exp (𝐺𝑇 − 𝐺𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

call this 𝐻𝑡

) (6.11)

= exp (𝐺𝑡−1 + 𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) + 𝐻𝑡) (6.12)

∝ exp (𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) + 𝐻𝑡) (6.13)

Thus, we can easily construct the needed distribution (6.8) by normalizing (6.13) over all

possible values of 𝑦𝑡 . The challenging part of (6.13) is to compute 𝐻𝑡 : as defined in (6.11),

𝐻𝑡 involves a sum over exponentially many futures 𝐲𝑡∶. (See Figure 6.1.)

We chose the symbols 𝐺 and 𝐻 in homage to the 𝐴∗
search algorithm (Hart, Nilsson,

and Raphael, 1968). In that algorithm (which could be used to find the Viterbi sequence), 𝑔

denotes the score-so-far of a partial solution 𝐲∶𝑡 , and ℎ denotes the optimal score-to-go.

Thus, 𝑔 +ℎ would be the score of the best sequence with prefix 𝐲∶𝑡 . Analogously, our 𝐺𝑡 +𝐻𝑡

is the log of the total exponentiated scores of all sequences with prefix 𝐲∶𝑡 . 𝐺𝑡 and 𝐻𝑡 might

be called the logprob-so-far and logprob-to-go of 𝐲∶𝑡 .

Just as𝐴∗
approximates ℎwith a “heuristic” ℎ̂, the next section will approximate𝐻𝑡 using

a neural estimate �̂� 𝑡 (equations (6.5)–(6.6)). However, the specific form of our approximation
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is inspired by cases where 𝐻𝑡 can be computed exactly. We consider those in the remainder

of this section.

6.2.1 Exact sampling from HMMs

A hidden Markov model (HMM) specifies a normalized joint distribution 𝑝𝜃 (𝐱, 𝐲) = exp𝐺𝑇

over state sequence 𝐲 and observation sequence 𝐱,
5

Thus the posterior 𝑝𝜃 (𝐲 ∣ 𝐱) is propor-

tional to exp𝐺𝑇 , as required by equation (6.1).

The HMM specifically defines𝐺𝑇 by equations (6.2)–(6.3) with 𝐬𝑡 = 𝑦𝑡 and 𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) =

log 𝑝𝜃 (𝑦𝑡 ∣ 𝑦𝑡−1) + log 𝑝𝜃 (𝑥𝑡 ∣ 𝑦𝑡).6

In this setting, 𝐻𝑡 can be computed exactly by the backward algorithm (Rabiner, 1989).

By the definition of 𝐻𝑡 in equation (6.11),

exp𝐻𝑡 = ∑
𝐲𝑡∶

exp (𝐺𝑇 − 𝐺𝑡) = ∑
𝐲𝑡∶

exp
𝑇

∑
𝑗=𝑡+1

𝑔𝜃 (𝐬𝑗−1, 𝑥𝑗 , 𝑦𝑗) (6.14)

= ∑
𝐲𝑡∶

𝑇

∏
𝑗=𝑡+1

𝑝𝜃 (𝑦𝑗 ∣ 𝑦𝑗−1) ⋅ 𝑝𝜃 (𝑥𝑗 ∣ 𝑦𝑗)

= (𝜷 𝑡)𝑦𝑡 (backward prob of 𝑦𝑡 at time 𝑡)

5
The HMM actually specifies a distribution over a pair of infinite sequences, but here we consider the

marginal distribution over just the length-𝑇 prefixes.

6
It defines 𝐬0 = bos, a beginning-of-sequence symbol, so 𝑝𝜃 (𝑦1 ∣ bos) specifies the initial state distribu-

tion.
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where the vector 𝜷 𝑡 is defined by base case (𝜷𝑇 )𝑦 = 1 and for 0 ≤ 𝑡 < 𝑇 by the recurrence

(𝛽𝑡)𝑦 ≜ ∑
𝐲𝑡∶

𝑝𝜃 (𝐱𝑡∶, 𝐲𝑡∶ ∣ 𝑦𝑡 = 𝑦) (6.15)

= ∑
𝑦′
𝑝𝜃 (𝑦′ ∣ 𝑦) ⋅ 𝑝𝜃 (𝑥𝑡+1 ∣ 𝑦′) ⋅ (𝜷 𝑡+1)𝑦′

6.2.2 Exact sampling from OOHMMs

For sequence tagging, a weakness of (first-order) HMMs is that the model state 𝐬𝑡 = 𝑦𝑡 may

contain little information: only the most recent tag 𝑦𝑡 is remembered, so the number of

possible model states 𝐬𝑡 is limited by the vocabulary of output tags.

We may generalize so that the data generating process is in a latent state 𝑢𝑡 ∈ {1,… , 𝑘}

at each time 𝑡 , and the observed 𝑦𝑡 — along with 𝑥𝑡 — is generated from 𝑢𝑡 . Now 𝑘 may be

arbitrarily large. The model has the form

𝑝𝜃 (𝐱, 𝐲) = exp𝐺𝑇 (6.16)

= ∑
𝐮

𝑇

∏
𝑡=1

𝑝𝜃 (𝑢𝑡 ∣ 𝑢𝑡−1) ⋅ 𝑝𝜃 (𝑥𝑡 , 𝑦𝑡 ∣ 𝑢𝑡)

This is essentially a pair HMM (Knudsen and Miyamoto, 2003) without insertions or

deletions, also known as an “𝜖-free” or “same-length” probabilistic finite-state transducer.

We refer to it here as an output-output HMM (OOHMM).
7

7
This is by analogy with the input-output HMM (IOHMM) of Bengio and Frasconi (1996), which defines

𝑝(𝐲 ∣ 𝐱) directly and conditions the transition to 𝑢𝑡 on 𝑥𝑡 . The OOHMM instead defines 𝑝(𝐲 ∣ 𝐱) by condi-

tionalizing (6.16) — which avoids the label bias problem (Lafferty, McCallum, and Pereira, 2001) that in the

IOHMM, 𝑦𝑡 is independent of future input 𝐱𝑡∶ (given the past input 𝐱∶𝑡 ).
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Is this still an example of the general model architecture from §6.1.1? Yes. Since 𝑢𝑡 is

latent and evolves stochastically, it cannot be used as the state 𝐬𝑡 in equations (6.2)–(6.3)

or (6.4). However, we can define 𝐬𝑡 to be the model’s belief state after observing (𝐱∶𝑡 , 𝐲∶𝑡).

The belief state is the posterior probability distribution over the underlying state 𝑢𝑡 of the

system. That is, 𝐬𝑡 deterministically keeps track of all possible states that the OOHMM

might be in — just as the state of a determinized FSA keeps track of all possible states that

the original nondeterministic FSA might be in.

We may compute the belief state in terms of a vector of forward probabilities that starts

at 𝜶 0,

(𝜶 0)𝑢 ≜

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

1 if 𝑢 = bos (see footnote 6)

0 if 𝑢 = any other state

(6.17)

and is updated deterministically for each 0 < 𝑡 ≤ 𝑇 by the forward algorithm (Rabiner,

1989):

(𝜶 𝑡)𝑢 ≜
𝑘

∑
𝑢′=1

(𝜶 𝑡−1)𝑢′ ⋅ 𝑝𝜃 (𝑢 ∣ 𝑢′) ⋅ 𝑝𝜃 (𝑥𝑡 , 𝑦𝑡 ∣ 𝑢) (6.18)

(𝜶 𝑡)𝑢 can be interpreted as the logprob-so-far if the system is in state 𝑢 after observing

(𝐱∶𝑡 , 𝐲∶𝑡). We may express the update rule (6.18) by 𝜶⊤
𝑡 = 𝜶⊤

𝑡−1𝑃 where the matrix 𝑃 depends

on (𝑥𝑡 , 𝑦𝑡), namely 𝑃𝑢′𝑢 ≜ 𝑝𝜃 (𝑢 ∣ 𝑢′) ⋅ 𝑝𝜃 (𝑥𝑡 , 𝑦𝑡 ∣ 𝑢).

The belief state 𝐬𝑡 ≜ J𝜶 𝑡K ∈ ℝ𝑘
simply normalizes 𝜶 𝑡 into a probability vector, where
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J𝐮K ≜ 𝐮/(𝐮⊤𝟏) denotes the normalization operator. The state update (6.18) now takes the

form (6.3) as desired, with 𝑓𝜃 a normalized vector-matrix product:

𝐬⊤𝑡 = 𝑓𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) ≜ J𝐬⊤𝑡−1𝑃K (6.19)

As in the HMM case, we define 𝐺𝑡 as the log of the generative prefix probability,

𝐺𝑡 ≜ log 𝑝𝜃 (𝐱∶𝑡 , 𝐲∶𝑡) = log∑𝑢(𝜶 𝑡)𝑢 (6.20)

which has the form (6.2) as desired if we put

𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) ≜ 𝐺𝑡 − 𝐺𝑡−1 (6.21)

= log
𝜶⊤
𝑡−1𝑃𝟏
𝜶⊤
𝑡−1𝟏

= log (𝐬⊤𝑡−1𝑃𝟏)

Again, exact sampling is possible. It suffices to compute (6.10). For the OOHMM, this is

given by

∑𝐲𝑡∶ exp𝐺𝑇 = 𝜶⊤
𝑡 𝜷 𝑡 (6.22)
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where 𝜷𝑇 ≜ 𝟏 and the backward algorithm

(𝜷 𝑡)𝑣 ≜ 𝑝𝜃 (𝐱𝑡∶ ∣ 𝑢𝑡 = 𝑢) (6.23)

= ∑
𝐮𝑡∶,𝐲𝑡∶

𝑝𝜃 (𝐮𝑡∶, 𝐱𝑡∶, 𝐲𝑡∶ ∣ 𝑢𝑡 = 𝑢)

= ∑
𝑢′
𝑝𝜃 (𝑢′ ∣ 𝑢) ⋅ 𝑝(𝑥𝑡+1 ∣ 𝑢′)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

call this 𝑃𝑢𝑢′

⋅(𝜷 𝑡+1)𝑢′

for 0 ≤ 𝑡 < 𝑇 uses dynamic programming to find the total probability of all ways to

generate the future observations 𝐱𝑡∶. Note that 𝜶 𝑡 is defined for a specific prefix 𝐲∶𝑡 (though

it sums over all 𝐮∶𝑡 ), whereas 𝜷 𝑡 sums over all suffixes 𝐲𝑡∶ (and over all 𝐮𝑡∶), to achieve the

asymmetric summation in (6.22).
8

Define �̄�𝑡 ≜ J𝜷 𝑡K ∈ ℝ𝑘
to be a normalized version of 𝜷 𝑡 . The 𝜷 𝑡 recurrence (6.23) can

clearly be expressed in the form �̄�𝑡 = J𝑃 �̄�𝑡+1K, much like (6.19).

6.2.3 The logprob-to-go for OOHMMs

Let us now work out the definition of 𝐻𝑡 for OOHMMs (cf. equation (6.14) in §6.2.1 for

HMMs). We will write it in terms of �̂� 𝑡 from §6.1.2. Let us define �̂� 𝑡 symmetrically to 𝐺𝑡

(see (6.20)):

�̂� 𝑡 ≜ log∑
𝑢
(𝜷 𝑡)𝑢 (= log 𝟏⊤𝜷 𝑡) (6.24)

8
Note that both 𝜶 𝑡 and 𝜷 𝑡 look at a specific 𝐱∶𝑡 .
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which has the form (6.5) as desired if we put

ℎ𝜙(�̄�𝑡+1, 𝑥𝑡+1) ≜ �̂� 𝑡 − �̂� 𝑡+1 = log (𝟏⊤𝑃 �̄�𝑡+1) (6.25)

From equations (6.11), (6.20), (6.22) and (6.24), we see

𝐻𝑡 = log (∑
𝐲𝑡∶

exp𝐺𝑇) − 𝐺𝑡

= log
𝜶⊤
𝑡 𝜷 𝑡

(𝜶⊤
𝑡 𝟏)(𝟏⊤𝜷 𝑡)

+ log (𝟏⊤𝜷 𝑡)

= log 𝐬⊤𝑡 �̄�𝑡⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
call this 𝐶𝑡

+�̂� 𝑡 (6.26)

where 𝐶𝑡 ∈ ℝ can be regarded as evaluating the compatibility of the state distributions 𝐬𝑡

and �̄�𝑡 .

In short, the generic strategy (6.13) for exact sampling says that for an OOHMM, 𝑦𝑡 is

distributed as

𝑝𝜃 (𝑦𝑡 ∣ 𝐱, 𝐲∶𝑡−1) ∝ exp (𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) + 𝐻𝑡)

∝ exp ( 𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
depends on 𝐱∶𝑡 ,𝐲∶𝑡

+ 𝐶𝑡⏟⏟⏟
on 𝐱,𝐲∶𝑡

+ �̂� 𝑡⏟⏟⏟
on 𝐱𝑡∶

)

∝ exp (𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) + 𝐶𝑡) (6.27)

This is equivalent to choosing 𝑦𝑡 in proportion to (6.22) — but we now turn to settings

where it is infeasible to compute (6.22) exactly. There we will use the formulation (6.27)
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but approximate 𝐶𝑡 . For completeness, we will also consider how to approximate �̂� 𝑡 , which

dropped out of the above distribution (because it was the same for all choices of 𝑦𝑡 ) but

may be useful for other algorithms (see §6.4).

6.3 Neural modeling as approximation

6.3.1 Models with large state spaces

The expressivity of an OOHMM is limited by the number of states 𝑘. The state 𝑢𝑡 ∈ {1,… , 𝑘}

is a bottleneck between the past (𝐱∶𝑡 , 𝐲∶𝑡) and the future (𝐱𝑡∶, 𝐲𝑡∶), in that past and future

are conditionally independent given 𝑢𝑡 . Thus, the mutual information between past and

future is at most log2 𝑘 bits.

In many NLP domains, however, the past seems to carry substantial information about

the future. The first half of a sentence greatly reduces the uncertainly about the second

half, by providing information about topics, referents, syntax, semantics, and discourse.

This suggests that an accurate HMM language model 𝑝(𝐱) would require very large 𝑘 — as

would a generative OOHMM model 𝑝(𝐱, 𝐲) of annotated language. The situation is perhaps

better for discriminative models 𝑝(𝐲 ∣ 𝐱), since much of the information for predicting 𝐲𝑡∶

might be available in 𝐱𝑡∶. Still, it is important to let (𝐱∶𝑡 , 𝐲∶𝑡) contribute enough additional

information about 𝐲𝑡∶: even for short strings, making 𝑘 too small (giving ≤ log2 𝑘 bits) may

harm prediction (Dreyer, Smith, and Eisner, 2008).
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Of course, (6.4) says that an OOHMM can express any joint distribution for which the

mutual information is finite,
9

by taking 𝑘 large enough for 𝑣𝑡−1 to capture the relevant info

from (𝐱∶𝑡−1, 𝐲∶𝑡−1).

So why not just take 𝑘 to be large — say, 𝑘 = 230 to allow 30 bits of information?

Unfortunately, evaluating 𝐺𝑇 then becomes very expensive — both computationally and

statistically. As we have seen, if we define 𝐬𝑡 to be the belief state J𝜶 𝑡K ∈ ℝ𝑘
, updating it at

each observation (𝑥𝑡 , 𝑦𝑡) (equation (6.3)) requires multiplication by a 𝑘 × 𝑘 matrix 𝑃 . This

takes time 𝑂(𝑘2), and requires enough data to learn 𝑂(𝑘2) transition probabilities.

6.3.2 Neural approximation of the model

As a solution, we might hope that for the inputs 𝐱 observed in practice, the very high-

dimensional belief states J𝜶 𝑡K ∈ ℝ𝑘
might tend to lie near a 𝑑-dimensional manifold where

𝑑 ≪ 𝑘. Then we could take 𝐬𝑡 to be a vector in ℝ𝑑
that compactly encodes the approximate

coordinates of J𝜶 𝑡K relative to the manifold: 𝐬𝑡 = 𝜈(J𝜶 𝑡K), where 𝜈 is the encoder.

In this new, nonlinearly warped coordinate system, the functions of 𝐬𝑡−1 in (6.2)–(6.3) are

no longer the simple, essentially linear functions given by (6.19) and (6.21). They become

nonlinear functions operating on the manifold coordinates. (𝑓𝜃 in (6.19) should now ensure

that 𝐬⊤𝑡 ≈ 𝜈(J(𝜈−1(𝐬𝑡−1))⊤𝑃K), and 𝑔𝜃 in (6.21) should now estimate log (𝜈−1(𝐬𝑡−1))⊤𝑃𝟏.) In a

sense, this is the reverse of the “kernel trick” (Boser, Guyon, and Vapnik, 1992) that converts

a low-dimensional nonlinear function to a high-dimensional linear one.

9
This is not true for the language of balanced parentheses.
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Our hope is that 𝐬𝑡 has enough dimensions 𝑑 ≪ 𝑘 to capture the useful information from

the true J𝜶 𝑡K, and that 𝜃 has enough dimensions ≪ 𝑘2 to capture most of the dynamics of

equations (6.19) and (6.21). We thus proceed to fit the neural networks 𝑓𝜃 , 𝑔𝜃 directly to the

data, without ever knowing the true 𝑘 or the structure of the original operators 𝑃 ∈ ℝ𝑘×𝑘
.

We regard this as the implicit justification for various published probabilistic sequence

models 𝑝𝜃 (𝐲 ∣ 𝐱) that incorporate neural networks. These models usually have the form of

§6.1.1. Most simply, (𝑓𝜃 , 𝑔𝜃 ) can be instantiated as one time step in an RNN (Aharoni and

Goldberg, 2017), but it is common to use enriched versions such as deep LSTMs. It is also

common to have the state 𝐬𝑡 contain not only a vector of manifold coordinates in ℝ𝑑
but

also some unboundedly large representation of (𝐱, 𝐲∶𝑡) (cf. equation (6.4)), so the 𝑓𝜃 neural

network can refer to this material with an attentional (Bahdanau, Cho, and Bengio, 2015)

or stack mechanism (Dyer et al., 2015).

A few such papers have used globally normalized conditional models that can be viewed

as approximating some OOHMM, e.g., the parsers of Dyer et al. (2016) and Andor et al.

(2016). That is the case (§6.1.1) that particle smoothing aims to support. Most papers are

locally normalized conditional models (Kann and Schütze, 2016; Aharoni and Goldberg,

2017); these simplify supervised training and can be viewed as approximating IOHMMs

(footnote 7). For locally normalized models, 𝐻𝑡 = 0 by construction, in which case particle

filtering (which estimates 𝐻𝑡 = 0) is just as good as particle smoothing. Particle filtering

is still useful for these models, but lookahead’s inability to help them is an expressive

limitation (known as label bias) of locally normalized models. We hope the existence of
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particle smoothing (which learns an estimate 𝐻𝑡 ) will make it easier to adopt, train, and

decode globally normalized models, as discussed in §6.1.3.

6.3.3 Neural approximation of logprob-to-go

We can adopt the same neuralization trick to approximate the OOHMM’s logprob-to-

go 𝐻𝑡 = 𝐶𝑡 + �̂� 𝑡 . We take �̄�𝑡 ∈ ℝ𝑑
on the same theory that it is a low-dimensional

reparameterization of J𝛽𝑡K, and define (𝑓 𝜙 , ℎ𝜙) in equations (6.5)–(6.6) to be neural networks.

Finally, we must replace the definition of 𝐶𝑡 in (6.26) with another neural network 𝑐𝜙 that

works on the low-dimensional approximations:
10

𝐶𝑡 ≜ 𝑐𝜙(𝐬𝑡 , �̄�𝑡) (except that 𝐶𝑇 ≜ 0) (6.28)

The resulting approximation to (6.27) (which does not actually require ℎ𝜙) will be denoted

𝑞𝜃,𝜙 :

𝑞𝜃,𝜙(𝑦𝑡 ∣ 𝐱, 𝐲∶𝑡−1)
def∝ exp (𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) + 𝐶𝑡) (6.29)

The neural networks in the present section are all parameterized by 𝜙, and are intended

to produce an estimate of the logprob-to-go 𝐻𝑡 — a function of 𝐱𝑡∶, which sums over all

possible 𝐲𝑡∶.

By contrast, the OOHMM-inspired neural networks suggested in §6.3.2 were used to

10𝐶𝑇 = 0 is correct according to (6.26). Forcing this ensures 𝐻𝑇 = 0, so our approximation becomes exact

as of 𝑡 = 𝑇 .
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specify an actual model of the logprob-so-far 𝐺𝑡 — a function of 𝐱∶𝑡 and 𝐲∶𝑡 — using separate

parameters 𝜃 .

Arguably 𝜙 has a harder modeling job than 𝜃 because it must implicitly sum over

possible futures 𝐲𝑡∶.11
We now consider how to get corrected samples from 𝑞𝜃,𝜙 even if 𝜙

gives poor estimates of 𝐻𝑡 , and then how to train 𝜙 to improve those estimates.

6.4 Particle smoothing

In this work, we assume nothing about the given model 𝐺𝑇 except that it is given in the

form of equations (6.1)–(6.3) (including the parameter vector 𝜃).

Suppose we run the exact sampling strategy (§6.2) but approximate 𝑝𝜃 in (6.8) with a

proposal distribution 𝑞𝜃,𝜙 of the form in (6.28)–(6.29). Suppressing the subscripts on 𝑝 and

𝑞 for brevity, this means we are effectively drawing 𝐲 not from 𝑝(𝐲 ∣ 𝐱) but from

𝑞(𝐲 ∣ 𝐱) =
𝑇

∏
𝑡=1

𝑞(𝑦𝑡 ∣ 𝐱, 𝐲∶𝑡−1) (6.30)

If 𝐶𝑡 ≈ 𝐻𝑡 + const within each 𝑦𝑡 draw, then 𝑞 ≈ 𝑝.

Normalized importance sampling corrects (mostly) for the approximation by drawing

many sequences 𝐲(1),… 𝐲(𝑀)
IID from (6.30) and assigning 𝐲(𝑚)

a relative weight of 𝑤 (𝑚) ≜
11

Relevant theoretical discussion is in § 3.
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𝑝(𝐲(𝑚)∣𝐱)
𝑞(𝐲(𝑚)∣𝐱) . This ensemble of weighted particles yields a distribution

�̂�(𝐲) ≜
∑𝑀

𝑚=1 𝑤 (𝑚)𝕀(𝐲 = 𝐲(𝑚))
∑𝑀

𝑚=1 𝑤 (𝑚)
≈ 𝑝(𝐲 ∣ 𝐱) (6.31)

that can be used as discussed in §6.1.3. To compute𝑤 (𝑚)
in practice, we replace the numerator

𝑝(𝐲(𝑚) ∣ 𝐱) by the unnormalized version exp𝐺𝑇 , which gives the same �̂�. Recall that each

𝐺𝑇 is a sum ∑𝑇
𝑡=1 𝑔𝜃 (⋯).

Sequential importance sampling is an equivalent implementation that makes 𝑡 the outer

loop and 𝑚 the inner loop. It computes a prefix ensemble

𝑌𝑡 ≜ {(𝐲(1)∶𝑡 , 𝑤
(1)
𝑡 ),… , (𝐲(𝑀)

∶𝑡 , 𝑤
(𝑀)
𝑡 )}

for each 0 ≤ 𝑡 ≤ 𝑇 in sequence. Initially, (𝐲(𝑚)
∶0 , 𝑤

(𝑚)
0 ) = (𝜖, exp𝐶0) for all 𝑚. Then for

0 < 𝑡 ≤ 𝑇 , we extend these particles in parallel:

𝐲(𝑚)
∶𝑡 = 𝐲(𝑚)

∶𝑡−1𝑦
(𝑚)
𝑡 (concatenation) (6.32)

𝑤 (𝑚)
𝑡 = 𝑤 (𝑚)

𝑡−1
exp (𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡) + 𝐶𝑡 − 𝐶𝑡−1)

𝑞(𝑦𝑡 ∣ 𝐱, 𝐲∶𝑡−1)
(6.33)

where each 𝑦 (𝑚)
𝑡 is drawn from (6.29). Each 𝑌𝑡 yields a distribution �̂�𝑡 over prefixes 𝐲∶𝑡 ,

which estimates the distribution 𝑝𝑡(𝐲∶𝑡)
def∝ exp (𝐺𝑡 + 𝐶𝑡). We return �̂� ≜ �̂�𝑇 ≈ 𝑝𝑇 = 𝑝.

This gives the same �̂� as in (6.31): the final 𝐲(𝑚)
𝑇 are the same, with the same final weights

𝑤 (𝑚)
𝑇 = exp𝐺𝑇

𝑞(𝐲(𝑚)∣𝐱) , where 𝐺𝑇 was now summed up as 𝐶0 +∑𝑇
𝑡=1 𝑔𝜃 (⋯) + 𝐶𝑡 − 𝐶𝑡−1.
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That is our basic particle smoothing strategy. If we use the naive approximation 𝐶𝑡 = 0

everywhere, it reduces to particle filtering. In either case, various well-studied improvements

become available, such as various resampling schemes (Douc and Cappé, 2005) and the

particle cascade (Paige et al., 2014).
12

An easy improvement is multinomial resampling (Douc and Cappé, 2005). After com-

puting each �̂�𝑡 , this replaces 𝑌𝑡 with a set of 𝑀 new draws from �̂�𝑡 (≈ 𝑝𝑡), each of weight

1— which tends to drop low-weight particles and duplicate high-weight ones.
13

For this

to usefully focus the ensemble on good prefixes 𝐲∶𝑡 , 𝑝𝑡 should be a good approximation

to the true marginal 𝑝(𝐲∶𝑡 ∣ 𝐱) ∝ exp (𝐺𝑡 + 𝐻𝑡) from (6.11). That is why we arranged for

𝑝𝑡(𝐲∶𝑡) ∝ exp (𝐺𝑡 + 𝐶𝑡). Without 𝐶𝑡 , we would have only 𝑝𝑡(𝐲∶𝑡) ∝ exp𝐺𝑡 — which is fine

for the traditional particle filtering setting, but in our setting it ignores future information

in 𝐱𝑡∶ (which we have assumed is available) and also favors sequences 𝐲 that happen to

accumulate most of their global score 𝐺𝑇 early rather than late (which is possible when the

globally normalized model (6.1)–(6.2) is not factored in the generative form (6.4)).

6.5 Training the sampler heuristic

We now consider training the parameters 𝜙 of our sampler. These parameters determine the

updates 𝑓 𝜙 in (6.6) and the compatibility function 𝑐𝜙 in (6.28). As a result, they determine

12
The particle cascade would benefit from an estimate of �̂� 𝑡 , as it (like A

∗
search) compares particles of

different lengths.

13
While resampling mitigates the degeneracy problem, it could also reduce the diversity of particles. In

our experiments in this chapter, we only do multinomial resampling when the effective sample size of �̂�𝑡 is

lower than
𝑀
2 . Doucet and Johansen (2009) give a more thorough discussion on when to resample.
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the proposal distribution 𝑞 used in equations (6.30) and (6.33), and thus determine the

stochastic choice of �̂� that is returned by the sampler on a given input 𝐱.

In this work, we simply try to tune 𝜙 to yield good proposals. Specifically, we try to

ensure that 𝑞𝜙(𝐲 ∣ 𝐱) in equation (6.30) is close to 𝑝(𝐲 ∣ 𝐱) from equation (6.1). While this

may not be necessary for the sampler to perform well downstream,
14

it does guarantee it

(assuming that the model 𝑝 is correct). Specifically, we seek to minimize

(1 − 𝜆)KL(𝑝||𝑞𝜙) + 𝜆KL(𝑞𝜙 ||𝑝) (with 𝜆 ∈ [0, 1]) (6.34)

averaged over examples 𝐱 drawn from a training set.
15

(The training set need not provide

true 𝐲’s.)

The inclusive KL divergence KL (𝑝||𝑞𝜙) is an expectation under 𝑝. We estimate it by

replacing 𝑝 with a sample �̂�, which in practice we can obtain with our sampler under the

current 𝜙. (The danger, then, is that �̂� will be biased when 𝜙 is not yet well-trained; this

can be mitigated by increasing the sample size 𝑀 when drawing �̂� for training purposes.)

Intuitively, this term tries to encourage 𝑞𝜙 in future to re-propose those 𝐲 values that

turned out to be “good” and survived into �̂� with high weights.

14
In principle, one could attempt to train 𝜙 “end-to-end” on some downstream objective by using rein-

forcement learning or the Gumbel-softmax trick (Jang, Gu, and Poole, 2017; Maddison, Mnih, and Teh, 2017).

For example, we might try to ensure that �̂� closely matches the model’s distribution 𝑝 (equation (6.31)) —

the “natural” goal of sampling. This objective can tolerate inaccurate local proposal distributions in cases

where the algorithm could recover from them through resampling. Looking even farther downstream, we

might merely want �̂�— which is typically used to compute expectations — to provide accurate guidance to

some decision or training process (see §6.1.3). This might not require fully matching the model, and might

even make it desirable to deviate from an inaccurate model.

15
Training a single approximation 𝑞𝜙 for all 𝐱 is known as amortized inference.

175



CHAPTER 6. AMORTIZED INFERENCE WITH NEURAL PARTICLE SMOOTHING

The exclusive KL divergence KL(𝑞𝜙 ||𝑝) is an expectation under 𝑞𝜙 . Since we can sample

from 𝑞𝜙 exactly, we can get an unbiased estimate of ∇𝜙KL(𝑞𝜙 ||𝑝) with the likelihood ratio

trick (Glynn, 1990).
16

(The danger is that such “REINFORCE” methods tend to suffer from

very high variance.)

This term is a popular objective for variational approximation. Here, it tries to discourage

𝑞𝜙 from re-proposing “bad” 𝐲 values that were proposed during training of 𝑞, but turned

out to have low exp𝐺𝑇 relative to their proposal probability.

Our experiments balance “recall” (inclusive) and “precision” (exclusive) by taking 𝜆 = 1
2

(which §6.6 compares to 𝜆 ∈ {0, 1}). Alas, because of our approximation to the inclusive

term, neither term’s gradient will “find” and directly encourage good 𝐲 values that have

never been proposed. §6.5.1 gives further discussion and formulas.

6.5.1 Gradients for training the proposal distribution

For a given 𝐱, both forms of KL divergence achieve their minimum of 0 when (∀𝐲) 𝑞𝜙(𝐲 ∣

𝐱) = 𝑝(𝐲 ∣ 𝐱). However, the two metrics penalize 𝑞𝜙 differently for mismatches. We simplify

the notation below by writing 𝑞𝜙(𝐲) and 𝑝(𝐲), suppressing the conditioning on 𝐱.

Inclusive KL Divergence The inclusive KL divergence has that name because it is finite

only when support(𝑞𝜙) ⊇ support(𝑝), i.e., when 𝑞𝜙 is capable of proposing any string 𝐲 that

has positive probability under 𝑝. This is required for 𝑞𝜙 to be a valid proposal distribution

16
The normalizing constant of 𝑝 from (6.1) can be ignored because the gradient of a constant is 0.
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for importance sampling.

KL (𝑝||𝑞𝜙) = 𝔼
𝐲∼𝑝

[log 𝑝 (𝐲) − log 𝑞𝜙(𝐲)]

The first term 𝔼𝐲∼𝑝[log 𝑝 (𝐲)] is a constant with regard to 𝜙. As a result, the gradient of the

above is just the gradient of the second term:

∇𝜙KL(𝑝||𝑞𝜙) = ∇𝜙 𝔼
𝐲∼𝑝

[− log 𝑞𝜙 (𝐲)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

the cross-entropy 𝐻 (𝑝,𝑞𝜙 )

We cannot directly sample from 𝑝. However, our weighted mixture �̂� from equation (6.31)

(obtained by sequential importance sampling) could be a good approximation:

∇𝜙KL(𝑝||𝑞𝜙) ≈ ∇𝜙 𝔼
𝐲∼�̂�

[− log 𝑞𝜙 (𝐲)] (6.35)

=
𝑇

∑
𝑡=1

𝔼
�̂�
[−∇𝜙 log 𝑞𝜙(𝑦𝑡 ∣ 𝑦∶𝑡−1, 𝐱)]

Following this approximate gradient downhill has an intuitive interpretation: if a particular

𝑦𝑡 value ends up with high relative weight in the final ensemble �̂�, then we will try to

adjust 𝑞𝜙 so that it would have had a high probability of proposing that 𝑦𝑡 value at step 𝑡 in

the first place.
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Exclusive KL Divergence The exclusive divergence has that name because it is finite

only when support(𝑞𝜙) ⊆ support(𝑝). It is defined by

KL(𝑞𝜙 ||𝑝) = 𝔼
𝐲∼𝑞𝜙

[log 𝑞𝜙(𝐲) − log 𝑝(𝐲)]

= 𝔼
𝐲∼𝑞𝜙

[log 𝑞𝜙(𝐲) − log �̃�(𝐲)] + log𝑍

= ∑
𝐲
𝑞𝜙(𝐲) [log 𝑞𝜙(𝐲) − log �̃�(𝐲)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
call this 𝑑𝜙 (𝐲)

+ log𝑍

where 𝑝(𝐲) = 1
𝑍 �̃�(𝐲) for �̃�(𝐲) = exp𝐺𝑇 and 𝑍 = ∑𝐲 �̃�(𝐲). With some rearrangement, we can

write its gradient as an expectation that can be estimated by sampling from 𝑞𝜙 .
17

Observing

that 𝑍 is constant with respect to 𝜙, first write

∇𝜙KL(𝑞𝜙 ||𝑝) = ∑
𝐲
∇𝜙 (𝑞𝜙(𝐲) 𝑑𝜙(𝐲)) (6.36)

= ∑
𝐲
(∇𝜙𝑞𝜙(𝐲)) 𝑑𝜙(𝐲) +∑

𝐲
𝑞𝜙(𝐲)∇𝜙 log 𝑞𝜙(𝐲)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∇𝜙𝑞𝜙 (𝐲)

= ∑
𝐲
(∇𝜙𝑞𝜙(𝐲)) 𝑑𝜙(𝐲)

where the last step uses the fact that ∑𝐲 ∇𝜙𝑞𝜙(𝐲) = ∇𝜙 ∑𝐲 𝑞𝜙(𝐲) = ∇𝜙1 = 0. We can turn

this into an expectation with a second use of Glynn (1990)’s observation that ∇𝜙𝑞𝜙(𝐲) =
17

This is an extension of the REINFORCE trick (Williams, 1992), which estimates the gradient of

𝔼𝐲∼𝑞𝜙 [reward(𝐲)] when the reward is independent of 𝜙. In our case, the expectation is over a quantity

that does depend on 𝜙.
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𝑞𝜙(𝐲)∇𝜙 log 𝑞𝜙(𝐲) (the “likelihood ratio trick”):

∇𝜙KL(𝑞𝜙 ||𝑝) = ∑
𝐲
𝑞𝜙(𝐲)𝑑𝜙(𝐲)∇𝜙 log 𝑞𝜙(𝐲)

= 𝔼
𝐲∼𝑞𝜙

[𝑑𝜙(𝐲)∇𝜙 log 𝑞𝜙(𝐲)] (6.37)

which can, if desired, be further rewritten as

= 𝔼
𝐲∼𝑞𝜙

[𝑑𝜙(𝐲)∇𝜙 𝑑𝜙(𝐲)]

= 𝔼
𝐲∼𝑞𝜙

[∇𝜙 ( 1
2𝑑𝜙(𝐲)

2)] (6.38)

If we regard 𝑑𝜙(𝐲) as a signed error (in the log domain) in trying to fit 𝑞𝜙 to �̃�, then the

above gradient of KL can be interpreted as the gradient of the mean squared error (divided

by 2).

We would get the same gradient for any rescaled version of the unnormalized distribution

�̃�, but the formula for obtaining that gradient would be different. In particular, if we rewrite

the above derivation but add a constant 𝑏 to both log �̃�(𝐲) and log𝑍 throughout (equivalent

to adding 𝑏 to 𝐺𝑇 ), we will get the slightly generalized expectation formulas

𝔼
𝐲∼𝑞𝜙

[(𝑑𝜙(𝐲) − 𝑏)∇𝜙 log 𝑞𝜙(𝐲)] (6.39)

𝔼
𝐲∼𝑞𝜙

[∇𝜙 (
1
2 (𝑑𝜙(𝐲) − 𝑏)

2
)] (6.40)

in place of equations (6.37) and (6.38) respectively. By choosing an appropriate “baseline” 𝑏,
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Figure 6.2: Offset KL divergence for the source separation task on phoneme sequences.

we can reduce the variance of the sampling-based estimate of these expectations. This

is similar to the use of a baseline in the REINFORCE algorithm (Williams, 1992). In this

work we choose 𝑏 using an exponential moving average of past 𝔼[𝑑𝜙(𝐲)] values: at the end

of each training minibatch, we update 𝑏 ← 0.1 ⋅ 𝑏 + 0.9 ⋅ �̄� , where �̄� is the mean of the

estimated 𝔼𝐲∼𝑞𝜙 (⋅∣𝐱)[𝑑𝜙(𝐲)] values for all examples 𝐱 in the minibatch.
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Figure 6.3: Offset KL divergence on the last char task: a pathological case where a naive

particle filtering sampler does really horribly, and an ill-trained smoothing sampler even

worse. The logarithmic 𝑥-axis is the particle size used to train the sampler. At test time we

evaluate with a fixed particle size (𝑀 = 32).
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6.6 Effect of different objective functions on

lookahead optimization

§6.5 discussed inclusive and exclusive KL divergences, and gave our rationale for optimizing

an interpolation of the two. Here we study the effect of the interpolation weight. We train

the lookahead sampler, and the joint language model, on a toy problem called “last char,”

where 𝐲 is a deterministic function of 𝐱: either a lowercased version of 𝐱, or an identical

copy of 𝐱, depending on whether the last character of 𝐱 is 0 or 1. Note that this problem

requires lookahead.

We obtain our 𝐱 sequences by taking the phoneme sequence data from the stressed

syllable tagging task and flipping a fair coin to decide whether to append 0 or 1 to each

sequence. Thus, the dataset may include (𝐱, 𝐲) pairs such as (K AU CH 0, k au ch 1) or

(K AU CH 1, K AU CH 1), but not (K AU CH 1, k au ch 1).

We treat this as a tagging problem, and treat it with our tagging model in §6.7.1. Results

are in Figure 6.3. We see that optimizing for KL(�̂�||𝑞) at a low particle size gives much

worse performance than other methods, presumably due to the worse approximation

quality (equation (6.35)). On the other hand, the objective function KL(𝑞||𝑝) achieves

constantly good performance. The middle ground
KL(�̂�||𝑞)+KL(𝑞||𝑝)

2 improves when the particle

size increases, and achieves slightly better results than KL(𝑞||𝑝) at larger particle sizes.
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6.7 Models for the experiments

To evaluate our methods, we needed pre-trained models 𝑝𝜃 . We experimented on several

models. In each case, we trained a generative model 𝑝𝜃 (𝐱, 𝐲), so that we could try sampling

from its posterior distribution 𝑝𝜃 (𝐲 ∣ 𝐱). This is a very common setting where particle

smoothing should be able to help. Details for replication are given in §6.7.4.

6.7.1 Tagging models

We can regard a tagged sentence (𝐱, 𝐲) as a string over the “pair alphabet”  ×  . We

train an RNN language model over this “pair alphabet” — this is a neuralized OOHMM as

suggested in §6.3.2:

log 𝑝𝜃 (𝐱, 𝐲) =
𝑇

∑
𝑡=1

log 𝑝𝜃 (𝑥𝑡 , 𝑦𝑡 ∣ 𝐬𝑡−1)

This model is locally normalized, so that log 𝑝𝜃 (𝐱, 𝐲) (as well as its gradient) is straight-

forward to compute for a given training pair (𝐱, 𝐲). Joint sampling from it would also be

easy (§6.3.2).

However, 𝑝(𝐲 ∣ 𝐱) is globally renormalized (by an unknown partition function that

depends on 𝐱, namely exp𝐻0). Conditional sampling of 𝐲 is therefore potentially hard.

Choosing 𝑦𝑡 optimally requires knowledge of 𝐻𝑡 , which depends on the future 𝐱𝑡∶.

As we noted in §6.1, many NLP tasks can be seen as tagging problems. In this chapter

183



CHAPTER 6. AMORTIZED INFERENCE WITH NEURAL PARTICLE SMOOTHING

we experiment with two such tasks:

English stressed syllable tagging providing good reason to use the lookahead provided

by particle smoothing: the stress of a syllable often depends on the number of

remaining syllables.
18

This task tags a sequence of phonemes 𝐱, which form a word,

with their stress markings 𝐲. Our training examples are the stressed words in the CMU

pronunciation dictionary (Weide, 2005). We test the sampler on held-out unstressed

words.

Chinese NER is a familiar textbook application and reminds the reader that our formal

setup (tagging) provides enough machinery to treat other tasks (chunking). This task

does named entity recognition in Chinese, by tagging the characters of a Chinese

sentence in a way that marks the named entities. We use the dataset from Peng and

Dredze (2015), whose tagging scheme is a variant of the BIO scheme mentioned in

§6.1. We test the sampler on held-out sentences.

6.7.2 String source separation

This is an artificial task that provides a discrete analogue of speech source separation

(Zibulevsky and Pearlmutter, 2001). The generative model is that 𝐽 strings (possibly of

different lengths) are generated IID from an RNN language model, and are then combined

into a single string 𝐱 according to a random interleaving string 𝐲. We formally describe

the generative process in §6.7.3. The posterior 𝑝(𝐲 ∣ 𝐱) predicts the interleaving string,

18
English, like many other languages, assigns stress from right to left (Hayes, 1995).
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which suffices to reconstruct the original strings. The interleaving string is selected from

the uniform distribution over all possible interleavings (given the 𝐽 strings’ lengths). For

example, with 𝐽 = 2, a possible generative story is that we first sample two strings Foo and

Bar from an RNN language model. We then draw an interleaving string 112122 from the

aforementioned uniform distribution, and interleave the 𝐽 strings deterministically to get

FoBoar.

𝑝(𝐱, 𝐲) is proportional to the product of the probabilities of the 𝐽 strings. The only

parameters of 𝑝𝜃 , then, are the parameters of the RNN language model, which we train on

clean (non-interleaved) samples from a corpus. We test the sampler on random interleavings

of held-out samples.

The state 𝐬 (which is provided as an input to 𝑐𝜃 in (6.28)) is the concatenation of the 𝐽

states of the language model as it independently generates the 𝐽 strings, and 𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡)

is the log-probability of generating 𝑥𝑡 as the next character of the 𝑦𝑡 th string, given that

string’s language model state within 𝐬𝑡−1. As a special case, 𝐱𝑇 = eos (see footnote 1), and

𝑔𝜃 (𝐬𝑇−1, eos, eos) is the total log-probability of termination in all 𝐽 language model states.

String source separation has good reason for lookahead: appending character “o” to

a reconstructed string “ gh” is only advisable if “s” and “t” are coming up soon to make

“ghost.” It also illustrates a powerful application setting — posterior inference under a

generative model. This task conveniently allowed us to construct the generative model

from a pre-trained language model. Our constructed generative model illustrates that the

state 𝐬 and transition function 𝑓 can reflect interesting problem-specific structure.
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CMU Pronunciation dictionary The CMU pronunciation dictionary (already used

above) provides sequences of phonemes. Here we use words no longer than 5 phonemes.

We interleave the (unstressed) phonemes of 𝐽 = 5 words.

Penn Treebank The PTB corpus (Marcus, Marcinkiewicz, and Santorini, 1993) provides

English sentences, from which we use only the sentences of length ≤ 8. We interleave the

words of 𝐽 = 2 sentences.

6.7.3 Generative process for source separation

Given an alphabet Σ, 𝐽 strings 𝐱(1), 𝐱(2),… , 𝐱(𝐽 ) ∈ Σ∗
are independently sampled from the

respective distributions 𝑝(1),… 𝑝(𝐽 ) over Σ∗
(possibly all the same distribution 𝑝(1) = ⋯ = 𝑝(𝐽 )).

These source strings are then combined into a single observed string 𝐱, of length 𝐾 = ∑𝑗 𝐾𝑗 ,

according to an interleaving string 𝐲, also of length 𝐾 . For example, 𝐲 = 1132123 means

to take two characters from 𝐱(1), then a character from 𝐱(3), then a character from 𝐱(2),

etc. Formally speaking, 𝐲 is an element of the mix language 𝐱 = mix(1𝑘1 , 2𝑘2 ,… , 𝑗𝑘𝑗 ), and

we construct 𝐱 by specifying the character 𝑥𝑘 ∈ Σ to be 𝑥 (𝑦𝑘 )|{𝑖≤𝑘∶𝑦𝑖=𝑦𝑘}|. We assume that 𝐲 is

drawn from some distribution over 𝐱. The source separation problem is to recover the

interleaving string 𝐲 from the interleaved string 𝐱.

We assume that each source model 𝑝(𝑗)(𝐱(𝑗)) is an RNN language model — that is, a locally

normalized state machine that successively generates each character of 𝐱(𝑗) given its left

context. Thus, each source model is in some state 𝐬(𝑗)𝑡 after generating the prefix 𝐱(𝑗)∶𝑡 . In the
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remainder of this paragraph, we suppress the superscript
(𝑗)

for simplicity. The model now

stochastically generates character 𝑥𝑡+1 with probability 𝑝(𝑥𝑡+1 ∣ 𝐬𝑡), and from 𝐬𝑡 and this

𝑥𝑡+1 it deterministically computes its new state 𝐬𝑡+1. If 𝑥𝑡+1 is a special “end-of-sequence”

character eos, we return 𝐱 = 𝐱∶𝑡 .

Given only 𝐱 of length 𝑇 , we see that 𝐲 could be any element of {1, 2,… , 𝐽}𝑇 . We can

write the posterior probability of a given 𝐲 (by Bayes’ Theorem) as

𝑝(𝐲 ∣ 𝐱) ∝ 𝑝(𝐲)
𝐽

∏
𝑗=1

𝑝(𝑗) (𝐱(𝑗)) (6.41)

where (for this given 𝐲) 𝐱(𝑗) denotes the subsequence of 𝐱 at indices 𝑘 such that 𝑦𝑘 = 𝑗. In

our experiments, we assume that 𝑦 was drawn uniformly from 𝐱, so 𝑝(𝐲) is constant and

can be ignored. In general, the set of possible interleavings 𝐱 is so large that computing

the constant of proportionality (𝑍 ) for a given 𝐱 becomes prohibitive.

6.7.4 Implementation details

We implement all RNNs in this chapter as GRU networks (Cho et al., 2014) with 𝑑 = 32

hidden units (state space ℝ32
). Each of our models (§6.7) always specifies the logprob-so-far

in equations (6.2) and (6.3) using a 1-layer left-to-right GRU,
19

while the corresponding

proposal distribution (§6.3.3) always specifies the state 𝐬𝑡 in (6.6) using a 2-layer right-to-left

19
For the tagging task described in §6.7.1, 𝑔𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦𝑡 ) ≜ log 𝑝𝜃 (𝑥𝑡 , 𝑦𝑡 ∣ 𝐬𝑡−1), where the GRU state 𝐬𝑡−1

is used to define a softmax distribution over possible (𝑥𝑡 , 𝑦𝑡 ) pairs in the same manner as an RNN language

model (Mikolov et al., 2010). Likewise, for the source separation task (§6.7.2), the source language models

described in §6.7.3 are GRU-based RNN language models.
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GRU, and specifies the compatibility function 𝐶𝑡 in (6.26) using a 4-layer feedforward ReLU

network.
20

For the Chinese social media NER task (§6.7.1), we use the Chinese character

embeddings provided by Peng and Dredze (2015), while for the source separation tasks

(§6.7.2), we use the 50-dimensional GloVe word embeddings (Pennington, Socher, and

Manning, 2014). In other cases, we train embeddings along with the rest of the network.

We optimize with the Adam optimizer using the default parameters (Kingma and Welling,

2014) and 𝐿2 regularization coefficient of 10−5.

6.7.5 Training procedures

In all our experiments, we train the incremental scoring models (the tagging and source

separation models described in §§6.7.1 and 6.7.2, respectively) on the training dataset 𝑇 .

We do early stopping, using perplexity on a held-out development set 𝐷1 to choose the

number of epochs to train (maximum of 3).

Having obtained these model parameters 𝜃 , we train our proposal distributions 𝑞𝜃,𝜙 on

𝑇 , keeping 𝜃 fixed and only tuning 𝜙. Again we use early stopping, using the KL divergence

from §6.8.1 on a separate development set 𝐷2 to choose the number of epochs to train

(maximum of 20 for the two tagging tasks and source separation on the PTB dataset, and

maximum of 50 for source separation on the phoneme sequence dataset). We then evaluate

𝑞𝜃 ∗,𝜙∗ on the test dataset 𝐸.

20
As input to 𝐶𝑡 , we actually provide not only 𝐬𝑡 , �̄�𝑡 but also the states 𝑓𝜃 (𝐬𝑡−1, 𝑥𝑡 , 𝑦) (including 𝐬𝑡 ) that

could have been reached for each possible value 𝑦 of 𝑦𝑡 . We have to compute these anyway while construct-

ing the proposal distribution, and we find that it helps performance to include them.
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6.8 Experiments

In our experiments, we are given a pre-trained scoring model 𝑝𝜃 , and we train the parameters

𝜙 of a particle smoothing algorithm.
21

We now show that our proposed neural particle smoothing sampler does better than

the particle filtering sampler. To define “better,” we evaluate samplers on the offset KL

divergence from the true posterior.

6.8.1 Evaluation metrics

Given x, the “natural” goal of conditional sampling is for the sample distribution �̂�(𝐲) to

approximate the true distribution 𝑝𝜃 (𝐲 ∣ 𝐱) = exp𝐺𝑇 / exp𝐻0 from (6.1). We will therefore

report — averaged over all held-out test examples 𝐱— the KL divergence

KL(�̂�||𝑝) = 𝔼
𝐲∼�̂�

[log �̂�(𝐲)] − ( 𝔼
𝐲∼�̂�

[log �̃�(𝐲 ∣ 𝐱)] − log𝑍 (𝐱)),

where �̃�(𝐲 ∣ 𝐱) denotes the unnormalized distribution given by exp𝐺𝑇 in (6.2), and 𝑍 (𝐱)

denotes its normalizing constant, exp𝐻0 = ∑𝐲 �̃�(𝐲 ∣ 𝐱).

As we are unable to compute log𝑍 (𝐱) in practice, we replace it with an estimate 𝑧(𝐱)

to obtain an offset KL divergence. This change of constant does not change the measured

difference between two samplers, KL(�̂�1||𝑝) − KL(�̂�2||𝑝). Nonetheless, we try to use a

21
For the details of the training procedures and the specific neural architectures in our models, see §§6.7.4

and 6.7.5.
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Figure 6.4: Tagging: stressed syllables. Abbreviations in the legend (for Figures 6.4–6.7):

PF=particle filtering. PS=particle smoothing. BEAM=beam search. ‘:R’ suffixes indicate

resampled variants.

reasonable estimate so that the reported KL divergence is interpretable in an absolute sense.

Specifically, we take 𝑧(𝐱) = log∑𝐲∈ �̃�(𝐲 ∣ 𝐱) ≤ log𝑍 , where  is the full set of distinct

particles 𝐲 that we ever drew for input 𝐱, including samples from the beam search models,

while constructing the experimental results graph.
22

Thus, the offset KL divergence is a

“best effort” lower bound on the true exclusive KL divergence KL(�̂�||𝑝).
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Figure 6.5: Tagging: Chinese NER

6.8.2 Results

In all experiments (§§6.7.1 and 6.7.2) we compute the offset KL divergence for both the

particle filtering samplers and the particle smoothing samplers, for varying ensemble sizes

𝑀 . We also compare against a beam search baseline that keeps the highest-scoring 𝑀

particles at each step (scored by exp𝐺𝑡 with no lookahead). The results are in Figures 6.4–6.7.

In these figures, the logarithmic 𝑥-axis is the size of particles 𝑀 (8 ≤ 𝑀 ≤ 128). The 𝑦-axis is

the offset KL divergence described in §6.8.1 (in bits per sequence). The smoothing samplers

22
Thus,  was collected across all samplings, iterations, and ensemble sizes 𝑀 , in an attempt to make the

summation over  as complete as possible. For good measure, we added some extra particles: whenever we

drew 𝑀 particles via particle smoothing, we drew an additional 2𝑀 particles by particle filtering and added

them to  .
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Figure 6.6: Source separation: PTB

offer considerable speedup: for example, in Figure 6.4, the non-resampled smoothing

sampler achieves comparable offset KL divergences with only 1/4 as many particles as its

filtering counterparts. For readability, beam search results are omitted from Figure 6.7, but

appear in Figure 6.2.

Given a fixed ensemble size, we see the smoothing sampler consistently performs better

than the filtering counterpart. It often achieves comparable performance at a fraction of

the ensemble size.

Beam search on the other hand falls behind on three tasks: stress prediction and the two

source separation tasks. It does perform better than the stochastic methods on the Chinese

NER task, but only at small beam sizes. Varying the beam size barely affects performance at
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Figure 6.7: source separation: CMUdict

all, across all tasks. This suggests that beam search is unable to explore the hypothesis

space well.

We experiment with resampling for both the particle filtering sampler and our smoothing

sampler. In source separation and stressed syllable prediction, where the right context

contains critical information about how viable a particle is, resampling helps particle

filtering almost catch up to particle smoothing. Particle smoothing itself is not further

improved by resampling, presumably because its effective sample size is high. The goal of

resampling is to kill off low-weight particles (which were overproposed) and reallocate their

resources to higher-weight ones. But with particle smoothing, there are fewer low-weight

particles, so the benefit of resampling may be outweighted by its cost (namely, increased

193



CHAPTER 6. AMORTIZED INFERENCE WITH NEURAL PARTICLE SMOOTHING

variance).

6.9 Related work

Much previous work has employed sequential importance sampling for approximate

inference of intractable distributions (Thrun, 2000; Andrews et al., 2017). Some of this work

learns adaptive proposal distributions in this setting (Gu, Ghahramani, and Turner, 2015;

Paige and Wood, 2016). The key difference in our work is that we consider future inputs,

which is impossible in online decision settings such as robotics. Klaas et al. (2006) did do

particle smoothing, like us, but they did not learn adaptive proposal distributions.

Just as we use a right-to-left RNN to guide posterior sampling of a left-to-right generative

model, Krishnan, Shalit, and Sontag (2017) employed a right-to-left RNN to guide posterior

marginal inference in the same sort of model. Serdyuk et al. (2018) used a right-to-left RNN

to regularize training of such a model.

6.10 Conclusion

We have described neural particle smoothing, a sequential Monte Carlo method for ap-

proximate sampling from the posterior of incremental neural scoring models. Sequential

importance sampling has arguably been underused in the natural language processing

community. It is quite a plausible strategy for dealing with rich, globally normalized

probability models such as neural models — particularly if a good sequential proposal
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distribution can be found. Our contribution is a neural proposal distribution, which goes

beyond particle filtering in that it uses a right-to-left recurrent neural network to “look

ahead” to future symbols of 𝐱 when proposing each symbol 𝑦𝑡 . The form of our distribution

is well-motivated.

There are many possible extensions to the work in this chapter. For example, we can

learn the generative model and proposal distribution jointly; we can also infuse them with

hand-crafted structure, or use more deeply stacked architectures; and we can try training

the proposal distribution end-to-end (footnote 14). Another possible extension would be to

allow each step of 𝑞 to propose a sequence of actions, effectively making the tagset size ∞.

This extension relaxes our |𝐲| = |𝐱| restriction from §6.1 and would allow us to do general

sequence-to-sequence transduction.

In § 7 we will also use neural particle smoothing for sampling from conditional

distributions.
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Chapter 7

Neuralization of Finite-State

Transducers

7.1 Introduction

In this chapter we define neural finite-state transducers (NFSTs). NFSTs generalize both

neural sequence models (e.g., autoregressive sequence models in §2.1.3) and WFSTs (§2.1.2,

Mohri, Pereira, and Riley (2008)). When seen as an extension of neural sequence models,

NFSTs have an additional finite-state machine component that encodes monotonically

aligned annotations.
1

On the other hand, compared to WFSTs, NFSTs allow much more

powerful scoring functions of the annotations. In fact, we will describe an NFST as a pair of

these two elements — namely a finite-state machine and a scoring function. Therefore, at a

1
By annotations we mean both descriptions provided by (human) annotators, and discrete features which

may be derived using a previously described algorithm.
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high level, we may say the distinguishing features of NFSTs are the monotonically aligned

annotations and powerful scoring functions.

7.1.1 NFSTs encode monotonically aligned annotations

(as finite-state machines)

Recall that WFSTs can featurize string transduction as annotations (along the finite-state

machine paths). These annotations are monotonically aligned with the string pairs that

these models transduce. Likewise, NFSTs also featurize string transduction as annotations

in their finite-state machine component. Representing these annotations as finite-state

machines provides the following benefits:

Compact representation Many string transduction tasks can intuitively be described

by monotonically aligned annotations. And finite-state machines represent these

annotations compactly. Moreover, their topology can be engineered to incorporate

domain knowledge (possibly by compiling a regular expression), so that its states

reflect interpretable properties such as syllable boundaries or linguistic features.

Indeed, we will show below how to make these properties explicit by “marking” the

FST arcs. In addition to encoding annotations of possible transductions, FSTs can also

be engineered to encode knowledge of impossible transductions, by making sure that

there does not exist any annotation that accompanies the transductions we want to

prohibit. Specifically, if the FST has no accepting path for some “illegal” (𝐱, 𝐲) pairs,
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then 𝑝(𝐱, 𝐲) = 0 for any annotation weighting function.

Interpretability FSTs “explain” why it mapped 𝐱 to 𝐲 in terms of a latent path 𝐚, which

specifies a hard monotonic labeled alignment. If the annotation weighting function 𝑝

defines a distribution over these annotations, then the posterior distribution 𝑝(𝐚 ∣ 𝐱, 𝐲)

specifies which paths 𝐚 are the best explanations.

Latent variables In addition to inductive bias and interpretability, finite-state machines

can also encode discrete (and possibly latent) variables, by encoding these variables

on the paths. We will show that, even when we restrict annotation weight functions

to be autoregressive sequence models (which makes learning possible), NFSTs still

retain greater expressiveness than such models, and even energy-based sequence

models (under the non-uniform computation relaxation).

7.1.2 NFSTs make use of powerful scoring functions

Under WFSTs, the scoring function of annotations takes the form of a product of piecewise

annotation (also known as ‘feature’) weights, and are often parametrized at the time of

finite-state topology design. While such design implies that we can efficiently aggregate

over annotation weights (or machine weights in §2.1.2), it also severely limits the expressive

of WFSTs: piecewise annotations can only look at local contexts of string transduction. On

the other hand, NFSTs can have arbitrary scoring functions: they can generally consider

annotations that are separated by a long distance.
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7.1.3 NFSTs are not merely WFSTs with powerful scor-

ing functions

Our high-level overview in §§7.1.1 and 7.1.2 might seem to suggest that NFSTs are merely a

straightforward extension of WFSTs, where the only change is that we now score a path

using an arbitrary function (rather than using a lookup table). We note that this is not the

case: if we were to approach NFSTs taking this simplistic view, many theoretical problems

will arise. The root problem is that under WFSTs, machine weight (§2.1.2) is defined as

the sum of all path weights in a machine. It is known that for a WFST this quantity may

diverge (i.e., may not be a real number).
2

But we cannot in general decide in finite time

whether such a quantity diverges, if we naively allow the path weight to be an arbitrary

function of symbols on the path. Furthermore, even when we limit ourselves to functions

that results in finite machine weights (i.e., is a real number), the machine weight can still

be uncomputable, as implied by theoretical results in § 5. Lastly, we will show that these

theoretical problems still affect us, even if we choose to parametrize path weights using

common and popular neural sequence models.

Despite these theoretical restrictions, it might ‘feel nice’ if we could naively ‘neuralize’

weighted FSTs this way — each path in the machine would have its own contribution — its

path weight — towards the machine weight, as in the (normalizable) WFST case. Can we

2
Whether such a quantity diverges is decidable when all arc weights are non-negative (Salomaa and

Soittola, 2012), and semi-decidable otherwise (Bailly and Denis, 2011).
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identify a subclass of NFSTs that exhibit this familiar behavior?

These concerns lead us to a discussion on two different extensions of NFSTs’ machine

weights. Ultimately, the two extensions correspond to two possible answers to the question:

is the notion of individual path weights useful? Depending on the application, both yes

and no can be possible answers. Suppose we do not need to evaluate paths’ weights, then

different paths that correspond to the same string transduction annotation can be collapsed

into a single one. Monotonically aligned annotations can thus be captured using unweighted

finite-state machines, or equivalently regular languages. We will further show how NFST

machine weights can be interpreted as event probabilities under this assumption.
3

But

again we lose the path weight property this way: given a marked finite-state machine

(which we will formally define in §7.2.1), its corresponding NFST machine may have a

weight that differs from the sum of ‘path weights’, This might seem limiting to practitioners

who seek to engineer NFSTs the way they did WFSTs.

On the other hand, if we do want individual path weights, monotonically aligned

annotations can sometimes be captured using weighted finite-state machines, which may

bear some more resemblance to WFSTs. However, there will be some aligned annotations

that have no corresponding finite-weight WFSTs, if we require that the machine weight to

be the sum of path weights.

These two different answers lead to two different definitions of neuralization opera-

tors, which we call feature neuralization and literal neuralization respectively.
4

We

3
Note that paths under an NFST cannot necessarily be interpreted as events. Instead, mark strings are

events. And their weights are not computed by the NFST automaton.

4
The term is due to the fact that under literal neuralization, the machine weight — also known as a
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will show that while either allows the NFSTs to capture all WFSTs (Definition 2.1.3), they

make different trade-offs. Under the literal neuralization, the notion of individual path

weights is preserved. But literal neuralization cannot be guaranteed to be well-behaving,

unless we make stringent assumptions about both components of the NFST, namely the

finite-state machine and scoring function. On the other hand, under feature neuralization,

the NFST machine weight can be guaranteed to exist and well-behave, which in turn

allows us to develop efficient parameter estimation algorithms. The downside of feature

neuralization is that it forgoes the familiar behavior that every path in a finite-state machine

contributes individually towards the machine weights. Finally, we will show that for some

NFSTs, their feature and literal neuralizations coincide — so it is not necessarily a forced

choice footnote 15.

7.1.4 Chapter outline

In this chapter, we first formally define NFSTs in §7.2. We then argue for the formal

expressiveness of NFSTs in §7.3. We describe inference and parameter estimation methods

for NFSTs in §7.4. Finally, we describe experiment results on several string transduction

tasks in §7.5.

pathsum — is literally a sum over all paths.
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7.2 Definition

An NFST is a pair (𝜏 , 𝐺), where 𝜏 is a marked finite-state machine (which we formally

define in §7.2.1, along with marked regular expressions in §7.2.2), and 𝐺 a mark string

scoring function (§7.2.4). We also define two different semirings that work with marked

finite-state machines in §7.2.3, which are subsequently used to define feature and literal

neuralization (§7.2.4.1).

7.2.1 Marked finite-state machines

MFST 7.2.1: A marked grapheme-phoneme transducer.

𝑞1 𝑞2 𝑞3
𝜖:𝜖/BOS 𝜖:𝜖/EOS

th:T/i-t i-h C o-T

b:b/i-b C o-b

a:æ/i-a V o-æ

a:𝜖/i-a 𝜖:æ/O-æ

Marked finite-state machines are finite-state machines where one of the tapes is
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designated as the mark tape, whose symbols are called mark symbols. For example, a

marked finite-state acceptor (MFSA) has two tapes, one for input, and the other for mark

symbols. Similarly, a marked finite-state transducer (MFST) has three tapes, two for input

and output symbols, and another one for mark symbols. More formally:

Definition 7.2.1. A marked finite-state transducer 𝜏 = (Σ,Δ,Ω, 𝑄, 𝐸, 𝑞init, 𝐹 ) is given by

∙ finite input,output, mark alphabets Σ, Δ, Ω,

∙ a finite set of states 𝑄,

∙ a finite set of transitions 𝐸 ⊆ 𝑄 × (Σ ∪ {𝜖}) × (Δ ∪ {𝜖}) × (Ω ∪ {𝜖}) × 𝑄,

∙ an initial state 𝑞init, and

∙ a set of final states 𝐹 ⊆ 𝑄.

MFSAs are similarly defined as in Definition 7.2.1 without output symbols. When

needed, an MFSA can be type-converted into an MFST, by introducing an output symbol

that is identical to the input symbol per each arc. Loosely speaking, each accepting path 𝐚

of a marked finite-state machine is featurized by the concatenation of all mark strings on

arcs in the path.

We give an MFST example in MFST 7.2.1.
5 6

Note that a mark symbol can contain

5
Each arc in MFST 7.2.1 is annotated with input ∶ output/mark. In our finite-state diagrams, an arc

can have input/output/mark string(s) that contain multiple symbols. Such arcs are actually ‘implemented’

as a series of consecutive arcs through intermediate strings. We suppress such details in our diagrams for

clarity, when appropriate.

6
Mark strings in MFST 7.2.1 keep record of input and output strings they transduce. For example, the i-t

signifies an arc whose input symbols contain ‘t’. In fact, under the topology of MFST 7.2.1, we can recover

corresponding input and output strings from a mark string. We will see how such property allows for more

efficient training in Lemma 7.4.1.
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finer-grained information than input/output symbols: for example, marks such as C and V

indicate whether an output IPA symbol is a consonant, or a vowel. Some information from

an arc’s mark symbol can also indicate state transition, which may not be reflected in the

input/output symbols (e.g., BOS and EOS marks).

Since a marked finite-state machine is a multitape finite-state machine, we can derive

single-tape finite-state acceptors using the projection operation. We denote the mark

projection of 𝜏 as 𝜏Ω. Similarly, the input projection 𝜏Σ and output projection 𝜏Δ.
7

7.2.2 Marked regular expressions

We develop marked regular expressions (MRE) as both a convenient notation for marked

finite-state machines,
8

and as a way to operate on marked finite-state machines. Specifically,

we use the notation a:b/c to describe an marked finite-state transducer that accepts a single

symbol a on the input tape, b on the output tape, and c on the mark tape. MREs are closed

under standard rational operations — namely concatenation ‘.’, union ‘|’, and closure ‘∗’.

Definition 7.2.2. Let Σ, Δ, and Ω be three finite sets. A marked regular expression (MRE)

with input alphabet Σ, output alphabet Δ, and mark alphabet Ω is either

∙ an empty set {}, or

∙ a transition of the form a:b/c, where a ∈ Σ ∪ {𝜖}, b ∈ Δ ∪ {𝜖}, c ∈ Ω ∪ {𝜖}, or

7
Besides single-tape projections such as 𝜏Σ, one can also do two-tape projections: for example, 𝜏Σ,Δ would

denote an unweighted FST, whose input and output projections are 𝜏Σ and 𝜏Δ respectively. Such projections

are lossy; see fstencode (Allauzen et al., 2007) for ‘lossless’ projections to transducers or acceptors.

8
In this work, we specifically design our MRE notation to work with MFSTs.
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∙ 𝑅.𝑆 where 𝑅 and 𝑆 are both MREs, or

∙ (𝑅|𝑆) where 𝑅 and 𝑆 are both MREs, or

∙ 𝑅∗
where 𝑅 is an MRE.

There is also a special composition operator ‘◦’ in our (extended) set of MRE operators.

As with ordinary FSTs, the MFST operator ◦ takes two MFSTs as input, which have

input/alphabets (Σ, Γ) and (Γ,Δ) respectively, and output an MFST with input/output

alphabets (Σ,Δ). But unlike their (W)FST counterparts, the MFST compositional operator is

not commutative. We will discuss it in further detail in §7.2.2.1.

In this work, we leverage the brevity of rational operations under MREs to succinctly

illustrate the compositional structure of larger MFSTs we build. As an example, MRE 7.2.8

describes an MRE that is equivalent to MFST 7.2.1, using components from MREs 7.2.5–7.2.7.
9

MRE 7.2.5: BosMachine

𝜖 ∶ 𝜖/BOS

MRE 7.2.6: EosMachine

𝜖 ∶ 𝜖/EOS

9
The isomorphism between MREs and MFSTs allows us to mingle MREs and MFSTs as operands under

rational operations. Therefore MFSTs and MREs are used interchangeably in this work — for example, we

may write 𝑀1.𝑀2 where we depict 𝑀1 as an MFST but 𝑀2 as an MRE, assuming that there’s an implicit

coercion that converts 𝑀1 into an MRE before the concatenation operation.
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MRE 7.2.7: SingleTransition

(th ∶ 𝜃/i-t i-h C o-𝜃 |… th ∶ 𝜃/i-t i-h V o-𝜃)

MRE 7.2.8: An MRE equivalent to MFST 7.2.1

BosMachine.SingleTransition*.EosMachine

7.2.2.1 Composition of MREs

Many NLP applications that make use of finite-state techniques (e.g., morphological and

phonological analysis) are based on the composition of transducers, where strings are

transduced into and from intermediate forms (either observed or hypothesized), to produce a

monolithic transducer that models a (possibly weighted) relation between desired domains.

However, the composition operation is ultimately a relational algebraic one — unlike

the rational algebraic operations: union, concatenation and closure. Multi-tape automata (a

family where MFSTs belong, due to their 3 tapes) are generally not closed under composition

(Kempe, Champarnaud, and Eisner, 2004). We would like MFSTs to be closed under compo-

sition (as common real-valued WFSTs are). Therefore we do not define MFST compositions

as ordinary multi-tape automaton compositions (where the number of tapes increases

after compositions (Hulden, 2015)). Instead, we define the composition operation using

the ⊗ operation under both string-set and string-bag semirings (which we will formally

introduce in §7.2.3) — a composed MFST is effectively a weighted finite-state transducer,

206



CHAPTER 7. NEURALIZATION OF FINITE-STATE TRANSDUCERS

where each arc weight 𝑤[𝑎] is itself either an unweighted finite-state acceptor in alphabet

Ω (or equivalently, a regular language ⊆ Ω∗
) or a bag of strings in alphabet Ω.

However, neither string-set nor string-bag semirings define a commutative ⊗ operation

(i.e., 𝐚.𝐛— defined as the concatenation of strings 𝐚 followed by 𝐛— is generally different

from 𝐛 followed by 𝐚: 𝐛.𝐚). As a result, the composition of MFSTs will be sensitive to how

mark symbols are distributed along consecutive arcs. The particular interleaving obtained

also depends on the details of the weighted composition algorithm chosen.
10

Therefore,

when we compose MFSTs 𝜏1 against 𝜏2 to obtain another MFST 𝜏 = 𝜏1◦𝜏2, mark strings in

𝜏Ω will be interleavings from mark strings in 𝜏1Ω and 𝜏2Ω. But suppose we have another 𝜏3

where 𝜏3Ω = 𝜏1Ω (e.g., suppose we ‘push’ (Mohri, Pereira, and Riley, 2008) mark symbols of

𝜏1 to obtain 𝜏3), (𝜏3◦𝜏2)Ω is still generally different from (𝜏1◦𝜏2)Ω.

To summarize, MRE compositions
11

are not algebraic operations of multitape relations:

a composed MFST’s mark projection is sensitive to the topology of the MFSTs, from which

it is derived, and is not a function of just their mark projections. Nonetheless, regular

expressions that include ◦ are still a valid way of building up interesting MFSTs that

featurize input-output string pairs, which we subsequently ‘neuralize’ (a concept that we

will introduce in §7.2.4) to produce flexible distributions over string pairs. We simply trust

that the resulting mark strings in the MFST we built, whatever they are, will prove useful

to modeling the string transductions that they are aligned to. A flexible mark string scoring

10
We arbitrarily select from Allauzen, Riley, and Schalkwyk (2010) the version of composition that uses

an epsilon-sequencing filter.

11
Due to the equivalence between MREs and MFSTs, throughout the text we will be using the two terms

interchangeably.
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function (§7.2.4) should be able to adapt to the interleaving pattern.

7.2.3 Marked finite-state machines asweighted automata:

two different semirings

In §7.2.1 we describe marked finite-state machines as unweighted multitape finite-state

machines. However algorithm and software development have largely been focused on

weighted one- and two-tape finite-state machines (§2.1.2). By transforming marked finite-

state acceptors/transducers into weighted one- or two-tape machines, we can leverage

existing highly-optimized software for various operations on these automata. To this

end, we make use two different semirings — string-set (§7.2.3.1) and string-bag (§7.2.3.2)

semirings — which allows us to see marked finite-state machines as weighted finite-state

machines, under the two semirings respectively.

In this thesis, we denote machine weights of 𝑇 under the string-set semiring as [𝑇 ]set,

and string-bag as [𝑇 ]bag.

7.2.3.1 String-set semiring

Definition 7.2.3. Let 𝜖 denote the empty string. The string-set semiring over 𝑆, where

{𝜖} ∈ 𝑆, {} ∈ 𝑆, has

∙ 0 ≜ {} ∈ 𝑆,

∙ 1 ≜ {𝜖} ∈ 𝑆,
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∙ ⊕ ∶ 𝑆 × 𝑆 → 𝑆, 𝐚 ⊕ 𝐛 ≜ 𝐚 ∪ 𝐛,

∙ ⊗ ∶ 𝑆 × 𝑆 → 𝑆, 𝐚 ⊗ 𝐛 ≜ {𝑎.𝑏 ∣ 𝑎 ∈ 𝐚, 𝑏 ∈ 𝐛}.

Equivalence between MFSTs and string-set-weighted FSTs. The string-set semiring

is defined over sets of strings. In other words, the machine weight of a string-set-weighted

finite-state machine 𝑇 : [𝑇 ]set is an unweighted language. Specifically, [𝑇 ]set is the regular

language recognized by the finite-state machine formed by regular operations on the arc

weights (which are themselves regular languages), following the topology of 𝑇 . Therefore,

one can transform between MFSTs and equivalent string-set-weighted FSTs. Given string-

set-weighted FST 𝑇 where each arc 𝑎 has a regular language (whose alphabet is Ω) weight

[𝑎] ∈ 𝑆, we can build an MFST 𝜏 where there is an accepting path 𝜋1 in 𝑇 with weight

𝐿 (a language) if and only if there exists an accepting path 𝜋2 in 𝜏 , where the input and

output projections of 𝜋1 and 𝜋2 coincide, and that the mark projection of 𝜋2 ∈ 𝐿. On the

other hand, given MFST 𝜏 , it is also straightforward to build a string-set weighted FST

𝑇 which has input projection 𝜏Σ, output projection 𝜏Δ, and a weight equal to the regular

language 𝜏Ω, as follows: we build 𝑇 as a WFST (§2.1.2) that has states identical to that of 𝜏 .

And for every transition of 𝜏 : (𝑞, 𝑥, 𝑦, 𝜔, 𝑞′) ∈ 𝐸𝜏 , we add a transition (𝑞, 𝑥, 𝑦, {𝜔}, 𝑞′) ∈ 𝐸𝑇

in the weighted machine, where 𝐸𝜏 and 𝐸𝑇 are sets of transitions of 𝜏 and 𝑇 , respectively.

In short, we can easily convert between 𝜏Ω and [𝑇 ]set easily. And with a slight abuse

of notation, we write [𝜏 ]set to denote the coercion of MFST 𝜏 into a string-set-weighted

FST, followed by the evaluation of its machine weight. Such conversion is useful in that it
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allows us to reuse finite-state operations (e.g., Allauzen et al. (2007)) designed for weighted

finite-state machines on MFSTs under the string-set semiring, which can be composed with

other machines subsequently (§7.2.2.1). The string-set semiring view also offers a way to

mechanically derive the set of mark strings on paths in 𝜏 that recognize an input string 𝐱,

since the weight sum of paths in a finite-state machine 𝜏 that recognize string 𝐱 is the

pathsum of 𝐱◦𝜏 ; and likewise the weight sum of paths that recognize (𝐱, 𝐲) transduction is

the pathsum of 𝐱◦𝜏 ◦𝐲.

MFST 7.2.2: An MFST with 𝜖-cycle.

𝑞1

𝜖:𝜖/1

𝜖:𝜖/𝜖

7.2.3.2 String-bag semiring

A notable feature of the string-set semiring is that if two different paths in a machine have

the same mark string 𝝎, then they will both be represented by 𝝎. As we noted in §7.2.3.1,

different paths in a machine can always be disambiguated by having a unique identifier

for each arc. Nonetheless, in this section we introduce an alternative — the string-bag

semiring — which accounts for every path, regardless of whether they have unique mark
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strings, by adopting a bag semantics.

Definition 7.2.4. Let 𝜖 denote the empty string. A string-bag semiring over 𝑆 has

∙ 0 ≜ 𝑓0 ∈ 𝑆 where ∀𝝎 ∈ (Ω∗), 𝑓0(𝝎) = 0,

∙ 1 ≜ 𝑓1 ∈ 𝑆 where 𝑓1(𝜖) = 1, ∀𝝎 ≠ 𝜖 ∈ (Ω∗), 𝑓1(𝝎) = 0,

∙ ⊕ ∶ 𝑆 × 𝑆 → 𝑆, 𝑓𝑎 ⊕ 𝑓𝑏 ≜ 𝑓 where ∀𝝎 ∈ (Ω∗), 𝑓 (𝝎) = 𝑓𝑎(𝝎) + 𝑓𝑏(𝝎),

∙ ⊗ ∶ 𝑆 × 𝑆 → 𝑆, 𝑓𝑎 ⊗ 𝑓𝑏 ≜ 𝑓 where ∀𝝎𝑎 ∈ (Ω∗),𝝎𝑏 ∈ (Ω∗), 𝑓 (𝝎𝑎.𝝎𝑏) = 𝑓𝑎(𝝎𝑎) ⋅ 𝑓𝑏(𝝎𝑏).

String-bag-weighted FSTs can capture paths of some MFSTs. While the machine

weights of string-set-weighted FSTs are unweighted languages, the machine weights of

string-bag-weighted FSTs are generally weighted languages. Intuitively, the weight of

string 𝝎: 𝑓 (𝝎) under the weighted language [𝑇 ]bag — which is the machine weight of the

string-bag-weighted FST 𝑇 — captures the number of accepting paths in 𝑇 that have a

single string 𝝎 in their (singleton) supports.

However, string-bag-weighted FSTs that have 𝜖-cycles (e.g., MFST 7.2.2) can have

infinitely many accepting paths. And as a result, they do not have well-defined weighted

languages as their machine weights (i.e., some of the string weights would diverge).

Consequently, they do not have equivalent string-bag-weighted FSTs that have well-defined

machine weights.

Nonetheless, for MFSTs that do not have 𝜖-cycles, we can still convert between 𝜏Ω and

[𝑇 ]bag. As in the case of string-set semirings, with a slight abuse of notation, we write
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[𝜏 ]bag to denote the coercion of MFST 𝜏 into a string-bag-weighted FST, followed by the

evaluation of its machine weight.

7.2.4 NFSTs as real-weighted relations

In §7.2.3 we described how MFSTs can be regarded as weighted relations between string

pairs. However, the weights themselves are (both weighted and unweighted) languages

under our characterization. In many machine learning applications, though, real-weighted

relations are needed.

In this section we describe neuralization operators, which, with the help of a mark

string scoring function 𝐺, neuralizes an MFST 𝜏 . We call the pair (𝜏 , 𝐺) a neural finite-

state transducer (or NFST for short). And finally, the aggregation of all strings’ weights

under 𝐺 is defined as the NFST’s machine weight.

So, specifically, how does neuralization work? Below we will introduce two types of

neuralization operators —𝑁feature[] and 𝑁literal[] respectively — that correspond to string-set

and string-bag semirings.

7.2.4.1 Feature and literal neuralization

A mark string scoring function 𝐺 ∶ Ω∗ → ℝ≥0 is a weighted language that maps mark

strings to non-negative scalars. We define neuralization operators 𝑁literal[] and 𝑁feature[]

to be real functions that take two inputs: a marked finite-state machine 𝜏 , and a mark

string scoring function 𝐺:
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Definition 7.2.5. Let 𝜏 be a marked finite-state machine. And let𝐺 be a mark string scoring

function. The feature pathsum of 𝜏 under 𝐺 is

𝑁feature[𝜏 , 𝐺] ≜ ∑
𝝎∈[𝜏 ]set

𝐺(𝝎) ∈ ℝ. (7.1)

And

Definition 7.2.6. Let 𝜏 be an acyclic marked finite-state machine. And let 𝐺 be a mark

string scoring function. The literal pathsum of 𝜏 under 𝐺 is

𝑁literal[𝜏 , 𝐺] ≜ ∑
𝝎∈[𝜏 ]bag

𝐺(𝝎)𝑓 (𝝎) ∈ ℝ, (7.2)

where 𝑓 ∶ Ω∗ → ℝ≥0 is the weight of 𝝎 in the weighted language [𝜏 ]bag.

𝑁feature[𝜏 , 𝐺] is a real-valued function of both 𝜏 and 𝐺. Recall that 𝜏 is a weighted

relation over Σ∗ × Δ∗
(§7.2.3). Here we extend the feature neuralization operator to build a

real-weighted relation from a language-weighted relation [𝜏 ]bag, by mapping the weight

associated with each string pair recognized by [𝜏 ]bag to a real scalar. We denote the real-

weighted relation over Σ∗ × Δ∗
under 𝐺 as follows:

12

𝑁feature[𝜏 , 𝐺](𝐱, 𝐲) ≜ 𝑁feature[𝐱◦𝜏 ◦𝐲, 𝐺]. (7.3)

12
This is a notation abuse since 𝑁feature[𝜏 , 𝐺] is by definition a scalar (Definition 7.2.5).
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𝑁literal[𝜏 , 𝐺](𝐱, 𝐲) is also defined in a similar fashion.

7.2.4.2 Which neuralization operator should I use?

MFST 7.2.3: Two MFSTs that have the same mark projection.

𝑞1

𝜖:𝜖/1

𝜖:𝜖/11
𝑞2

𝜖:𝜖/1

Should one define an NFST using 𝑁literal[] or 𝑁feature[]? One may wonder if the 𝑁feature[]

is capable of modeling so-called ‘globally normalized’ WFSTs, whose arc weights 𝑤[𝑎] =

∏𝑓 ∈𝐟𝑎 exp 𝜆𝑓 are parametrized as products of exponentiated feature weights 𝜆𝑓 (Dreyer and

Eisner, 2009). These parametric families of WFSTs define two paths 𝐚1 and 𝐚2 that have the

same bag of features to have the same path weight, both of which contribute towards the

machine weight [𝑇 ]. At a first glance, 𝑁feature[] may seem unable to capture such WFSTs,

since they use the string-set semiring, which consider only mark string sets: two paths that

have the same mark string only contribute once towards [𝑇 ]. It might even appear that

the double-counting of paths grants the aforementioned WFSTs an expressiveness edge

over models that only consider the string set 𝜏Ω. We emphasize that every WFST 𝑇 with a

finite machine weight [𝑇 ] can be expressed as 𝑁feature[𝜏 , 𝐺], where 𝜏 is an MFST and 𝐺 is a
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unigram model.

In this thesis, we make use of MFSTs that have a unique mark string per each path

in all our experiments: for those MFSTs 𝜏 , 𝑁literal[𝜏 , 𝐺] = 𝑁feature[𝜏 , 𝐺]. The uniqueness of

each path’s mark string can be guaranteed if each arc in the MFST contains a unique arc

identifier.
13

. And to reduce clutter, we will denote 𝑁feature[𝜏 , 𝐺] as 𝑁 [𝜏 , 𝐺] in future sections.

But in the case where they can differ, one needs to consider the following trade-off between

their different properties:

Finite machine weights. In §7.2.3.2 we said some MFSTs’ paths cannot be captured

under the string-bag semiring. Consequently, for those MFSTs 𝜏 , 𝑁literal[𝜏 , 𝐺]— which

makes use of the string-bag semiring — cannot be (finite) real numbers, regardless

of the choice of 𝐺. This can pose as a problem in cases where they are regarded as

‘goodness’ quantities. On the other hand, 𝑁feature[] does not have this problem.

Path weights. As we previously said, a big difference between 𝑁feature[] and 𝑁literal[] is that

𝑁feature[] lacks the notion of path weights. Specifically, 𝑁literal[] uses the string-bag

semiring, which keeps track of distinct paths that have the same mark string. But

𝑁feature[], which uses the string-set semiring, conflate them into one mark string. For

example, consider the two illustrated MFSTs (𝜏1, 𝜏2) in MFST 7.2.3. 𝜏1 and 𝜏2 have

the same mark projection. Therefore, 𝑁feature[𝜏1, 𝐺] = 𝑁feature[𝜏2, 𝐺] for any 𝐺, even

13
Indeed, any MFST can be ‘uniquified’ into one such MFST, by appending a unique mark symbol to

every arc. However doing so changes the mark projection of the MFST. Moreover, when coupled with

autoregressive mark string scoring functions, the lack of flexibility of these arc identifiers’ positions (they

can only appear in the arcs where they belong) may cause expressiveness problems, per our discussion in

§ 3
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though they differ in topology. On the other hand, under 𝑁literal[], each path in 𝜏 that

shares the same mark string 𝝎 will share an equal weight𝐺(𝝎) to the machine weight

𝑁literal[𝜏 , 𝐺] following equation (7.2). Also, in general, 𝑁feature[ℎ(𝜏 ), 𝐺] ≠ 𝑁 [𝜏 , 𝐺◦ℎ]

where ℎ is a homomorphism of marks. In the notation here, ℎ is extended over MFSTs

(on the left-hand side it coarsens the marks of 𝜏 ) and over mark strings (on the

right-hand side it coarsens the marks in a particular mark string). Because of the lack

of linearity, in general ∑𝐲∈Δ∗ 𝑁𝑓 𝑒𝑎𝑡𝑢𝑟𝑒[𝜏 , 𝐺](𝐱, 𝐲) ≠ 𝑁𝑓 𝑒𝑎𝑡𝑢𝑟𝑒[𝜏 , 𝐱◦𝐺], which may

present as a surprise to WFST practitioners. On the other hand, this WFST property

is preserved in 𝑁literal: ∑𝐲∈Δ∗ 𝑁literal[𝜏 , 𝐺](𝐱, 𝐲)𝑁literal[𝜏 , 𝐱◦𝐺].

Speaking very crudely, the behavior of 𝑁feature[] is somewhat similar to the Boolean

semiring because of its use of the string-set semiring:
14 𝑁feature[𝜏1, 𝐺]+𝑁feature[𝜏2, 𝐺] ≠

𝑁feature[𝜏1 ∣ 𝜏2, 𝐺]; and 𝑁feature[𝜏 ∣ 𝜏 , 𝐺] = 𝑁feature[𝜏 , 𝐺].

𝑁literal[] on the other hand is more similar to the conventional real semiring, in that

𝑁feature[𝜏1, 𝐺] + 𝑁feature[𝜏2, 𝐺] = 𝑁feature[𝜏1 ∣ 𝜏2, 𝐺].15
Therefore, 𝑁literal[] may be a good

choices when linearity is expected.
16

14
To be more precise, it is possible to simulate Boolean WFSTs using feature neuralized NFSTs where

𝐺(𝝎) ∈ {0, 1}.

15
Assuming 𝑁feature[𝜏1, 𝐺] and 𝑁feature[𝜏2, 𝐺] are both real numbers.

16
On the other hand, MFSTs can always be engineered to ensure that each path has its own unique mark

string (e.g., by encoding arc indices as a part of every arc’s marks). We will make use of such techniques to

recover familiar regular expression operations for feature neuralized NFSTs in § 8.
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7.2.4.3 Interpretation as probabilities

In §7.2.4.1 we introduced neuralization operators, which allow us to map sets of mark

strings (represented by MFSTs) to non-negative scalars (i.e., NFST machine weights). Here

we further discuss how we can interpret the NFST machine weights as probabilities, which

are crucial in many machine learning applications.

In this thesis, we work with the following probability space (Ω∗, , 𝑃 ):

Sample space. We let the sample space be the set of all mark strings Ω∗
.

Event space. We let the event space  be the set of all subsets of Ω∗
as the event space.

Probability function. We require the probability measure 𝑃 ∶  → [0, 1] satisfy that

𝑃 (𝐬) = ∑
𝝎∈𝐬

𝑝(𝝎), (7.4)

where 𝐬 ∈  , and 𝑝 ∶ Ω∗ → [0, 1] is a probability distribution over Ω∗
.

NFST machine weights as event probabilities. With the probability space (Ω∗, , 𝑃 )

introduced above, feature-neuralized NFSTs of the form𝑁feature[𝜏 , 𝑝] can be regarded as event

probabilities — specifically, 𝑁feature[𝜏 , 𝑝] is the probability that a mark string (distributed

according to 𝑝) is recognized by 𝜏Ω. This suggests that if we parametrize the mark string

scoring function (denoted as 𝐺 in §7.2.4) as a normalized distribution over mark strings,

a reasonable optimization objective will be to increase the probability that a randomly

sampled mark string is recognized by ‘good’ MFSTs (i.e., MFSTs whose mark projections
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contain reasonable good string transduction annotations), and to decrease the probability

that a randomly sampled mark string is recognized by ‘bad’ MFSTs (i.e., MFSTs whose mark

projections do not contain many useful string transduction annotations). Moreover, since

the mark string scoring function 𝑝 is now a normalized distribution over mark strings,
17

the promotion of good mark strings will simultaneously mean the demotion of bad mark

strings: so one does not need to explicitly decrease the probability of bad MFSTs during

training.

There may not be a distribution over input-output string pairs. The way we inter-

pret NFST machine weights above implies that an NFST (𝜏 , 𝐺) may not define a distribution

over input-output pairs (𝐱, 𝐲) ∈ Σ∗ × Δ∗
: for example, if 𝜏 accepts every (𝐱, 𝐲) ∈ Σ∗ × Δ∗

,

then the partition function ∑(𝐱,𝐲)∈Σ∗×Δ∗ 𝑁 [𝜏 , 𝐺](𝐱, 𝐲) may diverge. (𝜏 , 𝐺) in this case defines

a uniformly weighted relation between Σ∗
and Δ∗

. However, even when there is not an

injective mapping from mark strings to input-ouput string pairs,𝐺 still defines a distribution

over mark strings, where each observed (𝐱, 𝐲) can be seen as a partial observation of a

mark string. That is, while the the mark string is not fully observed, it is observed to be in

the set (𝐱◦𝜏 ◦𝐲)Ω. This partial observation contributes a summand of log𝑁 [𝜏 , 𝐺](𝐱, 𝐲) to

the log-likelihood. But since in this scenario the mark strings ∈ (𝐱◦𝜏 ◦𝐲)Ω do not encode

information about (𝐱, 𝐲), we cannot decode the input-output pair using these mark strings

alone. Therefore, MFSTs where that such mapping exists (i.e., an injective mapping from

17
Note that languages of strings that are not recognized by any MFSTs are also contained in the sample

space, and may have positive probabilities under 𝑝.
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mark strings to the input-ouput string pairs they encode) will be useful in such use cases.

We have discussed how machine weights of feature neuralized NFSTs can be seen as

event probabilities, if their mark string scoring function is a normalized distribution over

Ω∗
. But how about feature neuralized NFSTs whose mark string scoring functions are not

normalized distributions over Ω∗
?

NFST machine weights can be seen as unnormalized probabilities, when the mark

string scoring function is not a distribution over Ω∗
. For example, suppose mark string

scoring function 𝐺 does not define a normalized distribution over Ω∗
, we can simply

define 𝑝(𝝎) = 𝐺(𝝎)/𝑍 , where 𝑍 = ∑𝝎′∈Ω∗ 𝐺(𝝎). And since 𝑝 is a normalized distribution

over Ω∗
, and that for any 𝜏 , 𝑁feature[𝜏 , 𝐺] = 𝑁feature[𝜏 , 𝑝] ⋅ 𝑍 , we can treat 𝑁feature[𝜏 , 𝐺] as an

unnormalized probability (that a mark string is recognized by 𝜏Ω). However, we will show

in §7.3 that certain computational challenges arise during parameter estimation, if we do

not parametrize 𝐺 as a normalized distribution.

7.3 Expressiveness of NFSTs

NFSTs is a powerful model family. In this section, we argue that due to the formalism’s

power, we must limit ourselves to less expressive parametric families of mark string

scoring functions, if we would like to train and evaluate them as machine learning models.

Specifically, we will show that if we choose to parametrize the mark string scoring function

𝐺 as an unnormalized probability distribution over strings (e.g., the EC-complete parametric
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families introduced in §2.3.2), then the machine weights of feature neuralized NFSTs are

generally uncomputable.

We will further demonstrate that it is possible restrict ourselves to parametric families

where we can train NFSTs as machine learning models relatively fast (e.g., with the

limitations mentioned in §7.2.4.3), while still ensuring the induced model family is still

much more powerful than common neural sequence models.

EC weighted languages are too powerful as mark string scoring functions. EC

weighted languages (§2.2.3) can represent unnormalized distributions over strings. In the

following, we show that assuming the mark string scoring function 𝐺 ∈ EC, the feature

neuralized NFST weight 𝑁feature[𝜏 , 𝐺] is generally uncomputable:

Proposition 7.3.1. There exists an MFST 𝜏 , and 𝐺 ∈ EC, such that assuming ZFC is consis-

tent, there is no algorithm that provably computes 𝑁feature[𝜏 , 𝐺].

MFST 7.3.4: MFST used in proof of Proposition 7.3.1

𝑞1

𝜖:𝜖/0

𝜖:𝜖/1

Proof. Let 𝜏 be an MFST that transduces 𝜖 into 𝜖, with the mark strings ∈ (0|1)∗ (MFST 7.3.4).
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And let 𝐺 be a function of strings 𝝎 ∈ Ω∗ = 𝔹∗
, where 𝐺(𝝎) = 1 if �̃�(𝝎) = 2, where �̃� is the

weighted language introduced in Theorem 5.2.2, and 𝐺(𝝎) = 0 otherwise. Since �̃� ∈ EC, we

can construct 𝐺 ∈ EC. By the same argument presented in our proof of Theorem 5.2.2, we

know that we could have proven, or disproven ZFC, if there were any provably correct

algorithm that could compute 𝑁feature[𝜏 , 𝐺] = ∑𝝎∈𝔹∗ 𝐺(𝝎).

ELNCP mark string scoring functions make expressive NFSTs. We have shown that

EC weighted languages are too expressive as mark string scoring functions. However, we

identify ELNCP as a good balance between tractability and expressiveness. With ELNCP

mark string scoring functions, NFSTs can be used to model any decision problem ∈ NP:
18

Proposition 7.3.2. Given any language 𝐿 ∈ NP, there exists an MFST 𝜏 , and 𝐺 ∈ ELNCP,

such that 𝑁feature[𝜏 , 𝐺](𝐱, 𝜖) > 0 ⟺ 𝐱 ∈ 𝐿.

MFST 7.3.5: 𝜏 in proof of Proposition 7.3.2

𝑞1 𝑞2 𝑞3 𝑞4
𝜖:𝜖/#

𝜖:𝜖/0

𝜖:𝜖/1

𝜖:𝜖/#

𝜖:𝜖/0

𝜖:𝜖/1

𝜖:𝜖/0

𝜖:𝜖/1

0:𝜖/0

1:𝜖/1

18
Proposition 7.3.2 can be trivially strengthened to show that NFSTs with ELNCP mark scoring functions

can be used to model any decision problem ∈ NP/poly. We choose to present results for the more familiar

NP case.
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MFST 7.3.6: 𝐱◦𝜏 ◦𝜖 in proof of Proposition 7.3.2

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5
𝜖:𝜖/#

𝜖:𝜖/0

𝜖:𝜖/1

𝜖:𝜖/#

𝜖:𝜖/0

𝜖:𝜖/1

𝜖:𝜖/0

𝜖:𝜖/1

𝐱:𝜖/𝐱

Proof. Let 𝐿 ∈ NP be an unweighted language. By Lemma 3.3.4 we know that there exists

an ELNCP weighted language 𝑝, which has a support 𝐿 over all strings of the form 𝐚#𝐛#𝑐𝐝,

where 𝐚 ∈ 𝔹∗, 𝐛 ∈ 𝔹∗, 𝑐 ∈ 𝔹, 𝐝 ∈ 𝔹∗
. 𝐿 is the mark projection of 𝜏 (shown as MFST 7.3.5).

Let 𝐿𝐱 ⊆ 𝐿 be an unweighted language over strings of the form 𝐚#𝐛#𝑐𝐱. 𝐿𝐱 is captured

by the regular language (0 ∣ 1)∗#(0 ∣ 1)∗#(0 ∣ 1)𝐱, which is the mark projection of (𝐱◦𝜏 ◦𝜖)

(MFST 7.3.6). It follows that 𝑁feature[𝜏 , 𝑝](𝐱, 𝜖) = 𝑁feature[𝐱◦𝜏 ◦𝜖, 𝑝] = ∑𝝎∈(𝐱◦𝜏 ◦𝜖)Ω 𝑝(𝝎) =

∑𝝎∈𝐿𝐱 𝑝(𝝎) > 0 iff 𝐱 ∈ 𝐿.

Proposition 7.3.2 implies that even when we restrict ourselves to ELNCP mark scoring

functions, NFSTs are still powerful enough to escape the limitations of neural autoregressive

sequence models (which cannot even model all languages ∈ P as their supports). They also

surpass the expressiveness of energy-based sequence models (which cannot model any

language ∈ NP as their supports, if NP ⊈ P/poly).

222



CHAPTER 7. NEURALIZATION OF FINITE-STATE TRANSDUCERS

7.4 Inference and parameter estimation

The log NFST machine weight log𝑁 [𝜏 , 𝐺], and its gradients with regard to a parametric 𝐺𝜽 :

∇𝜽 log𝑁 [𝜏 , 𝐺𝜽], are key quantities that we need to estimate during inference and parameter

estimation.

7.4.1 Inference

We have an estimator of log𝑁 [𝜏 , 𝐺] based on importance sampling:

log𝑁 [𝜏 , 𝐺] ≜ log ∑
𝝎∈Ω∗

𝐺(𝝎)

= log ∑
𝝎∈Ω∗

𝐺(𝝎)/𝑞(𝝎)𝑞(𝝎)

= log 𝔼
𝝎∼𝑞

[
𝐺(𝝎)
𝑞(𝝎)

]

≈ log
𝑀

∑
𝑚=1

𝐺(𝝎(𝑚))
𝑞(𝝎(𝑚))

− log𝑀, (7.5)

where 𝑀 ≥ 1, 𝑀 ∈ ℕ, and 𝝎(1) …𝝎(𝑀)
are samples drawn from 𝑞. Equation (7.5) is a con-

sistent, but biased estimator of log𝑁 [𝜏 , 𝐺]: that is, lim𝑀→∞ log∑𝑀
𝑚=1

𝐺(𝝎(𝑚))/𝑞(𝝎(𝑚)) − log𝑀 =

log𝑁 [𝜏 , 𝐺], but in general𝔼[log∑𝑀
𝑚=1

𝐺(𝝎(𝑚))/𝑞(𝝎(𝑚))−log𝑀] ≠ log𝑁 [𝜏 , 𝐺]. In fact, by Jensen’s

inequality we know 𝔼[log∑𝑀
𝑚=1

𝐺(𝝎(𝑚))/𝑞(𝝎(𝑚)) − log𝑀] ≤ log𝑁 [𝜏 , 𝐺].

So, how good is the estimate of equation (7.5)? In general, by Proposition 7.3.1 we will
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not have any guarantee on the quality of this estimator — or any other estimators that can be

computed in finite time, when 𝐺𝜽 ∈ EC (i.e., when 𝐺𝜽 comes from an EC-complete family).

However, when 𝐺𝜽 ∈ ELN, the quantity log𝑁 [𝜏 , 𝐺] is still computable by Theorem 5.6.1,

and we may still approximate it effectively using equation (7.5), as long as we have a ‘good’

proposal distribution over (𝐱◦𝜏 ◦𝐲)Ω. While it is generally difficult to ensure the goodness of

our proposal distribution, empirically we find that particle smoothing — the amortized

inference scheme we introduced in § 6 — results in good performance in downstream tasks.

7.4.1.1 Conditional distribution over output strings

𝑁 [𝜏 , 𝐺](𝐱, 𝐲) can generally be regarded as an unnormalized joint probability of input-output

pair (𝐱, 𝐲) (§7.2.4.3). However, we are usually more interested in evaluating conditional

probabilities 𝑝(𝐲 ∣ 𝐱), namely the probability of an output string 𝐲 given an input string 𝐱.

We may also hope to sample from such distributions.

Unfortunately, such conditional probabilities derived from unnormalized joint proba-

bilities are generally difficult: evaluating log 𝑝(𝐲 ∣ 𝐱) = log 𝑁 [𝜏 ,𝐺](𝐱,𝐲)/∑𝐲′∈Δ∗ 𝑁 [𝜏 ,𝐺](𝐱,𝐲′) requires

evaluating the intractable log partition function log𝑍𝐱 ≜ log∑𝐲′∈Δ∗ 𝑁 [𝜏 , 𝐺](𝐱, 𝐲′). While

we can approximate this quantity using importance sampling, we would need a pro-

posal distribution 𝑞𝐘 over Δ∗
; and each drawn sample 𝐲′ ∼ 𝑞𝐘 results in a different NFST

𝑁 [𝜏 , 𝐺](𝐱, 𝐲′) = 𝑁 [𝐱◦𝜏 ◦𝐲′], which further needs to be approximated using another impor-

tance sampling scheme.

On the other hand, for MFST’s 𝜏 where there is a surjective function from 𝜏Ω to 𝜏Δ
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(defined in §7.2.1), it is possible to estimate log𝑍𝐱 = log𝑁 [𝜏𝐱◦𝜏 , 𝐺], since every mark string

in (𝜏𝐱◦𝜏 )Ω uniquely identifies with an output string.
19

This way, we would not need a

two-level importance sampling scheme.

7.4.2 Parameter estimation

Given an MFST 𝜏 and parametric mark string scoring function 𝐺𝜽 , we generally would

like to find good parameters �̂� ∈ 𝚯 such that the NFST (𝜏 , 𝐺�̂� ) well explains the string

transductions of some training dataset of size 𝑁 : (𝐱1, 𝐲1) … (𝐱𝑁 , 𝐲𝑁 ).

A natural estimator choice is the maximum likelihood estimator:
20

�̂� = argmax
𝜽

{
∑

(𝐱,𝐲)∈
[log𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝐲) − log ∑

(𝐱′,𝐲′)∈Σ∗×Δ∗

𝑁 [𝜏 , 𝐺𝜽](𝐱′, 𝐲′)]
}
, (7.6)

where  = {(𝐱𝑛, 𝐲𝑛) ∶ 1 ≤ 𝑛 ≤ 𝑁} are𝑁 samples (typically drawn from the true distribution

𝑝∗).

However gradient-based optimization of equation (7.6) requires computing gradients of

the log partition function ∇𝜽[log∑(𝐱′,𝐲′)∈Σ∗×Δ∗ 𝑁 [𝜏 , 𝐺𝜽](𝐱′, 𝐲′)], which can be very costly.

19
Note that this condition is not necessary when 𝑁 = 𝑁literal.

20
We implicitly assume that such an estimator is applicable, i.e., the likelihood function does not diverge,

throughout the discussion in this section. Such property can be guaranteed under certain sequence model

parametrizations (e.g.. when confined to LN or ELN, which were first introduced in §2.2.4).
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Alternatively, we may wish to ignore the partition function,
21

and try to find

�̂�
′
 = argmax

𝜽
∑

(𝐱,𝐲)∈
log𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝐲). (7.7)

We can show that �̂� = �̂�
′
 as long as the parametric sequence model family 𝚯 defines

properly normalized probabilities, and that each mark string of 𝜏 identifies with at most

one (𝐱, 𝐲) pair:

Lemma 7.4.1. Let 𝜏 be an MFST,  = {(𝐱𝑛, 𝐲𝑛) ∶ (𝐱𝑛◦𝜏 ◦𝐲𝑛)Ω ≠ {}, 1 ≤ 𝑛 ≤ 𝑁} be 𝑁 string

pairs, and 𝚯 = {𝜽 ∶ ∑𝝎∈Ω∗ 𝐺𝜽 (𝝎) = 1} be the set of mark string scoring functions. Suppose

that there exists a function 𝑓 ∶ 𝜏Ω → Σ∗ × Δ∗
such that 𝑓 (𝝎) = (𝐱, 𝐲) ⟸ 𝝎 ∈ (𝐱◦𝜏 ◦𝐲)Ω,

then �̂� = �̂�
′
.

Proof. If ∑(𝐱′,𝐲′)∈Σ∗×Δ∗ 𝑁 [𝜏 , 𝐺�̂�
′

](𝐱′, 𝐲′) = 1,

22
then

�̂� = argmax
𝜽

{

∑
(𝐱,𝐲)∈

[log𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝐲) − log ∑
(𝐱′,𝐲′)∈Σ∗×Δ∗

𝑁 [𝜏 , 𝐺𝜽](𝐱′, 𝐲′)]

}

= argmax
𝜽

{

∑
(𝐱,𝐲)∈

[log𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝐲) − 0]

}

= argmax
𝜽

∑
(𝐱,𝐲)∈

[log𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝐲)

= �̂�
′
.

21
Note that the partition function may not be 1 since𝐺𝜽 may assign non-zero probabilities to mark strings

that are not accepted by any finite-state machine derived from 𝜏 . Moreover, the partition function may not

exist (e.g., diverge), when multiple (𝐱, 𝐲) pairs use the same mark string. We will discuss how to deal with

the divergence problem in the next paragraph.

22
We repeat that given our assumptions,∑(𝐱′,𝐲′)∈Σ∗×Δ∗ 𝑁 [𝜏 , 𝐺

�̂�
′

](𝐱′, 𝐲′)may not be equal to∑𝝎∈Ω∗ 𝐺𝜽 (𝝎).

See footnote 21.
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Note that ∀,∑(𝐱′,𝐲′)∈Σ∗×Δ∗ 𝑁 [𝜏 , 𝐺�̂�
′

](𝐱′, 𝐲′) = 1. We prove this by contradiction: Begin

by assuming to the contrary that there exists ′
such that ∑(𝐱′,𝐲′)∈Σ∗×Δ∗ 𝑁 [𝜏 , 𝐺�̂�

′
′
](𝐱′, 𝐲′) ≠ 1.

By our assumption that each mark string ∈ 𝜏Ω identifies with at most one (𝐱, 𝐲) pair, we

know ∑(𝐱′,𝐲′)∈Σ∗×Δ∗ 𝑁 [𝜏 , 𝐺�̂�
′
′
](𝐱′, 𝐲′) < 1. Therefore, ∃𝝎′ ∈ Ω∗

, such that 𝐺�̂�
′(𝝎′) > 0, and

∀(𝐱, 𝐲) ∈ Σ∗ × Δ∗,𝝎′ ∉ (𝐱◦𝜏 ◦𝐲)Ω.

Let (𝐱′, 𝐲′) ∈  be a string pair. There exists 𝝎′′ ∈ (𝐱1◦𝜏 ◦𝐲′)Ω by our assumption. We

will construct a new mark string scoring function that allocates the probability mass that

𝐺�̂�
′
′

assigned to 𝝎′
onto the probability mass assigned to 𝝎′′

. Specifically, let 𝐺�̂�
′′
′

be a

mark string scoring function where

𝐺�̂�
′′
′
(𝝎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐺�̂�
′
′
(𝝎) + 𝐺�̂�

′
′
(𝝎′) if 𝝎 = 𝝎′′

0 if 𝝎 = 𝝎′

𝐺�̂�
′
′
(𝝎) otherwise.

Since ∑𝝎∈Ω∗ 𝐺�̂�
′′
′
(𝝎) = ∑𝝎∈Ω∗ 𝐺�̂�

′
′
(𝝎) = 1, �̂�

′′
′ ∈ 𝚯.

Finally, we have

∑
(𝐱,𝐲)∈′

log𝑁 [𝜏 , 𝐺�̂�
′′
′
](𝐱, 𝐲) = ∑

(𝐱,𝐲)∈′

log𝑁 [𝜏 , 𝐺�̂�
′
′
](𝐱, 𝐲) + 𝐺�̂�

′
′
(𝝎′)

> ∑
(𝐱,𝐲)∈′

log𝑁 [𝜏 , 𝐺�̂�
′
′
](𝐱, 𝐲),

which contradicts our definition of �̂�
′
′ (equation (7.7)).
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When does Lemma 7.4.1 hold? Lemma 7.4.1 implies that we can opt for the cheaper

estimator in equation (7.7), as long as:

∙ it is possible to extract from mark strings ∈ 𝜏Ω the input/output strings they transduce;

and that

∙ we work with a scoring function family that yields normalized string probabilities.

The first condition holds when we adopt a topology like that of MFST 7.2.1, where each

input and output symbol is kept in the mark string. The second condition holds when

𝚯 ⊆ ELNCP.

7.4.2.1 Gradient-based learning

Lemma 7.4.1 suggests that a good training objective would be to minimize the log marginal

likelihood. Namely, we seek to minimize

(𝜽) = − 𝔼
(𝐱,𝐲)∼𝑝∗

[log𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝐲)]. (7.8)

However, the gradients of equation (7.8)

∇𝜽(𝜽) = − 𝔼
(𝐱,𝐲)∼𝑝∗

[∇𝜽 [log𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝐲)]]

= 𝔼
(𝐱,𝐲)∼𝑝∗

[∇𝜽 [log𝑁 [𝐱◦𝜏 ◦𝐲, 𝐺𝜽]]]

= 𝔼
(𝐱,𝐲)∼𝑝∗

[∇𝜽 [
log ∑

𝝎∈(𝐱◦𝜏 ◦𝐲)Ω

𝐺𝜽 (𝝎)
]
] (7.9)
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requires a sum over generally infinitely many mark strings ∈ (𝐱◦𝜏 ◦𝐲)Ω, which poses a prob-

lem for automatic differentiation procedures, which generally assume finite computation

graphs.

First attempt: biased gradients of the true loss. It is possible to rewrite the term

∇𝜽 [log∑𝝎∈(𝐱◦𝜏 ◦𝐲)Ω 𝐺𝜽 (𝝎)] in equation (7.9) as

∇𝜽 [
log ∑

𝝎∈(𝐱◦𝜏 ◦𝐲)Ω

𝐺𝜽 (𝝎)
]
= 𝔼

𝝎∼𝑝𝜽 ,∣𝐱◦𝜏 ◦𝐲Ω
[∇𝜽 [log𝐺𝜽 (𝝎)]]

= 𝔼
𝝎∼𝑞𝐱,𝐲

[
𝑝𝜽 ,∣𝐱◦𝜏 ◦𝐲Ω(𝝎)
𝑞𝐱,𝐲(𝝎)

∇𝜽 [log𝐺𝜽 (𝝎)]], (7.10)

where

𝑝𝜽 ,∣𝐱◦𝜏 ◦𝐲Ω(𝝎) =
𝐺𝜽 (𝝎)

∑𝝎′∈(𝐱◦𝜏 ◦𝐲)Ω 𝐺𝜽 (𝝎′)
, (7.11)

and 𝑞𝐱,𝐲 is any distribution that has a support that is no smaller than 𝑝𝜽 ,∣𝐱◦𝜏 ◦𝐲Ω .

The term ∇𝜽 [log𝐺𝜽 (𝝎)] in equation (7.10) can be derived mechanically assuming 𝐺𝜽 (𝝎)

is differentiable with regard to 𝜽 , and can be computed in finite time. However, since the

term ∑𝝎′∈(𝐱◦𝜏 ◦𝐲)Ω 𝐺𝜽 (𝝎′) is generally intractable, we still cannot compute equation (7.11)

exactly. Therefore, we would not be able to approximate equation (7.10) using unnormalized

importance sampling. We could resort to normalized importance sampling to approximate

equation (7.10):
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𝔼
𝝎∼𝑞𝐱,𝐲

[
𝑝𝜽 ,∣𝐱◦𝜏 ◦𝐲Ω(𝝎)
𝑞𝐱,𝐲(𝝎)

∇𝜽 [log𝐺𝜽 (𝝎)]] ≈
1
𝑍𝑀

𝑀

∑
𝑚=1

𝐺𝜽 (𝝎(𝑚))
𝑞𝐱,𝐲(𝝎)

∇𝜽 [log𝐺𝜽 (𝝎)] , (7.12)

where 𝝎(1)…𝝎(𝑀)
are drawn from 𝑞𝐱,𝐲. Equation (7.12) is a biased (albeit consistent) estimate.

Therefore, for any finite 𝑀 , the approximation in equation (7.12) yields a biased estimate of

equation (7.10). While the bias issue might somewhat be mitigated using a large value for

𝑀 , the danger that parameter updates under SGD optimization may be ruined with an 𝑀

that is too small strains compute budget.

Second attempt: unbiased gradients of an loss upper bound. Our second attempt

follows the familiar variational inference recipe (Mnih and Gregor, 2014; Kingma and

Welling, 2014). Instead of biased estimates of ∇𝜽(𝜽), in this work we consider an unbiased

estimate of ∇𝜽′(𝜽), where ∀𝜽 ∈ 𝚯,′(𝜽) ≥ (𝜽)— that is, ′
is an upper bound of . One

such upper bound can be derived using Jensen’s inequality:

230



CHAPTER 7. NEURALIZATION OF FINITE-STATE TRANSDUCERS

(𝜽) = − 𝔼
(𝐱,𝐲)∼𝑝∗

[log𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝐲)]

= − 𝔼
(𝐱,𝐲)∼𝑝∗

[log ∑
𝝎∈(𝐱◦𝜏 ◦𝐲)Ω

𝐺𝜽 (𝝎)]

= − 𝔼
(𝐱,𝐲)∼𝑝∗

[log 𝔼
𝝎∼𝑞𝐱,𝐲

[𝐺𝜽 (𝝎)/𝑞𝐱,𝐲(𝝎)]]

≤ − 𝔼
(𝐱,𝐲)∼𝑝∗

[ 𝔼
𝝎∼𝑞𝐱,𝐲

[log 𝐺𝜽 (𝝎)/𝑞𝐱,𝐲(𝝎)]] (7.13)

= ′(𝜽).

We can easily push the gradients of ′(𝜽) through:

∇𝜽′(𝜽) = ∇𝜽 [− 𝔼
(𝐱,𝐲)∼𝑝∗

[ 𝔼
𝝎∼𝑞𝐱,𝐲

[log 𝐺𝜽 (𝝎)/𝑞𝐱,𝐲(𝝎)]]]

= − 𝔼
(𝐱,𝐲)∼𝑝∗

[ 𝔼
𝝎∼𝑞𝐱,𝐲

[∇𝜽 [log 𝐺𝜽 (𝝎)/𝑞𝐱,𝐲(𝝎)]]], (7.14)

(7.15)

where the inner expectation 𝔼𝝎∼𝑞𝐱,𝐲[∇𝜽 [log 𝐺𝜽 (𝝎)/𝑞𝐱,𝐲(𝝎)]] can be approximated with:

𝔼
𝝎∼𝑞𝐱,𝐲

[∇𝜽 [log 𝐺𝜽 (𝝎)/𝑞𝐱,𝐲(𝝎)]] ≈
1
𝑀 ′

𝑀 ′

∑
𝑚=1

log 𝐺𝜽 (𝝎)/𝑞𝐱,𝐲(𝝎(𝑚)), (7.16)

where 𝝎(1)…𝝎(𝑀 ′)
are samples drawn from 𝑞𝐱,𝐲. Note that equation (7.16) is an unbiased
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estimate (unlike equation (7.12)). Due to the linearity of expectations, we can also derive an

unbiased estimate of ∇𝜽′(𝜽).

Tighter upper bounds with importance weighting. A possible concern of optimizing

for ′(𝜽) in equation (7.14) is that the upper bound might be loose. To address this problem,

we further tighten the upper bound ′
using importance weighting estimators (IWAE,

Burda, Grosse, and Salakhutdinov (2016)).

We define

′
𝐾 (𝜽) = − 𝔼

(𝐱,𝐲)∼𝑝∗
[ 𝔼
𝝎(1)…𝝎(𝐾 )∼𝑞𝐱,𝐲

[log
1
𝐾

𝐾

∑
𝑘=1

𝐺𝜽 (𝝎(𝑘))/𝑞𝐱,𝐲(𝝎(𝑘))]]. (7.17)

By Burda, Grosse, and Salakhutdinov (2016, Theorem 1), we have

Proposition 7.4.2.

∀𝐾1 ∈ ℕ, ∀𝐾2 ∈ ℕ,′
𝐾1
(𝜽) ≥ ′

𝐾2
(𝜽) ≥ (𝜽) ⟺ 𝐾1 ≤ 𝐾2.

Proposition 7.4.2 implies that we can tighten an upper bound of : ′
𝐾 at the expense

of compute (i.e., to compute the term log 1
𝐾 ∑𝐾

𝑘=1
𝐺𝜽 (𝝎(𝑘))/𝑞𝐱,𝐲(𝝎(𝑘)) in equation (7.17)). Note that

unlike ∇𝜽(𝜽) which has a biased estimate (equation (7.12)), for any 𝐾 ∈ ℕ, ∇𝜽′
𝐾 (𝜽) has
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an unbiased estimate

∇𝜽′
𝐾 (𝜽) = − 𝔼

(𝐱,𝐲)∼𝑝∗
[′

𝐱,𝐲,𝐾 (𝜽)], (7.18)

where

′
𝐱,𝐲,𝐾 (𝜽) = 𝔼

𝝎∼𝑞𝐱,𝐲
[∇𝜽 [

log
1
𝐾

𝐾

∑
𝑘=1

𝐺𝜽 (𝝎(𝑘))/𝑞𝐱,𝐲(𝝎(𝑘))
]
]. (7.19)

7.5 Experiments

In this section we evaluate NFSTs over several datasets, on various metrics. Our overall

goal is to answer the following questions:

Are NFSTs effective string transduction models? (§7.5.3) Being autoregressive latent-

variable sequence models, theoretic results in § 3 and §7.3 suggest NFSTs are much

more powerful than common string transduction paradigms, such as neural autore-

gressive sequence models (§2.1.3) and weighted finite-state machines (§2.1.2). But we

would still like to know whether the difference in theoretical capacity translates into

observable performance in real-life string transduction tasks.

Do topologies that are engineered using prior knowledge help? (§7.5.4) As we note

in §7.1.1, we can induce inductive bias in NFSTs by designing specific marked finite-

state transducers 𝜏 that encode domain knowledge. In this work, we compare the
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empirical performance between NFSTs that adopt a 𝜏 that encodes prior knowledge

about the task at hand, against 𝜏 ’s that are task-agnostic.

Are mark strings interpretable? (§7.5.5) Given NFST (𝜏 , 𝐺𝜽 ), a mark string𝝎 ∈ (𝐱◦𝜏 ◦𝐲)Ω

identifies with a path of 𝜏 that transduces between string pair (𝐱, 𝐲). 𝑁 [𝜏 , 𝐺𝜽](𝐱, 𝐲)

thus weights paths in the machine 𝐱◦𝜏 ◦𝐲: the path that identifies with mark string 𝝎

has weight 𝐺𝜽 (𝝎). We would like to know if the NFST path weights are interpretable,

in the sense that higher path weights correspond to more sensible transduction

explanations, according to prior knowledge.

7.5.1 Datasets

We conduct experiments on the following datasets:

cmudict The CMU pronunciation dictionary (Weide, 2005) is an open-source machine-readable

pronunciation dictionary for North American English. The original dataset tran-

scribes word pronunciations using Arpabet. In this work, we adopt a version where

pronunciations are further automatically transcribed into IPA symbols (Piperski,

2016). We also prune the dataset for short words and pronunciations.
23

In this work, we conduct experiments on both transducing from orthographically

spelled words to their IPA pronunciations, and also from IPA pronunciations to

23
Specifically, we only keep words and pronunciations that have at most 20 English characters or IPA

symbols.
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words. Because of the highly irregular English orthography (Venezky, 2011), we

expect that these tasks can illustrate the strengths of expressive model families.

snips The Snips NLU dataset (Coucke et al., 2018) is a collection of voice commands for

digital assistants, where each token is tagged with either a pre-defined slot type, or

an ‘outside’ tag. Moreover, each voice command is also labeled for its intent.

The Snips dataset is commonly used to benchmark slot-filling systems. Due to the

fact that many slot types are intent-specific (i.e., they only co-occur with certain

intents), we expect that systems that encode such prior knowledge will have an edge

over systems that are agnostic to such information.

dakshina The Dakshina dataset (Roark et al., 2020) is a corpus of 12 South Asian languages. In

this work, we take their romanization lexica (i.e., native script-romanization pairs),

and experiment with transduction in either direction (i.e. from romanization to native

scripts, and vice versa).

Much like grapheme-phoneme transduction in the cmudict experiments, we expect

the romanization-native script transduction can often be explained by a monotonic

alignment between the same word in a romanized form, and native script. In this work,

we focus on two languages which are transcribed using Perso-Arabic scripts: Sindhi

and Urdu. These two languages were shown to be the most difficult, as observed by

Roark et al. (2020).

Because of compute constraints, we do not use the full cmudict and dakshina datasets.
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Rather, for these two datasets, we randomly sample 2, 000/1, 000/1, 000 string pairs (without

replacement) as training/validation/test datasets.

7.5.2 Experimental setup

7.5.2.1 Amortized inference with particle smoothing

Both training and inferring from NFSTs require estimating NFST log weights: log𝑁 [𝜏 , 𝐺].

As we note in §7.4.1, we seek to approximate this quantity (specifically, equation (7.5))

using importance sampling.

The variance of an importance sampling estimate depends heavily on the similarity

between the proposal distribution 𝑞 and the target distribution (which has unnormalized

probabilities 𝐺(𝝎) in our case). We train 𝑞 to approximate the target distribution following

§6.5, in hope to minimize variance.

Similar to our treatment in § 6, we seek to minimize such variance by parametrizing 𝑞

also as an expressive sequence model (which we denote as 𝑞𝝓 where 𝝓 ∈ 𝚽 is a parameter

vector), and also minimizing the KL-divergence between 𝑞𝝓 and the target distribution

𝑝𝜏 (𝝎) ∝ 𝐺(𝝎). Also similar to the scenario encountered in § 6, the latent variables we seek

to sample are strings monotonically aligned with some given string pairs.

Specifically, we need to sample mark strings 𝝎 from a distribution with support

(𝐱◦𝜏 ◦𝐲)Ω24
and unnormalized probabilities 𝑝(𝝎) ∝ 𝐺𝜽 (𝝎), where 𝐱 and 𝐲 are some given

24
We know 𝐲 because we rerank possible output candidates during decoding (§7.5.3.2).
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input and output strings. In other words, we would like to sample from

𝑝(𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω) ≜
𝐺𝜽 (𝝎)

∑𝝎′∈(𝐱◦𝜏 ◦𝐲)Ω 𝐺𝜽 (𝝎)
(7.20)

The denominator of equation (7.20) is generally intractable because of the expressiveness

of 𝐺𝜽 . The regular language (𝐱◦𝜏 ◦𝐲)Ω25
can have an infinite support, so we fall back on

normalized importance sampling. That is, we draw 𝑀 samples from a proposal distribution

𝑞𝐱,𝐲 over the language of (𝐱◦𝜏 ◦𝐲)Ω, and weight each string 𝝎(𝑚)
by 𝑤𝑚 ∝ �̃�(𝝎(𝑚))/𝑞(𝝎(𝑚))

where ∑𝑀
𝑚=1 𝑤𝑚 = 1. The resulting weighted ensemble of particles �̂� forms a sampling-

based approximation to 𝑝(𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω). To be precise:

𝑝(𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω) = 𝔼
𝝎′∼𝑞𝐱,𝐲

[
𝑝(𝝎′ ∣ (𝐱◦𝜏 ◦𝐲)Ω)

𝑞𝐱,𝐲(𝝎′)
⋅ 𝕀(𝝎 = 𝝎′)] (7.21)

≈
𝑀

∑
𝑚=1

𝑤𝑚 ⋅ 𝕀(𝝎 = 𝝎(𝑚))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
call this approximation �̂�(𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω)

𝑞𝐱,𝐲 must depend on 𝐱 and 𝐲. In this chapter, we follow the particle smoothing

approach (§ 6), thereby porting that approach to the FST setting. 𝑞𝐱,𝐲 is chosen to be a

locally normalized distribution on 𝜏 ′,

𝑞𝐱,𝐲(𝝎) =
|𝝎|

∏
𝑡=1

𝑞𝐱,𝐲(𝜔𝑡 ∣ 𝝎<𝑡), (7.22)

25
We will use (𝐱◦𝜏 ◦𝐲)Ω to denote both the regular language it defines, and the regular language’s equiva-

lent deterministic finite-state acceptor, interchangeably.
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where the 𝑞𝐱,𝐲(𝜔𝑡 ∣ ⋯) factor is defined to be

exp(�̃�𝜽 (𝜔𝑡) + 𝐻𝝓(𝜔1⋯𝜔𝑡))
exp(�̃�𝜽 (𝜔′) + 𝐻𝝓(𝜔1⋯𝜔𝑡−1𝜔′))

where the �̃�𝜽 notation is borrowed from equation (6.2) and𝜔′
now ranges over all competing

next symbols 𝜔′
that follow from the same state in (𝐱◦𝜏 ◦𝐲)Ω (not 𝜏 ) as 𝜔𝑡 does. Thus, 𝑞𝐱,𝐲 may

be regarded as a policy for choosing among competing “actions” 𝜔′
, just as in reinforcement

learning. The lookahead function𝐻𝝓( ⃖⃗𝝎)26
is parameterized by 𝝓 and attempts to evaluate

whether the path prefix ⃖⃗𝝎 is compatible with completing a path 𝝎 in (𝐱◦𝜏 ◦𝐲)Ω.

In future work, we are interested in devising a 𝐻𝝓 function that would work well with

general 𝑋, 𝑌 by considering the graph structure of 𝜏 ′ = 𝑋 ◦𝜏 ◦𝑌 . In this chapter, however,

we consider 𝐱 and 𝐲 alone, and only if they are single strings.

Let
⃖⃗𝐡 be the hidden state vector of the model after reading the marks on �⃗�. Let ⃖⃖𝐱 be

the suffix of 𝐱 that has not been consumed by ⃖⃗𝝎, and let
⃖⃖𝐡x

be the state of an auxiliary

recurrent neural network after reading the symbols of ⃖⃖𝐱 in reverse order. Similarly, define

⃖⃗𝐲 and
⃖⃖𝐡y

likewise.

Note that
⃖⃗𝐡,
⃖⃖𝐡x

, and
⃖⃖𝐡y

are the states of 3 different RNNs that respectively read strings

in Ω∗,Σ∗, and Δ∗
. The value 𝐻𝝓(𝝎) ∈ ℝ is computed by a feed-forward network whose input

is the concatenation of these 3 states, or more precisely, the subset of these 3 states that are

defined.
27

26𝐻𝝓 is analogous the 𝐻 term given in equation (6.11), but may have to summarize infinitely possible

outcomes.

27
In § 6 we define 𝐻 = 𝐶 + �̂� , and this design resembles their design for the 𝐶 part. In retrospect, we

should also have captured the �̂� part by allowing the the auxiliary recurrent networks to add up scores
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Following §6.5, we train 𝝓 so that the proposal distribution 𝑞𝐱,𝐲(𝝎) tends to place a

high probability on paths that are good—or at least appear to be good—under the model 𝑝.

A step of training 𝑞𝐱,𝐲 consists of approximating 𝑝(𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω) by a particle ensemble

�̂�(𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω), and then adjusting 𝝓 to decrease KL(�̂� ∣∣ 𝑞𝐱,𝐲) (as in stochastic gradient

descent). In other words, we sample 𝑀 paths from the current proposal distribution and

then try to increase the proposal probability of all of them, but especially those that were

given a high importance weight 𝑤𝑚 by the actual model.

7.5.2.2 Parameter estimation

We train following Algorithm 2.

7.5.2.3 Hyperparameters

We fix dropout rate to 0.2. We make use of the Adam optimizer throughout, with learning

rate fixed to 10−3. We adopt an early-stopping training scheme, with a patience of 20 epochs.

And we have 𝐾 = 8 for ′
𝐾 (equation (7.17)), except for ablation studies (§7.5.3.4).

7.5.2.4 Design details of the MFST 𝜏 ’s topology

An MFST 𝜏 decides the relation an NFST (in which 𝜏 is a component, that is, (𝜏 , 𝐺𝜽 ))

recognizes. As we said in §7.1.1, 𝜏 can be engineered to design the relation an NFST

recognized. For some applications — such as slot-filling — we can readily engineer a relation

for the symbols of ⃖⃖𝐱, ⃖⃖𝐲 as it reads them (much as (6.2) adds up arc scores). In our FST setting, ⃖⃖𝐱, ⃖⃖𝐲 may be

slightly different for different 𝜔′
, in contrast to § 6 where �̂� was constant.
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Algorithm 2: Training procedure for 𝐺𝜽 .

Input:

∙ 𝜏 is an MFST

∙ train = {(𝐱1, 𝐲1) … (𝐱|train |, 𝐲|train |)} is the training dataset

∙ AdamOptimizer ∶ 𝚯 × 𝚯 → 𝚯 takes as arguments parameters and their gradients,

and outputs updated parameters

∙ 𝜽0 ∈ 𝚯 are the initial parameters of 𝐺𝜽

∙ 𝑀 is a given sample size

∙ maxEpoch ∈ ℕ is the number of epochs to train for

Output: Trained parameters 𝜽
foreach epoch ∈ [1…maxEpochs] do

foreach (𝐱, 𝐲) ∈ shuffle() do

𝜏 ′ ← 𝐱◦𝜏 ◦𝐲;

Construct distribution 𝑞𝐱,𝐲(⋅) according to equation (7.22);

𝐮 ← importance sampling estimate of equation (7.19) with 𝑀 samples;

𝜽 ← Optimizer(𝜽 , 𝐮);
(Optional) update the parameters of 𝑞𝐱,𝐲;

end

end

return 𝜽

which does not accept invalid transductions. For example, Snips (MREs 7.5.9–7.5.13)

recognizes each intent using its own machine (e.g., PlayMusic), where only the slot types

that belong to this unit are recognized. We let 𝜏 = Snips for all our snips experiments in

this chapter.

MRE 7.5.9: Snips

(PlayMusic|BookRestaurant|…)
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MRE 7.5.10: PlayMusic

(Outside|Album|Artist|Track|…)∗

MRE 7.5.11: Album

(E:B/B-album)Word((E:I/I-album)Word)∗

MRE 7.5.12: Outside

(E:O/outside)Word

MRE 7.5.13: Word

(a:a/word-a |aardvark:aardvark/word-aardvark |…)

Likewise, ‘latent’ marks that indicate state transitions, but do not appear in either

input or output projections, may also reflect domain knowledge. Some experiments in

this work are designed to evaluate whether such injected prior knowledge is effective.

Special 𝜏 ’s are specifically designed for these experiments. We also have an ‘agnostic’

design that has a single state, with arcs that are either of the form 𝑥 ∶ 𝜖/input-x or

𝜖 ∶ 𝑦/output-y, where 𝑥 ∈ Σ and 𝑦 ∈ Δ, such that the MFST recognizes all relation ∈ Σ∗ × Δ∗

(e.g., AgnosticTransduction in MFST 7.5.7).
28

28
Such MFSTs are not entirely domain-agnostic since we do know the input and output alphabets Σ and

Δ, which may contain symbols that are concatenations of other symbols in set. E.g., the output alphabet

of cmudict contains the IPA symbol tS, which is also a concatenation of two other symbols of the output

alphabet t and S.
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MFST 7.5.7: AgnosticTransduction (many arcs omitted for clarity)

𝑞1

x:𝜖/input x

𝜖:y/output y

7.5.2.5 Implementation details of the mark string scoring function

𝐺𝜽 is implemented as an ordinary left-to-right 2-layer LSTM language model over Ω∗

(Hochreiter and Schmidhuber, 1997), with hidden dimension size 256 a final softmax

activation function.

As described in §7.5.2.1, our NFSTs make use of neural particle smoothing network

during both parameter estimation and inference to sample mark strings from the MFSA

𝐱◦𝜏 ◦𝐲. We parametrize a particle smoothing network to consist of 2-layer bi-directional

LSTMs that encode 𝐱 and 𝐲 respectively, each with hidden dimension size 256.
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7.5.3 Effectiveness of NFSTs

7.5.3.1 Metrics

To empirically support our claim that NFSTs are an effective sequence transduction

paradigm, we compare their ability to weight string transductions (i.e., input-output string

pairs) against common seq2seq models, on the following metrics:

MRR (mean reciprocal rank) looks at a system’s relative performance as a reranker. It

rules out the confounding factors of search error (i.e., the correct answer not included

as a candidate).

Let 𝑁 be the size of test input strings. MRR is defined as

MRR ≜
1
𝑁

𝑁

∑
𝑛=1

1
rank𝑛

, (7.23)

where rank𝑛 is the position of the correct output string 𝐲(𝑛) for the 𝑛-th input string

𝐱(𝑛), within the 𝑛-th list of candidate output strings.
29

In this work, we first take 𝑘-best lists from seq2seq models, and then union each of

them with a respective correct output string, to form these candidate output lists.

For NFSTs, we use the rank of 𝑁 [𝜏 , 𝐺𝜽](𝐱(𝑛), 𝐲(𝑛)) as rank𝑛 within the 𝑛-th candidate

output list in equation (7.23). For seq2seq baselines, we use 𝑝(𝐲(𝑛) ∣ 𝐱(𝑛)) as rank𝑛.
29

In this work, 𝐲(𝑛) always appear in the candidate list. Nonetheless, common definitions of MRR define

rank𝑛 = ∞ when 𝐲(𝑛) does not appear in the list.
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EM (exact match) is related to the MRR metric in that EM also looks at reranked candidate

lists. Given 𝑁 list of candidate outputs, ordered by probability of correctness, for 𝑁

input strings, EM is defined as

EM ≜
1
𝑁

𝑁

∑
𝑛=1

𝕀(rank𝑛 = 1). (7.24)

In other words, EM looks at whether the system under evaluation ranks correct

output strings from candidate lists first. We still take 𝑘-best list from seq2seq models;

but unlike the MRR metric, we do not union them with the correct output strings.

Thus the EM metric provides a sense of how NFSTs would perform in real life as a

reranker (without assigning partial credit) — the candidate lists presumably come

from computationally cheap models (e.g., seq2seq models); and their search error

would be a confounding factor.

In addition to EM, we also evaluate on Slot F1 scores for the snips dataset.

7.5.3.2 Baseline systems

We compare against seq2seq models. Specifically, we adopt encoder-decoder baseline

systems of Gorman et al. (2020). All hyperparameters follow their settings, unless otherwise

specified. These models are standard encoder-decoder LSTM models with attention, where

both the encoder and decoder networks have a hidden size of 512, and an embedding

size of 128. The encoder is additionally bidirectional. As for model selection, we do a grid
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search of dropout rates ∈ (0.1, 0.2, 0.3), and batch sizes ∈ (256, 512, 1024). We choose the

best configurations using validation metrics.

Effects of reranking. We use baseline seq2seq models to provide 𝑘-best lists for NFST

systems. To see whether the exact match metric benefits from such an ensemble setup,

we additionally evaluate seq2seq models as rerankers, where the 𝑘-best lists are obtained

from separately trained seq2seq models. Those seq2seq models are selected using grid

search from the same set of hyperparameters of the baseline seq2seq models, except for

the random seed
30

We then report these additional exact match numbers for the cmudict

dataset.

For the snips dataset, we additionally consider published results by E et al. (2019) and

Wu et al. (2020). E et al. (2019) is a carefully and specifically designed bidirectional LSTM

network that processes the input over multiple passes, for the joint slot filling and intention

detection task. They considered slot filling as a tagging task, and had a final CRF layer for

decoding label sequences. Wu et al. (2020) is also a neural network with a tailored multiple

pass design, but is Transformer-based.

7.5.3.3 Results

Empirically, we find that NFSTs compare very favorably against seq2seq models on every

metric and every task.

30
We used a random seed 1917 for baseline seq2seq models, and 1918 for ‘spare’ seq2seq models intro-

duced in this paragraph.
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Valid Test

MRR EM F1 MRR EM F1

NFST 0.937 0.889 93.6 0.949 0.908 93.7

Seq2seq 0.825 0.763 88.5 0.829 0.764 89.0
Hakkani-Tür et al. (2016) — — — — — 87.3
E et al. (2019) — — — — — 92.2
Wu et al. (2020) — — — — — 93.9

Table 7.1: snips results.

Snips. We see in Table 7.1 that on the snips dataset, NFSTs outperform the Seq2seq

baseline
31

by a large margin on every metric (with 𝑝 < 0.01 in all cases, under the permutation

test). The difference in MRR clearly shows that NFSTs are competitive as rerankers against

seq2seq models. Moreover, NFSTs’ superior performance on F1 and EM directly suggests that

the correct output string often resides in the 𝑘-best list of a seq2seq model; and reranking

seq2seq output strings using NFSTs is a viable way of boosting a string transduction

system’s performance.

NFST results are also competitive against existing systems in the literature (E et al.,

2019; Hakkani-Tür et al., 2016). While the NFSTs achieve an F1 score 0.2 points lower than

Wu et al. (2020), we note that the difference is not statistically significant (𝑝 = 0.76). The

difference between our results and that of E et al. (2019) is statistically significant (𝑝 < 0.01),

however.

31
While the Seq2seq baseline looks weak when compared against other competitive runs, we note that it

does outperform published Bi-LSTM Seq2seq results (Hakkani-Tür et al., 2016).
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Valid Test

MRR EM MRR EM

NFST 0.674 0.533 0.647 0.49

Seq2seq 0.496 0.404 0.472 0.382
Seq2seq reranking another seq2seq — 0.411 — 0.383

Table 7.2: cmudict G2P results.

Valid Test

MRR EM MRR EM

NFST 0.531 0.367 0.535 0.364

Seq2seq 0.306 0.224 0.303 0.208
Seq2seq reranking another seq2seq — 0.218 — 0.212

Table 7.3: cmudict P2G results.

Cmudict. We evaluate on two transduction directions on the cmudict dataset: phoneme-

to-grapheme (P2G) and grapheme-to-phoneme (G2P). We observe that NFSTs greatly

outperform Seq2seq models on both tasks (with 𝑝 < 0.01 on every metric). We also observe

that while we get some statistically insignificant (𝑝 > 0.05) improvement when we used the

seq2seq models to rerank other seq2seq models’ outputs, the magnitude is not nearly as

large as the improvement we get from switching to NFSTs.

Dakshina. We evaluate on romanization for both Urdu and Sindhi. We observe that for

both languages, domain-agnostic NFSTs consistently outperform Seq2seq models on both

MRR and EM (again with 𝑝 < 0.01).
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Valid Test

MRR EM MRR EM

NFST 0.439 0.270 0.499 0.349

Seq2seq 0.378 0.243 0.415 0.262

Table 7.4: dakshina transliteration results — Urdu.

Valid Test

MRR EM MRR EM

NFST 0.463 0.297 0.453 0.299

Seq2seq 0.419 0.276 0.400 0.259

Table 7.5: dakshina transliteration results — Sindhi.

7.5.3.4 Ablation studies

We also do the following ablation studies on the cmudict dataset:

Removal of recurrent connection. Under this configuration, we remove the recurrent

LSTM component in the design of 𝐺. Therefore 𝐺 is effectively a bigram model: 𝐺(𝝎) =

∏𝑡 𝑝(𝜔𝑡 ∣ 𝜔𝑡−1). We would like to know how much performance do we lose with this

simplification.

The results are listed in Tables 7.6 and 7.7. We can see that the performance drops

significantly with the removal of the LSTM component.

Looser ′
𝐾 (𝜽) upper bound. Recall that by Proposition 7.4.2 we can improve upon the

variational upper bound ′
of the true loss function  (equation (7.14)) using importance

reweighting: ′
𝐾 (equation (7.17)); and that with 𝐾 → ∞, ′

𝐾 → 𝐿. We would like to know
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Valid Test

MRR EM MRR EM

NFST — no recurrent connection 0.156 0.035 0.156 0.034

NFST 0.674 0.533 0.647 0.49

Table 7.6: cmudict: no recurrent connections (G2P).

Valid Test

MRR EM MRR EM

NFST — no recurrent connection 0.149 0.030 0.148 0.026

NFST 0.531 0.367 0.535 0.364

Table 7.7: cmudict: no recurrent connections (P2G).

how performace reacts when we vary 𝐾 .

We experimented with 𝐾 ∈ {1, 2, 4, 8}, with 𝐾 = 8 being the default hyperparameter

(i.e., all experiments run outside this ablation study section have 𝐾 = 8.)

Results from this ablation study are in Tables 7.8 and 7.9. They do not seem to suggest that

optimizing for the tighter IWAE bound in equation (7.17) translates to better performance

(than optimizing for the standard variational bound equation (7.14)). While we do achieve

the best accuracy with 𝐾 = 8 on the P2G task (Table 7.9), the trend is the opposite in

Table 7.8.

Valid Test

MRR EM MRR EM

NFST: 𝐾 = 1 0.678 0.538 0.657 0.503
NFST: 𝐾 = 2 0.672 0.525 0.650 0.496
NFST: 𝐾 = 4 0.667 0.522 0.650 0.500

NFST: 𝐾 = 8 0.674 0.533 0.647 0.49

Table 7.8: cmudict: varying 𝐾 (G2P).
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Valid Test

MRR EM MRR EM

NFST: 𝐾 = 1 0.519 0.360 0.524 0.347
NFST: 𝐾 = 2 0.528 0.363 0.531 0.361
NFST: 𝐾 = 4 0.502 0.328 0.517 0.342

NFST: 𝐾 = 8 0.531 0.367 0.535 0.364

Table 7.9: cmudict: varying 𝐾 (P2G).

7.5.4 Effects of knowledge-loaded topologies

We focus on the cmudict dataset to test the effects of knowledge-loaded topologies. In

particular, we test whether finite-state topologies that encode our phonological knowledge

about English have any quantitative or qualitative effects on NFSTs we learn. To this end,

we design an MRE Syllables (MRE 7.5.15) that seeks to model the English syllable structure

in a phoneme string: Syllables allows optional onset and coda units; but a nucleus is

mandatory. We also allow an onset (MRE 7.5.16) and a coda (MRE 7.5.17) to consist of

multiple consonant phonemes, while a nucleus (MRE 7.5.18) is a single vowel or consonant

phoneme. As for Stress, they appear at the start of a syllable, and may consist of a primary

stress marking (‘"’), a secondary stress marking (‘’), or no stress marking at all. Finally, we

classify phonemes in our cmudict dataset into Consonants (MFST 7.5.8) and Vowels,

and prepend them with special marks to signify their classifications respectively.

Syllables is an MFST that transduces a phoneme sequence 𝐲 into itself if it conforms

to our syllable constraints, and does not accept 𝐲 otherwise.
32

Syllables is then com-

32
In other words, Syllables is a marked finite-state acceptor. As we noted in footnote 8, we opt to write

MREs as tailored towards to MFSTs in this work, which unfortunately adds clutter to the notation of Syl-
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Valid Test

MRR EM MRR EM

NFST w/ SyllabicTransduction 0.617 0.471 0.603 0.447

NFST w/ AgnosticTransduction 0.674 0.533 0.647 0.49
Seq2seq 0.496 0.404 0.472 0.382

Table 7.10: SyllabicTransduction G2P results.

Valid Test

MRR EM MRR EM

NFST w/ SyllabicTransduction 0.475 0.314 0.490 0.330

NFST w/ AgnosticTransduction 0.531 0.367 0.535 0.364
Seq2seq 0.306 0.224 0.303 0.208

Table 7.11: SyllabicTransduction P2G results.

posed against AgnosticTransduction (MFST 7.5.7) to form SyllabicTransduction

(MRE 7.5.14).

MRE 7.5.14 encodes more knowledge of what we know about English phonology than

other machines that we experimented with. We neuralize it
33

, and conduct experiments

following setups in §7.5.3.

The results are in Tables 7.10 and 7.11. The differences between SyllabicTransduction

and AgnosticTransduction runs are statistically significant, as well as the differences

between Seq2seq and SyllabicTransduction (all with 𝑝 < 0.01). We conclude that the

domain knowledge we encode in MRE 7.5.14 and its component MREs actually hurt

empirical performance. While it can be frustrating that added domain knowledge
34

does

lables.

33
That is, let 𝜏 = SyllabicTransduction when we compute the NFST machine weight in equation (7.1).

34
Of course, we did not exhaust the space of English-phonology-knowledge-encoding MFST topologies

in our experiments. We leave a more thorough study as future work.
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not lead to better accuracy numbers, such negative results are not entirely surprising (Shi

et al., 2018a; Post et al., 2019; Sutton, 2019). We also note that SyllabicTransduction

still outperforms Seq2seq by a large margin on all metrics. More importantly, such added

knowledge does have an effect: we will see in §7.5.5 that the induced mark strings under

SyllabicTransduction show a clear pattern of phoneme-grapheme correspondence;

while AgnosticTransduction does not appear to have learned the notion of phoneme

units.

MRE 7.5.14: SyllabicTransduction

Syllables◦AgnosticTransduction

MRE 7.5.15: Syllables

(𝜖 ∶ 𝜖/syllable-start Stress.Onset.Nucleus.Coda.𝜖 ∶ 𝜖/syllable-end )∗

MRE 7.5.16: Onset

(𝜖 ∶ 𝜖/onset.Consonant)∗

MRE 7.5.17: Coda

(𝜖 ∶ 𝜖/coda.Consonant)∗
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MRE 7.5.18: Nucleus

𝜖 ∶ 𝜖/nucleus.(Consonant|Vowel)

MRE 7.5.19: Stress

(𝜖 ∶ 𝜖/𝜖 |" ∶ "/primary-stress| ∶ /secondary-stress)

MFST 7.5.8: Consonant (many arcs omitted)

𝑞1 𝑞2

k:k/consonant k

S:S/consonant S

MFST 7.5.9: Vowel (many arcs omitted)

𝑞1 𝑞2

I:I/vowel I

O:O/vowel O
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7.5.5 Interpretability

Empirical results in §7.5.3.3 show that NFSTs excel at assigning probability mass to input-

output string pairs. As we have said in §7.2.4.1, for feature neuralized NFSTs, the machine

weight of string pair (𝐱, 𝐲) is the sum of weights of mark strings in the regular language

(𝐱◦𝜏 ◦𝐲)Ω ⊆ 𝜏Ω. We would like to know how an NFST (𝜏 , 𝐺) assigns weight among mark

strings within (𝐱◦𝜏 ◦𝐲)Ω. We have two questions:

Emergence of patterns? There are many ways of transducing between 𝐱 and 𝐲 under a

permissive topology (e.g., AgnosticTransduction as defined in MFST 7.5.7). Do all

mark strings ∈ (𝐱◦𝜏 ◦𝐲)Ω contribute equally to the weight sum ∑𝝎∈(𝐱◦𝜏 ◦𝐲)Ω 𝐺𝜽 (𝝎)? Or

do some of these strings dominate the weight sum? If so, is there a pattern of these

dominant mark strings?

Effects of inductive bias? Our attempt at imbuing 𝜏 with what we know about syllable

structures did not bring about increased empirical performance in §7.5.4. However,

we wonder if these topologies still encourage mark strings that conform to known

(English) phonological patterns to dominate the mark string weight sum.

To answer these two questions, we look at samples from posterior distributions over mark

strings, conditioning on input-output string pairs (𝐱, 𝐲)— namely 𝑝(𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω) (equa-

tion (7.20)). We randomly pick 5 string pairs from the validation set (that is, corresponding

phoneme-grapheme string pairs), and approximately sample from the posterior distributions
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𝑝(𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω) following the methodology described in §7.5.2.1, but with dampened pro-

posal distributions (with temperature = 3.) to encourage sample diverage, and with a much

larger particle size = 512 for more courage. Most probable paths, along with their estimated

normalized probabilities, are listed in Table 7.12 (where 𝜏 = AgnosticTransduction) and

Table 7.13 (where 𝜏 = SyllabicTransduction). In Table 7.13 we do not list the original

mark strings: those are interleaving strings of mark strings from two different machines,

and would be hard to interpret. We separate subsequences of these mark strings into

two parts: those originate from AgnosticTransduction (MFST 7.5.7) and those from

Syllabic (MRE 7.5.14), and list them separately.

One can immediately see from these two tables that our approximated posterior distri-

butions �̂� (𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω) are very peaked: all string transductions have most of their masses

put on a single mark string. In Table 7.12 we find that the mark strings are interleavings of

counterpart phonemes and graphemes. But the interleaving order is not strict — for example,

in the auntie transduction, the most probable mark string went from phoneme-grapheme

to grapheme-phoneme, then back to phoneme-grapheme. There does not appear to be a

consistent monotonic alignment scheme between phonemes and graphemes across all

words, either. In fact, it is not clear whether the model operates on the notion of grapheme-

phoneme alignment — for example, in the Atchison transduction the model thinks the

most likely transduction splits up a single phoneme tS into disjoint segments, even while

knowledge of output alphabet is provided (footnote 28). An interpretation is that the

ordering of marks in high-probability mark strings maps to a highly probable generative
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Phoneme / grapheme strings Mark strings �̂� (𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω)

/"Onti/ auntie

"auOnnttiie 95.7%
"aOnunttiie 4.1%
"Oaunnttiie .2%

/"d2bli/ doubly

"ddou2bblliy 96.1%
"ddo2ubblliy 3.2%
"dd2oubblliy .6%

/"ætSIs@n/ Atchison

"aættSchiIsso@nn 99.0%
"aættSchiIss@onn .6%
"aættSchiIsso@nn .3%

/ju:"mænIti:z/ humanities

hjuu:"mmaænniIttii:ezs 80.9%
jhuu:"mmaænniIttii:ezs 18.9%

/"nEm@ntoUdz/ nematodes "nneEmma@ttooUddezs 99.9%

Table 7.12: Most probable mark strings from (𝐱◦AgnosticTransduction◦𝐲)Ω under our

approximated approximate posterior distribution. Only mark strings with estimated proba-

bility > 0.1% are shown.

story of a string pair (𝐱, 𝐲) under the distribution 𝐺𝜽 : while 𝐺𝜽 evidently favors strings

where corresponding phoneme and grapheme clusters alternate, there is no additional

incentive for aligning atomic phonemes.

On the other hand, we see in Table 7.13 that the distributions are even more peaked.

Moreover, the AgnosticTransduction subsequences of the most probable mark strings

follow a strict (phoneme.grapheme)∗ pattern. We speculate that sequences of phoneme

units are required to model syllable structures. Even though the model hasn’t managed to

model English syllables perfectly, it still encourage the alignment against corresponding

graphemes.
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Phoneme / grapheme

strings

Mark strings under AgnosticTransduction Mark strings under Syl-

labic

�̂� (𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω)

/"Onti/ auntie "Oaunnttiie syllable-start primary-

stress nucleus vowel O

coda consonant n coda

consonant t syllable-end

syllable-start syllable-no-

stress nucleus vowel i

syllable-end

100.0%

/"d2bli/ doubly

"dd2oubblliy syllable-start primary-

stress onset consonant d

nucleus vowel 2 coda con-

sonant b coda consonant l

syllable-end syllable-start

syllable-no-stress nucleus

vowel i syllable-end

99.7%

"ddo2ubblliy syllable-start primary-

stress onset consonant d

nucleus vowel 2 coda con-

sonant b coda consonant l

syllable-end syllable-start

syllable-no-stress nucleus

vowel i syllable-end

.3%
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Phoneme / grapheme

strings

Mark strings under AgnosticTransduction Mark strings under Syl-

labic

�̂� (𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω)

/"ætSIs@n/ Atchison "æatStchIiss@onn syllable-start primary-

stress nucleus vowel

æ coda consonant tS

syllable-end syllable-start

syllable-no-stress nucleus

vowel I coda consonant s

syllable-end syllable-start

syllable-no-stress nucleus

vowel @ coda consonant n

syllable-end

99.8%

/ju:"mænIti:z/

humanities

jhuu:"mmaænniIttii:ezs syllable-start syllable-no-

stress onset consonant j

nucleus vowel u primary-

stress syllable-end syllable-

start primary-stress onset

consonant m nucleus

vowel æ coda consonant n

syllable-end syllable-start

syllable-no-stress nucleus

vowel I coda consonant t

syllable-end syllable-start

syllable-no-stress nucleus

vowel i : coda consonant z

syllable-end

99.9%
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Phoneme / grapheme

strings

Mark strings under AgnosticTransduction Mark strings under Syl-

labic

�̂� (𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω)

/"nEm@ntoUdz/

nematodes

"nneEemm@attoUoddzes syllable-start primary-

stress syllable-onset coda

n syllable-nucleus vowel

E syllable-coda coda m

syllable-end syllable-

start syllable-no-stress

syllable-nucleus vowel

@ syllable-end syllable-

start secondary-stress

syllable-onset coda t

syllable-nucleus vowel

o U syllable-coda coda

d syllable-coda coda z

syllable-end

98.2%

"nneEemm@attoUoddezs syllable-start primary-

stress syllable-onset coda

n syllable-nucleus vowel

E syllable-coda coda m

syllable-end syllable-

start syllable-no-stress

syllable-nucleus vowel

@ syllable-end syllable-

start secondary-stress

syllable-onset coda t

syllable-nucleus vowel

o U syllable-coda coda

d syllable-coda coda z

syllable-end

1.8%
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Phoneme / grapheme

strings

Mark strings under AgnosticTransduction Mark strings under Syl-

labic

�̂� (𝝎 ∣ (𝐱◦𝜏 ◦𝐲)Ω)

Table 7.13: Most probable mark strings from (𝐱◦SyllabicTransduction◦𝐲)Ω under our

approximated approximate posterior distribution. Only mark strings with estimated prob-

ability > 0.1% are shown.

7.6 Related work

In this chapter we have introduced string-set semirings (Definition 7.2.3). String-set

semirings are structured semirings, whose ⊗ and ⊕ operations can be leveraged to

mechanically derive quantities of larger finite-state automata (in our case, the mark

projection of an MFST). Other well-known structured semirings include expectation

semirings (Eisner, 2001; Li and Eisner, 2009) and lexicographic semirings (Roark, Sproat, and

Shafran, 2011; Sproat et al., 2014). Separately, the idea of featurizing finite-state transductions

with local features was also present in Wu et al. (2014).

There has been work relating finite-state methods and neural architectures. For example,

Schwartz, Thomson, and Smith (2018) and Peng et al. (2018) have shown the equivalence

between some neural models and WFSAs. The most important differences of our work is

that in addition to classifying strings, NFSTs can also transduce strings. Moreover, NFSTs

also allow free topology of FST design, and breaks the Markovian assumption.

We note that Aharoni and Goldberg (2017) and Deng et al. (2018) are also similar to our

work; in that they also marginalize over latent alignments, although they do not enforce
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the monotonicity constraint. Work that discusses globally normalized sequence models are

relevant to our work. In this paper, we discuss a training strategy that bounds the partition

function; other ways to train a globally normalized model (not necessarily probabilistic)

include Wiseman and Rush (2016) and Andor et al. (2016). On the other hand, our NFSTs

bear resemblance to RNNGs (Dyer et al., 2016), which was also autoregressive, and also

employed importance sampling for training.

7.7 Conclusion and limitations

We have introduced neural finite-state transducers. We have discussed two alternative

definitions of their machine weights, and their theoretical expressiveness: we emphasized

that when we couple NFSTs with autoregressive mark string scoring functions (§2.2.4) 𝐺𝜽

(i.e., 𝚯 ∈ ELNCP), they form a very expressive model family (§7.3). We also stressed that

we did not give up on grammar engineerability (i.e., we can freely design the finite-state

grammar of relations that we wish to recognize, or not recognize, for NFSTs), compared to

neural autoregressive sequence models.

Empirically, we have shown that NFSTs compete favorably with state-of-the-art neu-

ral sequence models on transduction tasks. At the same time, they also can also offer

interpretable mark strings, when the right inductive bias is engineered in their MFST

components.

However, as we discussed in §7.2.4.1, feature neuralization gives up the path weight
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property. Therefore, feature neuralized NFSTs do not form an algebraic structure under the

MFST regular operations. While their MFST components (§7.2.1) — which decide what

relations a grammar should recognize — are still closed under rational algebraic operations

(§7.2.3) and composition,
35

the resultant NFSTs are not. In other words, while a composite

grammar’s support (i.e., which (𝐱, 𝐲) pairs will have weight 0) can be engineered/changed

by familiar operations à la WFSTs (i.e., concatenation, union, composition, and closure),

we cannot analogously engineer the composite grammar’s weights this way. The lack of

compositionality makes it impossible to reuse independently trained modules in different

tasks, e.g., using a separately trained 𝑛-gram language model for speech recognition (Mohri,

Pereira, and Riley, 2008).

The decision to limit ourselves to 𝐺𝜽 ∈ ELNCP in this chapter can also cause an

(unnecessary) tension between model expressiveness and interpretability. Recall that any

marked finite-state machine 𝜏 will have a regular mark projection 𝜏Ω, which can be captured

by an ELN (and therefore ELNCP) weighted language. However, some applications, when

modeled using the topology of 𝜏 , may define a mark string weighted language 𝑝 ∈ EC, but

support(𝑝) ⊊ 𝜏Ω. By conclusions of § 3 we know 𝑝 may not be in ELN, or even ELNCP. While

by Proposition 7.3.2 we know we can have any 𝐿 ∈ NP as our output string distribution

support, it required an topology that inserts ‘dummy’ latent variables to the start of every

mark string. In other words, to make an NFST expressive, a practitioner may have to:

∙ design the topology of a marked finite-state machine to encode a regular language,

35
However recall that the while MFSTs are also closed under our defined composition operation, it is not

algebraic (§7.2.2.1).
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where each mark string is prepended with some ‘stochastic noise’ symbols. Such

design may not meaningfully encode prior knowledge, but caters to parametriza-

tion peculiarities of autoregressive models. Furthermore, mark strings from such

regular language may contain more symbols than needed, which exacerbates the

computational burden. Alternatively, a practitioner may instead:

∙ parametrize 𝐺𝜽 not as an autoregressive model, to escape the ’wrong latent variable

order’ problem. Of course, the mark string scoring function in an NFST does not have

to be ∈ ELNCP, let alone ELN, as long as parameter estimation is not required (e.g.,

when the user can manually specify 𝜽 for 𝜽 ∈ 𝚯,𝚯 ⊆ EC). But in practice we usually

need to learn 𝜽 ∈ 𝚯 from data, subjecting ourselves under the uncomputability

results of § 5.

We will revisit these limitations in § 8.
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Chapter 8

Neuralization of regular expressions

8.1 Introduction

In this chapter, we introduce neural regular expressions (NREs) as an extension to

NFSTs.

8.1.1 Why do we need to extend NFSTs?

As we said in §7.7, we introduce NREs to address the two distinct but related problems of

NFSTs. We review these problems below:

It is not clear how we can combine NFSTs together the way we do WFSTs. While

NFSTs are a strict generalization of WFSTs, there does not seem to be a straightforward

generalization of the familiar regular and composition operations on NFSTs, which preserve
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the WFST machine weight semantics. For example, the union operator ‘|’: while the

expression 𝑀1|𝑀2 is well-defined when 𝑀1 and 𝑀2 are both FSTs, it is not clear from our

NFST definitions (§7.2) what the expression 𝑁 [𝜏1, 𝐺1]|𝑁 [𝜏2, 𝐺2] means — and if it is indeed

a valid expression, should the resultant be an NFST.

One reason why there does not appear to be a straightforward generalization of the

WFST operations is that an NFST has a scoring function component, in addition to a

finite-state one (§7.2). While the finite-state component of an NFST (i.e., MFST) does have

a well-defined set of regular operations (i.e., MREs introduced in §7.2.2), the weighted

language component (i.e., the mark string scoring function) does not.

Without the WFST machine weight semantics, we would not be able to combine

NFSTs in the manner that people combined WFSTs. Consider the slot filling example of

§1.2.1, where gazetteers of product names (e.g. RE 1.2.2) can be separately engineered, and

incorporated into a bigger composite machine later on. Losing the ability to form NLP

pipelines this way is certainly undesirable.

Monotonic string transduction annotations may require non-autoregressive mark

string scoring functions. Recall that the finite-state machine component of an NFST —

namely an MFST — is a compact representation of string transductions, which also annotates

each transduction path with a mark string. Since these annotations are monotonically

aligned to the string transductions they annotate, there may be no good autoregressive

model (e.g., ELNCP) that can capture them, despite the fact that the NFST itself is a very

powerful formalism. As we noted in §3.4.2, autoregressive latent variable sequence models
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are sensitive to the ordering of latent variables in a string. And as a result, the monotonically

aligned annotations, when seen as latent variables, may not appear at optimal positions,

such that autoregressive mark string scoring functions can capture them perfectly. We

will show a concrete example in §8.4. While it is certainly possible to design specialized

mark string scoring functions that work with monotonically aligned annotations, those

will require specialized parameter estimation procedures. However, as we have argued in

§7.3, general non-autoregressive families of mark string scoring functions will result in

uncomputable NFST machine weights, which in turn make training difficult.

To summarize, the NFSTs we introduced in § 7 cannot be combined together easily as

WFSTs. And the monotonic alignment of mark strings forces a practitioner to either give

up expressiveness, or design their own mark string scoring function family.

8.1.2 What are NREs?

Neural regular expressions are an algebraic structure with neural rational operations

(NROs) over partially neuralized finite-state transducers
1

(pNFSTs). pNFSTs (which

we formally define in §8.2) generalize both marked and neuralized finite-state transducers

(§ 7), by making both mark strings and their scoring functions compositional. A major

difference between pNFSTs and NFSTs is that mark strings under pNFSTs encode parses. To

score a mark string 𝝎 under pNFST 𝑀 , 𝝎 is first parsed into a parse (which we denote

as 𝑡 = ↓𝑀 (𝝎)), which contains instructions for scoring certain subsequences of 𝝎, which

1
We call them partially neuralized because a pNFST can have parts (which themselves are pNFSTs) that

are neuralized (i.e., associated with a non-trivial scoring function), while other parts aren’t.
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are subsequently aggregated with 𝑀 ’s own scoring of 𝝎, and returned as the weight of 𝝎

under 𝑀 (which we denote as J𝑡K𝑀 ).

Therefore, under pNFSTs, a mark string contains out-of-band information that explicitly

instructs how the mark string itself should be parsed; and also how such a parse should

be scored. More specifically, its subtrees will be scored by composite functions, which

share intermediate computation results while scoring these different subsequences, to help

capture structures and long-term dependencies. Crucially, a pNFST evaluates weights of

subsequences recursively, following the structure of the parse: this allows subsequences of

a mark string to be scored not in a left-to-right order. Effectively, this allows a lookahead

when it comes to scoring the prefix, which is impossible under NFSTs (that have ELNCP

𝐺𝜽 ’s) — pNFSTs can weight a mark string’s left context based on its right context, without

the need of dummy latent variables as a mark string prefix.

By capitalizing the expressiveness of pNFSTs, NROs generalize familiar rational opera-

tions on FSTs — namely union, concatenation, closure — as well as the relational operation

composition. As a concrete example, the NRO composition of two pNFSTs 𝑀1 = (𝜏1, 𝐺1)

and 𝑀2 = (𝜏2, 𝐺2) results in a pNFST 𝑀 = 𝑀1◦𝑀2, under which a mark string 𝝎 has weight

𝐺1(𝝎1) ⋅ 𝐺2(𝝎2), where 𝝎1 and 𝝎2 are subsequences of 𝝎 that come through 𝜏1 and 𝜏2

respectively — just like the WFST composition. We implement these NROs through the use

of ‘out-of-band’ mark symbols in a mark string, which are used to construct a parse tree

that how different subsequences should be differently scored.
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8.1.3 Chapter outline

This chapter is structured as follows: we formally describe our partially neuralized finite-

state transducer extension in §8.2. We also describe how counterparts to familiar WFST

operations can be implemented as neural regular expressions in §8.3. In the rest of this

chapter, we show how two limitations of NFSTs outlined in §7.7 can be addressed by NREs:

in §8.4 we describe an example transduction task, which no NFSTs with a ‘natural’ MFST

topology can capture with autoregressive scoring functions, but can be handled by NREs

with the same MFST topology. Finally, in §8.5 we demonstrate how separately trained

NFSTs can be combined together into a larger NRE, to solve a cold-start slot-filling problem.

8.2 Partially neuralized finite-state machines

In this section, we introduce partially neuralized finite-state machines (pNFSTs). In §8.2.1

we formally define them. In §8.2.2 we discuss some concerns that arise in the context of

autoregressive sequence model families. Finally, in §8.2.3 we list two example pNFSTs.

8.2.1 Definition

Here we describe the formal definitions of pNFSTs. First we define parses:

Definition 8.2.1. 𝐶 ⊊ Ω is a finite non-literal alphabet.
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Definition 8.2.2. A parse 𝑡 ∈  is a tree associated with mark alphabet Ω and non-literal

alphabet 𝐶 , where

∙ terminal nodes are strings ∈ Ω∗
, which we also call literals.

∙ non-terminal nodes are single symbols ∈ 𝐶 , which we also call non-literals.

Formally, we define a partially neuralized finite-state machine to be a 3-tuple 𝑀 =

(𝑇𝑀 , ↓𝑀 , JK𝑀 ):

Definition 8.2.3. ∙ 𝑇𝑀 is the marked finite-state transducer associated with 𝑀 . And

∙ parse function ↓𝑀 ∶ Ω∗ →  that produces a parse from mark string 𝝎 ∈ Ω∗
. And

∙ parse scoring function JK𝑀 ∶  → ℝ≥0 scores a parse tree.

Machine weights of pNFSTs. The two interpretations of NFST machine weights (§7.2.4.1)

still apply for pNFSTs. Under the feature neuralization interpretation, we define the machine

weight of pNFST 𝑀 to be

J𝑀K ≜ ∑
𝝎∈𝑇𝑀

J↓𝑀 (𝝎)K𝑀 . (8.1)

And

J𝑀K(𝐱, 𝐲) ≜ ∑
𝝎∈𝐱◦𝑇𝑀 ◦𝐲

J↓𝑀 (𝝎)K𝑀 . (8.2)
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On the other hand, under the literal neuralization interpretation, we define

J𝑀K ≜ ∑
𝝎∈𝑇𝑀

J↓𝑀 (𝝎)K𝑀 𝑓 (𝝎). (8.3)

And

J𝑀K(𝐱, 𝐲) ≜ ∑
𝝎∈𝐱◦𝑇𝑀 ◦𝐲

J↓𝑀 (𝝎)K𝑀 𝑓 (𝝎). (8.4)

where 𝑓 (𝝎) denotes the number of paths in 𝑀 that have a mark projection of 𝝎. In this

chapter we do not explicitly denote which interpretation we are using, since they coincide

for all finite-state machines we manipulate.

To repeat, the main difference between NFSTs and pNFSTs is that a pNFST scores a

parse
2

that is built from mark strings. In §8.3 we will see how familiar rational operations

can be implemented using this new abstraction. Since MFSTs (§7.2.1) and NFSTs can both

be seen as pNFSTs that have simple parses and parse scoring functions, type conversion

is also straightforward. Below we introduce two possible constructions. Both of these

constructions introduce a new non-literal 𝜔𝑀 ∈ 𝐶 to help identify these newly built pNFSTs

𝑀 in further processing.

∙ Marked finite-state machines: given marked FST 𝜏 , we build 𝑀 = (𝑇𝑀 , ↓𝑀 , JK𝑀 )

to be an equivalent pNFST (𝑇𝑀 , ↓𝑀 , JK𝑀 ) where

2
More accurately, pNFSTs score traversals of parses that is structured. In this chapter we do not always

make an explicit distinction between the two, since we work with parse traversals that unambiguously

identify with their parses (among the training and test instances).
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– the non-literal 𝜔𝑀 ∈ 𝐶 is a unique identifier of 𝑀 ,

– 𝑇𝑀 = (E:E/𝜔𝑀 )𝜏 ,

– ↓𝑀 is the parse building function of 𝑀 , where ↓𝑀 (𝝎) has a root non-literal node

𝜔𝑀 ∈ 𝐶 , which has a single literal child 𝝎 ∈ Ω∗
; and

– JK𝑀 is the parse scoring function of 𝑀 , where J𝑡K𝑀 = 1, ∀𝑡 ∈  .

∙ Neural finite-state machines: an NFST 𝑁 [𝜏 , 𝐺] has an equivalent pNFST 𝑀 =

(𝑇𝑀 , ↓𝑀 , JK𝑀 ) where

– 𝜔𝑀 ∈ 𝐶 is a unique identifier of (𝜏 , 𝐺),

– 𝑇𝑀 = (E:E/𝜔𝑀 )𝜏 ,

– ↓𝑀 is the parse building function of𝑀 , where ↓𝑀 (𝝎) is a tree rooted in non-literal

𝜔𝑀 , which has a single child 𝝎1∶,
3

and

– JK𝑀 is the parse scoring function of 𝑀 , where J𝑡K𝑀 = 𝐺(𝝎′), and 𝝎′
is the single

child literal of parse 𝑡 .

Partial neuralization operator. We described one way of converting an NFST to a

pNFST above, by seeing mark strings as (flat) parses. In this chapter, we further generalize

the feature neuralization operator (§7.2.4.1) to operate on pNFSTs. More formally, we define

a new partial neuralization
4

operator:

3
In this thesis, we use the notation 𝝎1∶ to denote the suffix of 𝝎 = 𝜔0𝜔1…: 𝜔1𝜔2…

4
Note that while feature and literal neuralization operators are technically machine weight functions of

NFSTs, the newly introduced 𝑁partial[] are truly operators that build new pNFSTs. The machine weights of

pNFSTs are separately defined, as the JK𝑀 operator we described above.
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Definition 8.2.4. The partial neuralization operator 𝑁partial[] takes two arguments (𝑀,𝐺),

where 𝑀 is a pNFST, and 𝐺 ∶  → ℝ≥0. We define 𝑀 ′ = 𝑁partial[𝑀,𝐺] = (𝑇𝑀 ′ , ↓𝑀 ′ , JK𝑀 ′) to

be the following NFST:

∙ 𝜔𝑀 ′ ∈ 𝐶 is a unique identifier of (𝑀,𝐺),

∙ 𝑇𝑀 ′ = (E:E/𝜔𝑀 ′)𝑇𝑀 ,

∙ the parse building function ↓𝑀 ′ , where ↓𝑀 ′(𝝎) is a tree rooted in the unique identifier

𝜔𝑀 ′ , which has a single child ↓𝑀 (𝝎), and

∙ the parse scoring function JK𝑀 ′ , where J𝑡K𝑀 ′ = J𝑡 ′K𝑀 ⋅ 𝐺(𝑡), and 𝑡 ′ being the subtree

that is the child of the root non-literal 𝜔𝑀 ′ .

In this chapter, we use the shorthand notation 𝑁partial[𝑀,𝐺] = 𝑁 [𝑀,𝐺]. An algorithm

that builds neuralized pNFSTs is listed in Algorithm 3. Note that while feature and literal

neuralization operators map NFSTs to real machine weights, the parse neuralization

operator takes a pNFST and a scoring function as input, and produces a new pNFST as

output.

8.2.2 Traversal scoring under partial neuralization

We may see the pNFST formalism as a parametric family of NFSTs that define mark string

scoring functions in specific ways: instead of scoring mark strings 𝝎 under a single opaque

mark string scoring function 𝐺, mark string weights under pNFSTs are ∏𝑡 𝐺𝑡(𝑡), namely
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Algorithm 3: An algorithm for building the pNFST 𝑁 [𝑀,𝐺].
Input:

∙ 𝑀 is a pNFST

∙ (𝐺 ∶  → ℝ) is a parse scoring function

Output: A pNFST 𝑀 ′ = 𝑁 [𝑀,𝐺]
𝜔𝑀 ′ ← some unique identifier of (𝑀,𝐺) ;

Assert 𝜔𝑀 ′ ∈ 𝐶 ;

𝑇𝑀 ′ ← (E:E/𝜔𝐺)𝑇𝑀 ;

return (𝑇𝑀 ′ , ↓𝑀 ′ , JK𝑀 ′)
Function ↓𝑀 ′(𝝎):

Assert the first symbol of 𝝎: 𝜔0 = 𝜔𝑀 ′ ;

𝑡 ← a tree with root 𝜔𝑀 ′ ; and the subtree ↓𝑀 (𝝎1∶) as its child ;

return 𝑡 ;

Function JK𝑀 ′(𝑡):

Assert the root of 𝑡 is a non-literal 𝜔𝑀 ′ ;

Assert the root of 𝑡 has a single subtree 𝑡 ′ ;

return J𝑡 ′K𝑀 ⋅ 𝐺(𝑡) ;

products of scores of 𝝎’s subsequence parses 𝑡 , under some parse scoring function 𝐺𝑡 .

Now a question is: how do we parametrize these 𝐺𝑡 ’s? One way is to parametrize them

as functions of parse traversals, which can be regarded as strings. For example, we can

traverse a parse in a depth-first left-to-right order. Such traversal strings may contain

symbols from both Ω and 𝐶 . Therefore, 𝐺𝑡 can be regarded a weighted language, with a

support a subset of (Ω ∪ 𝐶)∗. In this chapter, we parametrize parse scoring functions If we

further specify them as ELNCP mark string scoring functions, we can recover the behavior

of NFSTs introduced in § 7. Below we discuss some issues concerning traversal order and

the parse scoring functions that score them:
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Multiple neuralization and inter-pNFST dependency. We can recursively neuralize

a pNFST multiple times. Furthermore, as we will see in §8.3, it is also possible to combine

multiple pNFSTs into a larger pNFST. How should we parametrize the parse scoring

function of a composite pNFST? If every pNFST component in the composite pNFST makes

use of traversal-scoring in their parse scoring functions, we should arrange the traversals in

a way that honors the definition of parse scoring functions in Definition 8.2.4: specifically,

the parse score of inner pNFSTs should not depend on the outer context that falls outside

of the neuralize scope (since the autoregressive model has not seen outer context yet).

On the other hand, the score of a parse that encompass these subtrees can legitimately

be functions of these subtrees (and their traversals). Speaking loosely, an autoregressive

model of parse traversals should generate traversals among neuralized components first,

followed by unneuralized ones.

Shared computation. Under the pNFST formalism introduced in this chapter, each

neuralization operation gets its own scoring function argument: for example, the pNFST

𝑁 [𝑁 [𝑀,𝐺1], 𝐺2] undergoes two neuralizations, and two different functions 𝐺1 and 𝐺2

(which in this chapter are parameterized as sequence models of parse traversals) are

invoked. However, in practice we may want to share computation between different scoring

functions that operate on overlapping components in a parse. This can usually be done by

sharing some neural network layers between scoring functions. For example, 𝐺2 in the

example above may make use of layer embeddings of 𝐺1. Such kind of computation sharing
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is supported in many modern computation graph packages, such as PyTorch.

Probability interpretation of parse traversals. We previously noted that the machine

weight of a vanilla NFST can be interpreted as the probability that a randomly sampled

mark string is accepted by the mark projection of the NFST’s mark projection (§7.2.4.3).

In a similar spirit, we would like to (hopefully) interpret a pNFST’s machine weight (e.g.,

equations (8.1) and (8.2)) as the probability of some parse traversal, distributed according to

some (likely parametric and trained) sequence distributions.

However, the pNFSTs we describe in this chapter are formed under assumptions that

are quite different from that of NFSTs in § 7: in § 7 we generally assumed that all NFSTs are

induced using the very same mark string scoring function (which itself may be parametric

and trained), differing only in their topologies (i.e., MFST components). However, in this

chapter, a pNFST may be formed by combining other pNFSTs. There is generally no

guarantee that these pNFSTs will have the same parse scoring function, or the same parse

function. As a result, there is no guarantee that the same mark string from two different

pNFSTs will result in the same parse. Nor is there a guarantee that under two different

pNFSTs, the same parse will have identical scores.

There is another problem stemming from transforming parses (and hence mark strings)

into traversals, before scoring: if infinitely many different parses from the same pNFST can

have the same parse traversal, then the pNFST will have a divergent machine weight.

To circumvent those problems, we only work with pNFSTs that additionally satisfy the

two following properties:
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∙ Different mark strings always result in different parse traversals.
5

∙ The same mark string always results in the same parse, regardless of pNFST.

∙ The same parse always results in the same score, regardless of pNFST.

In other words, we assume that we can induce ‘universal’ parse function and parse

scoring function per the task we train and evaluate on, which allow us to train and decode

from pNFSTs the way we did NFSTs. This way, given an pNFST, we can still regard its

machine weight to be the probability that a string drawn from the distribution defined by

the induced parse scoring function is ‘accepted’ by the pNFST, in the sense that the string

matches one of the traversal strings under the pNFST.

8.2.2.1 Two variants of traversal-scoring parse scoring functions

As we said earlier, in this chapter, we parametrize 𝐺 in the partial neuralization operation

to score parse traversals. We need all parses’ traversal orders to be unambiguous, for 𝐺

to be a function. To this end, we define a traversal priority function of both literals and

non-literals:

Definition 8.2.5. 𝑊 ∶ (𝐶 ∪Ω∗) → ℕ maps a non-literal or literal to its traversal priority.

5
Strictly speaking, this property is not required if we can guarantee that pNFST machine weights (that we

consider) never diverge. However, if one is to decode input-output pairs from parse traversals, this property

is a necessary condition (see a related discussion on recovering input-output string pairs from mark strings

in §7.2.4.3).

276



CHAPTER 8. NEURALIZATION OF REGULAR EXPRESSIONS

r1

r2

𝝎

Figure 8.1: Example parse.

In this chapter, when the definition of a traversal priority function is omitted, we

arbitrarily define 𝑊 (𝜔) = 1, ∀𝜔 ∈ (𝐶 ∪ Ω∗). We can now consider the two parse scoring

variants. At a high level, they differ in how they treat parse subtrees that correspond to

previously neuralized pNFSTs: should we still traverse inside these subtrees (since this is

the default traversal behavior), or should we skip these subtrees (since they have already

been traversed)?

Double scoring. Under the first option, we first visit each root non-literal introduced by

the partial neuralization operator. We visit them in an order that honors both the

neuralization dependency (so that the parse of an inner pNFST always gets traversed

before an outer one), and the traversal priority function (so that a pNFST parse with

a higher priority root non-literal is traversed first). Upon visiting a pNFST parse’s

root non-literal, we do a preorder depth-first traversal in the parse, visiting siblings

in the descending traversal priority order.

We use Figure 8.1 as an example pNFST parse. Assume that both r1 and r2 are

root non-literals introduced by the partial neuralization operator, which partially

neuralizes with 𝐺1 and 𝐺2 respectively. To derive a parse traversal, we will first visit
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r2, since root depends on it. Then, doing traversal in the subtree rooted in r2, we

will visit the literal 𝝎. After r2 we will visit its parent root, and start another DFS

traversal from there. The complete traversal in Figure 8.1 would be r2 𝝎 r1 r2 𝝎, where

the literal 𝝎 will be scored by the inner pNFST’s parse scoring function, while first

node and the last 3 nodes r1 r2 𝝎 will be scored by the outer pNFST’s parse scoring

function.

Let’s now discuss the parse scores of the inner and outer pNFSTs. The inner pNFST is

agnostic of its surrounding context. Therefore, its parse scoring function evaluates the

literal 𝝎 without any conext: namely 𝐺2(𝝎). As for 𝐺1, it has to account for all other

symbols (nodes) in the traversal. Unlike 𝐺2, 𝐺1 gets to freely look at symbols that are

being scored by other parse scoring functions, namely 𝐺2. Since we parametrize both

𝐺1 and 𝐺2 as autoregressive models, we denote context as conditional probability.

The overall parse score of Figure 8.1 is thus 𝐺1(r2) ⋅ 𝐺2(𝝎) ⋅ 𝐺1(r1 r2 𝝎 ∣ r2 𝝎).

We reiterate that these autoregressive models of parse traversals are not generative

models of parses. They are generally leaky; they generally assign non-zero probability

to invalid parse traversals, not dissimilar to how a mark string scoring function may

have support outside the mark projection of an MFST it is coupled with (§ 7).

No double scoring. The no-double-scoring variant differs from the double-scoring variant

we just introduced above in that it does not traverse a subtree more than once. For

example, the complete traversal in Figure 8.1 under a no-double-scoring variant
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would be r2 𝝎 root, where the first 2 nodes r2𝝎 will be scored by the inner pNFST’s

parse scoring function, while the last node root will be scored by the outer pNFST’s

parse scoring function.

The parse score of Figure 8.1 under a no-double-scoring variant can be similarly

derived as 𝐺1(r2) ⋅ 𝐺2(𝝎) ⋅ 𝐺1(r1 ∣ r2 𝝎).

In this work, we consider both double-scoring and no-double-scoring variants of 𝐺:

double-scoring in §8.4, and no-double-scoring in §8.5.

8.2.2.2 Parameter estimation and inference

The weight of mark string 𝝎 of pNFST 𝑀 , whose parse scoring function scores traversals,

takes the form of J𝝎K𝑀 = ∏𝑡 𝐺(𝑡) = ∏𝑖 𝑝𝜽 (𝜔′
𝑖 ∣ 𝝎′

<𝑖), where 𝝎′ ∈ Ω∗ ∪ 𝐶 . By parametrizing

𝑝𝜽 as a normalized distribution (i.e., ∑𝝎′∈∈(Ω∪𝐶)∗ 𝑝𝜽 (𝝎)) = 1, parameters of pNFSTs can

be estimated as described in §7.4, following Lemma 7.4.1. Moreover, we continue to do

amortized inference with particle smoothing, following §7.5.2.1.

8.2.3 pNFST in action

To illustrate what pNFSTs add to vanilla NFSTs, let’s consider the following MRE that

transduces (abc)* back to themselves as both output and mark strings:

MRE 8.2.20: An MRE

(a:a/ab:b/bc:c/c)*
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root

bbb#aaa#ccc#

Figure 8.2: ↓𝑀 (abcabcabc)

The mark projection of MRE 8.2.20 is the regular language {(abc)𝑛 ∣ 𝑛 ∈ ℕ ∪ {0}}.

While it is impossible to design an MRE whose mark projection is non-regular, we will

describe how to build a pNFST 𝑀 upon MRE 8.2.20 whose mark string scoring function

scores non-regular languages. We define 𝑀 = (𝑇𝑀 , ↓𝑀 , JK𝑀 ) as follows:

∙ 𝑇𝑀 is defined to be the MFST in MRE 8.2.20,

∙ ↓𝑀 is defined as a function that takes as input string of the form (abc)𝑛, 𝑛 ∈ ℕ ∪ {0},

and outputs a parse rooted in the node root that is one level high, and has a singleton

literal leaf node of the form b𝑛#a𝑛#c𝑛#. For example, on input𝝎 = abcabcabc, ↓𝑀 (𝝎)

produces the tree in Figure 8.2.

∙ Given all our parses admit exactly one traversal order, the design of the traversal

priority function (Definition 8.2.5) is not a big concern. We arbitrarily let 𝑊 (𝝎) =

1, ∀𝝎 ∈ 𝐶 ∪ Ω∗
.

∙ JK𝑀 , the parse scoring function, is defined to score parse traversals (as in §8.2.2).

Given our simple parses, we arbitrarily design all traversals to be of the form root𝝎.

Finally, we parametrize the traversal scoring function to be ELN.

Under the pNFST 𝑀 , each mark string from the mark projection of MRE 8.2.20, which

is of the form (abc)𝑛, will effectively be rearranged to the form b𝑛a𝑛c𝑛, preceded by the
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root non-literal, then scored. Note that the arranged mark strings now form a non-regular

language — all the b symbols are moved to the beginning, regardless of their original

positions (from the machine 𝑇𝑀Ω).

Non-regularness through parse structure. We showed above a design of pNFST that

effectively make an NFST’s mark language non-regular, through ↓𝑀 that reorders mark

symbols. Parses of 𝑀 are shallow: they are all one-level deep parses, where the only

leaf node of a parse is a shuffled version of the input mark string 𝝎. Below we will also

describe an alternative design of pNFST 𝑀 ′
whose parses are more complicated. We define

𝑀 ′ = (𝑇𝑀 ′ , ↓𝑀 ′ , JK𝑀 ′) as follows:

∙ 𝑇𝑀 ′ is defined as the MRE in MRE 8.2.21, which is very similarly defined as in

MRE 8.2.20, but has additional marks that indicate positions in a parse tree.

MRE 8.2.21: MRE 8.2.20 with annotations on the structure.

((a:a/a subtree-a(b:b/b subtree-b))c:c/c subtree-c)*

∙ ↓𝑀 ′ is defined as a function that builds up a parse from a mark string 𝝎 in the

following way: given an input mark string 𝝎, the resultant parse will be structured as

in Figure 8.3, where 𝝎𝑎, 𝝎𝑏 , and 𝝎𝑐 are literals, and the rest of nodes are non-literals.

Moreover, 𝝎𝑎 will be a concatenation of mark symbols in 𝝎 that are immediately

followed by subtree-a, with an additional # suffix, and similarly for 𝝎𝑏 and 𝝎𝑐 . For

example, suppose 𝝎 = abcabcabc, ↓𝑀 ′ (𝝎) would be the parse in Figure 8.4.
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root

r2

𝝎𝑎 r3

𝝎𝑏

𝝎𝑐

Figure 8.3: Structure of parses produced by ↓𝑀 ′ .

root

r2

aaa# r3

bbb#

ccc#

Figure 8.4: ↓𝑀 ′ (abcabcabc).
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∙ We define the priority function 𝑊 in a way that r3 is traversed before literal strings.

Quite arbitrarily, we define:

– 𝑊 (r3) = 10

– 𝑊 (𝝎) = 1, ∀𝝎 ∈ (𝐶 ∪ Ω∗) − {r3}.

∙ JK𝑀 ′ first does a preorder depth-first traversal in a given parse 𝑡 , and returns the

traversal’s score. Using the parse listed in Figure 8.4 as our example here: a preorder

depth-first traversal would yield the following string: root r2 r3 bbb# aaa# ccc#.
6

Such strings form a non-regular language (as in the case of 𝑀 ).

Again, both pNFSTs that we have shown above (𝑀 and 𝑀 ′
) enables lookahead for

autoregressive mark string scoring functions, by manipulating mark strings from an MFST’s

mark projection, before scoring them using sequence models. These two pNFSTs differ in

how they manipulate the mark strings, though: 𝑀 directly rearranged the mark symbols

on a mark string; while 𝑀 ′
achieved the same goal, by building up a parse whose traversal

yields the desired mark symbol order.

𝑀 ′
on the other hand took a more roundabout path. The parse building function ↓𝑀 ′

did not know to reordering the b symbols before a’s. But rather, ↓𝑀 ′ put mark symbols

in their places in a parse. And the symbol reordering is implicitly done during the parse

6
In general we need more than a preorder traversal to reconstruct a tree. For example, if we also have

an inorder traversal we will be able to reconstruct a parse. Given only a preorder traversal we would need

more knowledge of the parse’s structure to ensure that the parse traversal identifies with a unique parse

(e.g., the knowledge that r2 has two children and that r3 has a single child). Nonetheless, even if we cannot

ensure that a parse traversal uniquely identifies with a parse, it might still not pose as a problem, as long as

we can ensure that a pNFST’s machine weight does not diverge through other means (see the discussion in

§8.2.2).
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tree traversal. While 𝑀 ′
seemed to have built up unnecessarily complicated parses to do a

very simple string manipulation task (when compared to 𝑀), we will show later in §8.3

that complicated parse-building function (e.g., ↓𝑀 ′ above) can be pragmatically built from

smaller components. We will also show that such parses allow us to simulate familiar

regular operations of WFSTs.

8.3 Neural rational operators

In this section, we define neural rational operators (NROs) that generalize regular expression

operators. More formally, we would like to implement (as algorithms) rational operations,

as well as composition (Mohri, 2009) for pNFSTs. The properties of these rational operations

are defined below:

Definition 8.3.1. Concatenation Let 𝑀1 and 𝑀2 be pNFSTs. the concatenation 𝑀1.𝑀2 is

defined by

∀(𝐱, 𝐲) ∈ Σ∗ × Δ∗, J𝑀1.𝑀2K(𝐱, 𝐲) ≜ ∑
𝐱=𝐱1𝐱2,𝐲=𝐲1𝐲2

J𝑀1K(𝐱1, 𝐲1)J𝑀2K(𝐱2, 𝐲2).

Union Let 𝑀1 and 𝑀2 be pNFSTs. 𝑀1|𝑀2 is defined by

∀(𝐱, 𝐲) ∈ Σ∗ × Δ∗, J𝑀1|𝑀2K(𝐱, 𝐲) ≜ J𝑀1K(𝐱, 𝐲) + J𝑀2K(𝐱, 𝐲).
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Closure Let 𝑀 be a pNFST. 𝑀 ∗

J𝑀 ∗K(𝐱, 𝐲) ≜
∞

∑
𝑛=0

J𝑀𝑛K(𝐱, 𝐲),

where 𝑀𝑛 =

𝑛⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑀.… .𝑀 .

Composition Let 𝑀1 and 𝑀2 be pNFSTs, where 𝑇𝑀1 has input and output alphabets Σ and

Γ, and 𝑇𝑀2 input and output alphabets Γ and Δ. We say

J𝑀1◦𝑀2K(𝐱, 𝐲) ≜ ∑
𝐳∈Γ∗

[J𝑀1K(𝐱, 𝐳) ⋅ J𝑀2K(𝐳, 𝐲)] .

For weighted FSTs, these rational operations can be implemented by manipulating

finite-state topology. But in our case, our NROs build new pNFSTs that have new finite-

state topologies, new parsing functions, and new scoring functions. As a result, just like

the redefined neuralization operator (Algorithm 3), there is an explicit ‘compile phase’

when NROs are being applied, where we parametrize 𝑇𝑀 , ↓𝑀 , and JK𝑀 .
7

We will describe

algorithms that build these NROs in the compile phase.

8.3.1 Concatenation

7
Alternatively, these functions can be presented as curried higher-order functions, where arguments

that are functions of other pNFSTs are not explicitly precomputed. We opt for the ‘compile/run’ two phase

presentation because it more closely mirrors our current implementation, where fixed computation graphs

are ‘compiled’ before we evaluate them.
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MFST 8.3.10: Topology of 𝑇𝑀 in Algorithm 4

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6
𝜖 ∶ 𝜖/<1> 𝑀1𝑇 𝜖 ∶ 𝜖/<2> 𝑀5𝑇 𝜖 ∶ 𝜖/<#>

The concatenation NRO (denoted with ‘.’) concatenates two pNFSTs 𝑀1 and 𝑀2 (Defini-

tion 8.3.1). Let 𝑀 = 𝑀1.𝑀2, there exist many algorithms that build an pNFST 𝑀 that satisfies

the concatenation property of Definition 8.3.1. In this thesis we mere give an example

algorithm BuildConcat, such that 𝑀 = BuildConcat(𝑀1, 𝑀2) = 𝑀1.𝑀2 in Algorithm 4.

At a high level, we build 𝑇𝑀 , ↓𝑀 , and JK𝑀 as follows:

∙ 𝑇𝑀 is a concatenation of the two marked FSTs 𝑇𝑀1 and 𝑇𝑀2 , separated by three special

marked symbols, as depicted in MFST 8.3.10; and

∙ the parse building function ↓𝑀 takes as input a mark string in 𝑇𝑀Ω, where every

string is of the form <1>𝐚<2>𝐛#. ↓𝑀 returns a parse with non-literal Concat as its

root, and ↓𝑀1 (𝐚) and ↓𝑀2 (𝐛) as left and right subtrees respectively; and

∙ the parse scoring function JK𝑀 is a function that takes a parse whose root node is

Concat as input, and returns J𝑡1K𝑀1
⋅ J𝑡2K𝑀2

, where 𝑡1 and 𝑡2 are the left and right

subtrees of the root node Concat respectively.

We can show that BuildConcat behaves as expected:

Proposition 8.3.1. BuildConcat(𝑀1, 𝑀2) = 𝑀1.𝑀2 (as defined in Definition 8.3.1).
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Proof. Let 𝑀 = BuildConcat(𝑀1, 𝑀2). By equation (8.2) we have

J𝑀K(𝐱, 𝐲) = ∑
𝝎∈𝐱◦𝑇𝑀 ◦𝐲

J↓𝑀 (𝝎)K𝑀 .

We observe that there is a bijective mapping between 𝑇𝑀1Ω × 𝑇𝑀2Ω and 𝑇𝑀Ω: ∀𝝎 ∈ 𝑇𝑀Ω, 𝝎 is

of the form <1>𝝎1<2>𝝎2# where 𝝎1 ∈ 𝑇𝑀1Ω and 𝝎2 ∈ 𝑇𝑀2Ω. Therefore, we further have

J𝑀K(𝐱, 𝐲) = ∑
𝝎1∈𝐱1◦𝑇𝑀1 ◦𝐲1,𝝎2∈𝐱2◦𝑇𝑀2 ◦𝐲2

J↓𝑀 (<1>𝝎1<2>𝝎2#)K𝑀 ,

where 𝐱1.𝐱2 = 𝐱 and 𝐲1.𝐲2 = 𝐲. Furthermore, by the definitions of ↓𝑀 and JK𝑀 , we have

J𝑀K(𝐱, 𝐲) = ∑
𝝎1∈𝐱1◦𝑇𝑀1 ◦𝐲1,𝝎2∈𝐱2◦𝑇𝑀2 ◦𝐲2

J↓𝑀1 (𝝎1)K𝑀1
J↓𝑀2 (𝝎2)K𝑀2

= J𝑀1.𝑀2K(𝐱, 𝐲).

8.3.2 Union

The union NRO (denoted with ‘|’) takes the union of two pNFSTs𝑀1 and𝑀2. As in §8.3.1, we

give an example algorithm BuildUnion (Algorithm 5), such that𝑀 = BuildUnion(𝑀1, 𝑀2) =

𝑀1|𝑀2. Again, the high level-sketch is that we build 𝑇𝑀 , ↓𝑀 , and JK𝑀 as follows:
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Algorithm 4: BuildConcat(𝑀1, 𝑀2).
Input:

∙ 𝑀1 and 𝑀2 are pNFSTs

Output: A pNFST 𝑀 = 𝑀1 .𝑀2
Find three symbols ∈ Ω that have not been used. If this impossible, raise an exception. Otherwise, refer to these three symbols as <1>, <2>, #. Mark them as special

symbols ∈ Ω ;

Parametrize functions ↓𝑀 and JK𝑀 using 𝑀1 , 𝑀2 , and {<1>, <2>, #} ;

return (𝑇𝑀′ (), ↓𝑀 , JK𝑀 ) ;

Function 𝑇𝑀():

𝑞1 ← a marked FST initial state ;

𝑞6 ← a marked FST accepting state ;

𝑞{2,3,4,5} ← marked FST states ;

Add arcs between 𝑞1 and 𝑞2 , and 𝑞3 and 𝑞4 , and 𝑞5 and 𝑞6 as depicted in MFST 8.3.10 ;

Add an arc 𝜖 ∶ 𝜖/𝜖 between 𝑞2 and the start state of 𝑀1𝑇 ;

foreach final state 𝑞𝐹 of 𝑀1𝑇 do

Add an arc 𝜖 ∶ 𝜖/𝜖 between 𝑞𝐹 and 𝑞3 ;

end

Add an arc 𝜖 ∶ 𝜖/𝜖 between 𝑞4 and the start state of 𝑀2𝑇 ;

foreach final state 𝑞𝐹 of 𝑀2𝑇 do

Add an arc 𝜖 ∶ 𝜖/𝜖 between 𝑞𝐹 and 𝑞5 ;

end

𝑀𝑇 ← a marked FST consisting of all states and arcs of 𝑀1𝑇 , 𝑀2𝑇 , 𝑞1…6 , and all arcs connected to 𝑞1…6 , with 𝑞1 as the initial state, and 𝑞6 as the sole

accepting state ;

Function ↓𝑀(𝝎):

Assert {<1>, <2>, #} all occur exactly once in 𝝎 ;

Assert 𝝎 starts with symbol <1> and ends with symbol # ;

𝐚 ← substring of 𝝎 that occur between <1> and <2> ;

𝐛 ← substring of 𝝎 that occur between <2> and # ;

𝑅 ← (Concat𝑀1↓(𝐚)𝑀2↓(𝐛)) ;

return 𝑅 ;

Function JK𝑀(𝑡):

Assert the root of 𝑡 is Concat ;

Assert the root of 𝑡 has two children. Let the subtree rooted at the left child be 𝑡1 , and the subtree rooted at the right child be 𝑡2 ;

return J𝑡1K𝑀1 ⋅ J𝑡2K𝑀2 ;

∙ 𝑇𝑀 is a union of the two marked FSTs 𝑇 ′
𝑀1

and 𝑇 ′
𝑀2

, where 𝑇 ′
𝑀1

is obtained by adding

two arcs to the marked FST𝑇𝑀1 ; and 𝑇 ′
𝑀2

is similarly obtained from 𝑇𝑀2 , as illustrated

in MFST 8.3.11.

∙ The parse building function ↓𝑀 takes as input a mark string 𝝎 in 𝑇𝑀Ω, where every

string is of the form <1>𝝎′# or <2>𝝎′#. ↓𝑀 returns a parse with root node Union

and two children. The left child is the first symbol of 𝝎 (i.e., either <1> or <2>). And

the right child is a subtree: ↓𝑀1 (𝝎′).

∙ The parse scoring function JK𝑀 takes as input a parse with Union as its root node,

with exactly two children. If the root node Union has a left child <1>, return J𝑡 ′K𝑀1
.

Otherwise (i.e., the root node’s left child is <2>), return J𝑡 ′K𝑀2
.
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MFST 8.3.11: Topology of 𝑇𝑀 in Algorithm 5

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑞6

𝜖 ∶ 𝜖/<1>

𝑀1𝑇

𝜖 ∶ 𝜖/<2>

𝑀5𝑇

𝜖 ∶ 𝜖/<#>

𝜖 ∶ 𝜖/<#>

Algorithm 5: BuildUnion(𝑀1, 𝑀2).
Input:

∙ 𝑀1 and 𝑀2 are pNFSTs

Output: A pNFST 𝑀 = 𝑀1 .𝑀2
Find two symbols ∈ Ω that have not been used. If this impossible, raise an exception. Otherwise, refer to these three symbols as <1> and <2>. Mark them as special

symbols ∈ Ω ;

Parametrize functions ↓𝑀 and JK𝑀 using 𝑀1 , 𝑀2 , and {<1>, <2>, #} ;

return (𝑇𝑀′ (), ↓𝑀 , JK𝑀 ) ;

Function 𝑇𝑀():

𝑞1 ← a marked FST initial state ;

𝑞6 ← a marked FST accepting state ;

𝑞{2,3,4,5} ← marked FST states ;

Add arcs between 𝑞1 and 𝑞2 , and 𝑞1 and 𝑞3 , 𝑞4 and 𝑞6 , and 𝑞5 and 𝑞6 , as depicted in MFST 8.3.11 ;

Add an arc 𝜖 ∶ 𝜖/𝜖 between 𝑞2 and the start state of 𝑀1𝑇 ;

Add an arc 𝜖 ∶ 𝜖/𝜖 between 𝑞3 and the start state of 𝑀2𝑇 ;

foreach final state 𝑞𝐹 of 𝑀1𝑇 do

Add an arc 𝜖 ∶ 𝜖/𝜖 between 𝑞𝐹 and 𝑞4 ;

end

foreach final state 𝑞𝐹 of 𝑀2𝑇 do

Add an arc 𝜖 ∶ 𝜖/𝜖 between 𝑞𝐹 and 𝑞5 ;

end

𝑀𝑇 ← a marked FST consisting of all states and arcs of 𝑀1𝑇 , 𝑀2𝑇 , 𝑞1…6 , and all arcs connected to 𝑞1…6 , with 𝑞1 as the initial state, and 𝑞6 as the sole

accepting state ;

Function ↓𝑀(𝝎):

Assert <#> occurs exactly once in 𝝎 ;

Assert either <1> occurs exactly once in 𝝎, or <2> occurs exactly once in 𝝎 ;

Assert 𝝎 starts with either <1> or <2>;

Assert 𝝎 ends with <#>;

𝝎′ ← substring of 𝝎 that occur after either <1> or <2> and before <#>;

if 𝝎 starts with <1> then

𝑅 ← (Union <1>↓𝑀1 (𝝎
′)) ;

else

𝑅 ← (Union <2>↓𝑀2 (𝝎
′)) ;

return 𝑅 ;

Function JK𝑀(𝑡):

𝑟 ← root of 𝑡 ;

Assert 𝑟 = Union ;

Assert 𝑟 has two children.;

Assert left child of 𝑟 is either <1> or <2>.;

𝑡′ ← right subtree of 𝑟 ;

if left child of 𝑟 is <1> then

return J𝑡′K𝑀1 ;

else

return J𝑡′K𝑀2 ;
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Proposition 8.3.2. BuildUnion(𝑀1, 𝑀2) = 𝑀1|𝑀2 (as defined in Definition 8.3.1).

8.3.3 Composition

We define the composition NRO (denoted with ‘◦’) to compose two pNFSTs 𝑀1 and 𝑀2. As

in §§8.3.1 and 8.3.2, we exhibit an example algorithm BuildComposition, such that 𝑀 =

BuildComposition(𝑀1, 𝑀2) = 𝑀1◦𝑀2. Similar to Algorithms 4 and 5, BuildComposition

builds 𝑇𝑀 , ↓𝑀 , and JK𝑀 :

∙ The construction of 𝑇𝑀 is more involved in the BuildComposition case. We first

obtain MFSTs 𝑇 ′
𝑀1

and 𝑇 ′
𝑀2

from 𝑇𝑀1 and 𝑇𝑀2 , where each arc is prepended with special

symbols <1> and <2> respectively. An example of 𝑇 ′
𝑀1

is in MFST 8.3.12.

∙ ↓𝑀 takes as input a mark string 𝝎 in 𝑇𝑀Ω, where every string is of the pattern (𝑎𝝎′)∗,

𝑎 ∈ {<1>, <2>}, and 𝝎′
is a string ∈ Ω∗

that does not contain either <1> or <2>.

↓𝑀 collects all subsequences 𝝎′
, and concatenate them into two strings: 𝝎1 from

subsequences that were prefixed by <1>, and 𝝎2 by <2>. Finally, ↓𝑀 returns a tree

with root node Composition, with ↓𝑀1 (𝝎1) and ↓𝑀2 (𝝎2) as left and right trees,

respectively.

∙ JK𝑀 takes as input an parse 𝑡 with Composition as its root node, with exactly two

subtrees: the left tree 𝑡1 and the right tree 𝑡2. J𝑡K𝑀 returns the scalar J𝑡1K𝑀1
⋅ J𝑡2K𝑀2

.
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MFST 8.3.12: Example topology of 𝑇 ′
𝑀1

in Algorithm 6.

𝑞1

𝑞2

𝑞3

𝑞4

a ∶ x/<1><i-a><2><o-x>

b ∶ 𝜖/<1><i-b>

𝜖 ∶ 𝜖/<1>

𝜖 ∶ yz/<2><o-y><o-z>

Algorithm 6: BuildComposition(𝑀1, 𝑀2).
Input:

∙ 𝑀1 and 𝑀2 are pNFSTs

Output: A pNFST 𝑀 = 𝑀1 .𝑀2
Find two symbols ∈ Ω that have not been used. If this impossible, raise an exception. Otherwise, refer to these three symbols as <1> and <2>. Mark them as special

symbols ∈ Ω ;

Parametrize functions ↓𝑀 and JK𝑀 using 𝑀1 , 𝑀2 , and {<1>, <2>} ;

return (𝑇𝑀′ (), ↓𝑀 , JK𝑀 ) ;

Function 𝑇𝑀():

𝑇 ′
𝑀1

← modified 𝑇𝑀1 , with mark symbol <1> prepending each arc (in the manner of MFST 8.3.12) ;

𝑇 ′
𝑀2

← modified 𝑇𝑀2 , with mark symbol <2> prepending each arc;

return 𝑇𝑀1 ◦𝑇𝑀2 ;

Function ↓𝑀(𝝎):

𝝎1 ← concatenation of longest subsequences of 𝝎, each of which starts with <1>, and does not contain <2> ;

𝝎2 ← concatenation of longest subsequences of 𝝎, each of which starts with <2>, and does not contain <1> ;

return (Composition ↓𝑀1 (𝝎1) ↓𝑀2 (𝝎2)) ;

Function JK𝑀(𝑡):

𝑟 ← root of 𝑡 ;

Assert 𝑟 = Composition ;

Assert 𝑟 has exactly two children. ;

𝑡1 ← left subtree of 𝑟 ;

𝑡2 ← right subtree of 𝑟 ;

return J𝑡1K𝑀1 ⋅ J𝑡2K𝑀2

Proposition 8.3.3. BuildComposition(𝑀1, 𝑀2) = 𝑀1◦𝑀2 (as defined in Definition 8.3.1).

8.3.4 Kleene closure

The Kleene closure NRO (denoted with ‘
∗
’) takes a pNFST𝑀0 as input. We give an example

BuildClosure, such that 𝑀 = BuildClosure(𝑀0) = 𝑀0
∗
. Our construction below bears
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similarity to that of BuildConcat (§8.3.1): here we also make use of a special mark symbol

to indicate string boundaries.

As with our other NROs, BuildClosure (Algorithm 7) define 𝑇𝑀 , ↓𝑀 , and JK𝑀 :

∙ 𝑇𝑀 = (𝑇𝑀0 .𝑆)∗ is a Kleene closure of the MFST 𝑇𝑀0 .𝑆, where the MFST 𝑆 acts as a

sentinel. Each mark string 𝝎 ∈ (𝑇𝑀 )Ω is either an empty string, or of form 𝝎1#…𝝎𝐾#,

where ∀𝑘 ∈ [1, 𝐾 ],𝝎𝑘 ∈ (𝑇𝑀0)Ω, and 𝑠 ∈ Ω is a ‘guard’ mark only used in this context.

∙ ↓𝑀 takes as input a mark string 𝝎, where either 𝝎 = 𝜖, or 𝝎 = 𝝎1#…𝝎𝐾# ∈ (𝑇𝑀 )Ω.

∀𝝎 ≠ 𝜖, ↓𝑀 (𝝎) is a 𝐾 -ary tree with root node Closure, with 𝐾 ↓ 𝑀0(𝝎𝑘), ∀𝑘 ∈ [0..𝐾 ],

as the subtrees.

∙ JK𝑀 takes as input a parse 𝑡 with Closure as its root node. When 𝑡 is a singleton

tree, JK𝑀 (𝑡) = 1. Otherwise JK𝑀 (𝑡) = ∏𝐾
𝑘=1 JK𝑀0

(𝑡𝑘), where 𝑡𝑘 is the 𝑘-th subtree of 𝑡 .

Algorithm 7: BuildClosure(𝑀0).
Input:

∙ 𝑀0 is a pNFST

Output: A pNFST 𝑀 = 𝑀0∗

Find a symbol ∈ 𝐶 that have not been used. If this impossible, raise an exception. Otherwise, refer to this symbols as # ;

Parametrize functions ↓𝑀 and JK𝑀 using 𝑀0 and # ;

return (𝑇𝑀 (), ↓𝑀 , JK𝑀 ) ;

Function 𝑇𝑀():

𝑞1 ← a marked FST initial state ;

𝑞2 ← a marked FST accepting state ;

Add arcs between 𝑞1 and 𝑞2 as depicted in MFST 8.3.13 ;

Function ↓𝑀(𝝎):

𝝎1 …𝝎𝐾 ← substrings of 𝝎 separated by # ;

foreach 𝑘 ∈ [1…𝐾 ] do

𝑡𝑘 ←↓𝑀0 (𝝎𝑘 ) ;

end

𝑅 ← (Closure 𝑡1 … 𝑡𝑘 ) ;

return 𝑅 ;

Function JK𝑀(𝑡):

Assert the root of 𝑡 is Closure ;

𝑡1 … 𝑡𝐾 ← subtrees of 𝑡 ;

return ∏𝐾
𝑘=1J𝑡𝑘K𝑀0 ;
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MFST 8.3.13: Topology of 𝑇𝑀 in Algorithm 7

𝑞1 𝑞2
𝑀0𝑇

𝜖 ∶ 𝜖/#

Proposition 8.3.4. BuildClosure(𝑀0) = 𝑀 ∗
0 (as defined in Definition 8.3.1).

8.4 Capacity of NREs with autoregressive 𝐺’s

In §7.7 we said that a major limitation of NFSTs with autoregressive scoring functions —

(𝜏 , 𝐺)— is that the MFST component 𝜏 may not be very interpretable, if we are to capture

certain ‘hard’ string pair distributions. On the other hand, pNFSTs can capture more difficult

distributions, even with MFSTs that have interpretable topologies. The additional power

is due to the flexibility of processing parses in a pNFST in a different order than their

corresponding subsequences. Such flexibility allows ‘easy’ subsequences in a mark string

to be processed first, which is not possible under an autoregressive scoring function that

scores a mark string in a left-to-right fashion.

In this section, we use 3-Sat as an example, to make the point that some MFST topologies

do not have any good corresponding mark string scoring functions, if we limit ourselves to

autoregressive model families (i.e., ELNCP weighted languages); but such problem goes

away under pNFSTs. Under this example task, we want to transduce a Boolean CNF formula
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𝝓 of variables {𝐴𝑛 ∶ 1 ≤ 𝑛 ≤ 𝑁 , 𝑁 ∈ ℕ}, into a string of satisfying variable assignments

𝐚 ∈ 𝔹∗
. For example, let 𝝓 = (A1 or ~A2 or A3) (A1 or ~A4), a satisfying variable

assignment would be 1101— namely 𝐴1 = 1, 𝐴2 = 1, 𝐴3 = 0, 𝐴4 = 1.

It is straightforward to design an MRE (namely MRE 8.4.22, with components from

MREs 8.4.23–8.4.29) whose relation is a superset of valid transductions:

MRE 8.4.22: SatRE

Clause
∗
Assignment

∗

MRE 8.4.23: Assignment

(E:0/0|E:1/1)

MRE 8.4.24: Clause

OneLit|TwoLit|ThreeLit

MRE 8.4.25: NegVar

(~:E/negate|E:E/E)Var

MRE 8.4.26: Var

(A1:E/A1 | A2:E/A2…)
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MRE 8.4.27: OneLit

(:E/start-clause NegVar ):E/end-clause

MRE 8.4.28: TwoLit

(:E/start-clause NegVar or:E/or NegVar ):E/end-clause

MRE 8.4.29: ThreeLit

(:E/start-clause NegVar or:E/or NegVar or:E/or NegVar ):E/end-clause

However, there is no 𝐺 ∈ ELNCP such that (SatRE, 𝐺) captures this transduction task.

More formally:

Proposition 8.4.1. There is no 𝐺 ∈ ELNCP such that ∀𝐱 ∈ Σ∗, ∀𝐲 ∈ Δ∗, 𝑁 [SatRE, 𝐺](𝝓, 𝐚) >

0 if and only if 𝝓 is a formula satisfied by variable assignment 𝐚, assuming NP ⊈ P/poly.

Proof. Mark strings 𝝎 ∈ (𝝓◦SatRE◦𝐚)Ω have form 𝝓𝐚. We know from Theorem 3.2.2 that

there is no 𝐺 ∈ ELNCP such that 𝐺(𝝓𝐚) > 0 ⟺ 𝐚 satisfies 𝝓.

A possible fix is to add dummy marks at the start of mark strings, as latent variables

that hold a hypothesis of variable assignments, which 𝐺 can look behind at, to rule out

both invalid formulae and variable assignments that appear later. Indeed we used such an

MFST construction (MFST 7.3.5) to show how NFSTs can capture all NP-complete problems

(Proposition 7.3.2). However, such a technique introduces marks that do not annotate the
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string transduction in a meaningful way: they are only placeholders for random bits. Such

a technique also increases the number of latent variables in a mark string, which may in

turn increases the compute requirement of approximate inference at a given level.

Alternatively, we consider NRE 8.4.8, which is an NRE that has an MRE component

largely identical to MRE 8.4.22, with the only difference that we replace the MRE Assign-

ment (MRE 8.4.23) with NRE 8.4.7:

NRE 8.4.7: AssignmentNRE: pNFST replacement of Assignment (MRE 8.4.23)

𝑁 [(E:0/0|E:1/1), 𝐺0]

And NRE 8.4.8 is itself neuralized:

NRE 8.4.8: SatNRE: pNFST replacement of SatRE (MRE 8.4.22)

𝑁 [Clause
∗
AssignmentNRE, 𝐺1]

Proposition 8.4.2. There exists 𝑝 ∶ Ω∗ → ℝ>0 ∈ ELN, a polytime algorithm transform ∶

Ω∗ → Ω∗
, and parse scoring functions 𝐺0, 𝐺1 such that

∙ ∀𝝎 ∈ Ω∗, J↓SatNRE (𝝎)KSatNRE = 𝑝(transform(𝝎)); and

∙ ∀𝐱 ∈ Σ∗, ∀𝐲 ∈ Δ∗, JSatNREK(𝝓, 𝐚) > 0 if and only if 𝝓 is a formula satisfied by variable

assignment 𝐚.

Proof. Intuitively, the weight of every mark string 𝝎 in the pNFST SatNRE is a product of

two parses’ weights, under 𝐺0 and 𝐺1 respectively. Under the construction of NREs 8.4.7
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and 8.4.8, 𝐺0 is applied first to score a parse 𝑡0 under AssignmentNRE, followed by the

application of 𝐺1 on its parse 𝑡1 =↓SatNRE (𝝎). Also note that 𝑡0 is a subtree of 𝑡1 by our

definition of the neuralization operation (§8.2), and can be extracted from 𝑡1 by a traversal

from the root of 𝑡0.

Now we parametrize the parse scoring functions as 𝐺0(𝑡0) = 𝑝(𝝎′), and 𝐺1(𝑡1) = 𝑝(𝝎′′),

where 𝝎′
is the mark subsequence obtained from a left-to-right traversal of 𝑡0, and 𝝎′′

is the mark subsequence obtained from a left-to-right traversal of 𝑡1. In other words, we

adopt for the double-scoring variant of partial neuralization (§8.2.2). There is a bijective

mapping between (𝝎′,𝝎′′) and their corresponding 𝝎 ∈ 𝑇SatNREΩ. We define the function

that extracts 𝝎′.𝝎′′
from 𝝎 as transform. transform can be implemented as an algorithm

that traverses through 𝑡1 twice, to extract 𝝎′
and 𝝎′′

respectively. Since each traversal

takes time linear in the tree’s size (𝑂(|𝑉 | + |𝐸|)), transform is a polytime algorithm.

We first argue ∀𝝓 ∈ Σ∗, ∀𝐚 ∈ Δ∗, JSatNREK(𝝓, 𝐚) > 0 ⟺ ∃𝝎 ∈ (𝝓◦𝑇SatNRE◦𝐚)Ω, such

that 𝑝(transform(𝝎)). To see this, we rewrite

JSatNREK(𝝓, 𝐚) = ∑
𝝎∈𝝓◦𝑇SatNRE◦𝐚Ω

J↓SatNRE (𝝎)KSatNRE

= ∑
𝝎∈𝝓◦𝑇SatNRE◦𝐚Ω

J↓SatNRE (𝝎)KSatNRE

= ∑
𝝎∈𝝓◦𝑇SatNRE◦𝐚Ω

𝑝(𝝎′𝝎′′).

We then argue 𝑝 ∈ ELN. The construction of 𝑝 is very similar to that of the proof
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of Theorem 3.3.1: 𝑝 has support over strings of the form 𝝎′𝝎′′
. 𝝎′

is a sequence of self-

consistent variable assignments; and it is efficient to decide whether their prefix probability

> 0, just by checking its self-consistency. As for the conditional distribution 𝑝(⋅ ∣ 𝝎′), the

construction largely follows our proof of Theorem 3.3.1.

8.5 Tackling the cold start problem in slot-filling

tasks using NREs

The compositional nature of NREs also allows us to decompose a transduction task into

multiple ones: given a transduction task in the form of an NRE, we may be able to train its

pNFST components on their respective subtasks separately. Afterwards, we put the trained

components together using NROs (§8.3), which define a new weighted string relation as

functions of the components’ relations.

The decompositional view is particularly helpful when we have a transduction task that

has little training data, but can be regarded as a combination of several smaller tasks, where

there is much training data. Adding new intents to digital assistants is one such example, as

we sketched in § 1: we may not have enough utterances to train a good NFST to recognize

the new intent; but we may have existing corpora to recognize slot types of the new intent.

In this section, we experiment on the snips dataset (first introduced in §7.5.1), and

specifically choose ‘PlayMusic’ as our ‘new’ intent. The PlayMusic intent has slot types

such as album, artist, track, playlist, etc. The standard snips dataset contains 2, 000
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utterances of PlayMusic instructions. In this section we simulate a cold start situation — that

is, we hold out a majority of these PlayMusic utterances in the training dataset. Without

signal from training data, we observe that the performance drops significantly across all

skills, and particularly so for PlayMusic.

However, there are datasets that provide ample data for training NFSTs that recognize

slot types of PlayMusic. For example, to recognize the slot types album, artist, and track,

we can scrape the Spotify Million Playlist Dataset (Chen et al., 2018a) for appropriate data.

We can subsequently train NFSTs that recognize these slot types. Finally, these NFSTs are

combined in an NRE to recognize PlayMusic intents.

In the following subsections, we will describe how we construct an decomposable NRE

in §8.5.1. We will also describe how we parametrize and train these components. Finally,

we discuss the experiment results.

8.5.1 Decomposable snips NRE

We define DecomposableSnipsNRE (NRE 8.5.9) as a neuralization of a union of several

intent-specific NREs, which implement BIO tagging through the use of NREs such as

NREs 8.5.10–8.5.13 and MREs 7.5.12 and 7.5.13. We also neuralize all slot types (i.e., Word

sequences that transduce into B and I tags) and annotate with indicating marks.

The pNFST defined in DecomposableSnipsNRE will first score parses that match any

slot types (e.g., under 𝐺′
𝜽 in AlbumNRE). After all slot types have been scored, the parse of

an entire mark string from (𝑇DecomposableSnipsNRE)Ω will be scored under 𝐺𝜽 .
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NRE 8.5.9: DecomposableSnipsNRE

𝑁 [(PlayMusicNRE|BookRestaurant|…), 𝐺𝜽]

NRE 8.5.10: PlayMusicNRE

(Outside|AlbumNRE|ArtistNRE|TrackNRE|…)∗

NRE 8.5.11: AlbumNRE

𝑁 [(E:B/B-album)Word((E:I/I-album)Word)∗, 𝐺′
𝜽]

NRE 8.5.12: ArtistNRE

𝑁 [(E:B/B-artist)Word((E:I/I-artist)Word)∗, 𝐺′′
𝜽 ]

NRE 8.5.13: TrackNRE

𝑁 [(E:B/B-track)Word((E:I/I-track)Word)∗, 𝐺′′′
𝜽 ]

8.5.2 Experiment setup

We compare between two configurations:
8

8
Our experiments in this chapter are designed to test the hypothesis that the compositionality of NREs

are useful in the cold-start scenario. But we note that there are other ways to make use of both datasets,

for an even better performance. For example, it may be possible to simultaneously train on both snips and

external datasets, using some multitask loss function. We leave a more thorough study for future work.
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Entry type Training set size Validation set size Example

Track 375687 117627 Rooba Rooba - From "Orange"
Album 176515 61295 Girls With Guitars
Artist 87253 31464 Cherry Pie

Table 8.1: Statistics and example entries of track, album and artist entries extracted from

Chen et al. (2018a).

End-to-end In this setup, we train DecomposableSnipsNRE in an end-to-end fashion.

Compositional In this setup, some NRE components in DecomposableSnipsNRE are

separately trained. Specifically, we train AlbumNRE, ArtistNRE, TrackNRE on

collections of corresponding entries extracted from Chen et al. (2018a). These NREs

are trained using the hyperparameters listed in §7.5.2.3, with separate validation

sets also extracted from Chen et al. (2018a). Some statistics of the training and

validation datasets for training these NREs, as well as some example entries, are

listed in Table 8.1.

We simulate a cold-start scenario, on modified snips datasets (§7.5.1): in these con-

figurations we remove the majority of utterances under the PlayMusic intent from the

training dataset, keeping only 10% to 50% of them in the training set. We keep the other

intents intact. The validation and test sets are also unchanged. We additionally compare

our results with the end-to-end configuration trained on all data, as well as vanilla NFST

(§7.5) trained on both the 10% split, and the full dataset.
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PlayMusic-only F1 Overall F1

% of retained

PlayMusic utter-

ances in training

set

Compositional End-to-end

trained

Compositional End-to-end

trained

NRE — 10% 84.4 78.4 92.3 91.5
NRE — 20% 89.4 80.5 92.9 91.4
NRE — 30% 88.6 80.6 92.6 91.3
NRE — 40% 89.5 83.2 92.6 91.6
NRE — 50% 87.6 81.2 92.2 91.3

NRE — 100% — 85.2 — 92.3

Vanilla NFST — 10% — 80.6 — 92.3
Vanilla NFST — 100% — 91.1 — 93.7

Table 8.2: Cold-start results

8.5.3 Results

The experiment results are in Table 8.2.
9

We first note that end-to-end trained NREs compare

worse than end-to-end trained NFSTs on 10% and 100% splits: this is expected because

under NRE 8.5.9, strings recognized by some slot types are generated independently,

and not conditioned on other subsequences in NRE 8.5.9. Because of the conditional

independence, mark string scoring functions in NREs may not be as expressive as that of

(vanilla) NFSTs. On the other hand, such conditional independence allows composition of

separately trained NREs. And such functionality certainly helps when we can train some

individual NRE components on much larger external datasets: with as few as 20% amount

of the original PlayMusic utterances in the training set, the compositional NRE (with the

9
The pairwise differences between compositional and end-to-end trained runs are all statistically signif-

icant (𝑝 < .05) under the permutation test.
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help of pretrained components) achieves performance slightly worse than an NFST trained

on the full dataset.

8.6 Conclusion and future work

In this chapter, we have introduced neural regular expressions (NREs), a generalization

of both NFSTs and (weighted) regular expressions, to address some limitations of NFSTs

pointed out in §7.7. With the help of partially neuralized finite-state transducers, mark

strings in an NRE may be scored in a non-autoregressive fashion, even with autoregressive

mark string scoring functions. Such added expressiveness makes NREs with autoregressive

mark string scoring functions strictly more powerful than their NFST counterparts (§8.4). It

also leads to the possibility of combining separately trained NREs into a larger unit, for a

new task (§8.5).

Under NREs, (autoregressive) mark string scoring functions are effectively sequence

distributions that are conditioned on trees. In this thesis we do not fully explore architecture

designs that fully exploit such structural information. We also have not considered architec-

ture designs that naturally incorporate conditioned-upon information, e.g., Transformers.

We expect that a more extensive search of architectures will lead to a considerable increase

in performance, which we leave as future work.
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Chapter 9

Conclusions

9.1 Contributions

This thesis has made both theoretical and methodological contributions to the problem of

sequence modeling.

Theoretical contributions. In § 3 we have studied the difference in expressiveness of

various parametrizations of sequence models, and created a expressiveness hierarchy of

sequence models. In particular, we found that autoregressive sequence models, despite

their popularity in text generation applications, are limited in expressiveness. Moreover,

such expressiveness problem cannot be mitigated assuming these models have compact

parameters. In § 5 we further argued that expressiveness is not the whole story: energy-

based sequence models that are sufficiently expressive suffer from parameter estimation
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problems. In particular, likelihood-based model selection is undecidable for hard attention

Transformers that have at least 5 layers. To summarize, our theoretical results suggest

autoregressive latent-variable sequence models strike a good balance between tractability

and expressive, which in turn motivate methods proposed in §§ 7 and 8.

Methodological contributions. In § 4 we have described a method for training bounded-

length energy-based sequence models, and observed marginal but significant improvement

over autoregressive baselines. In § 6 we have described neural particle smoothing, an

amortized inference scheme for sampling from conditional sequence distributions. Through

empirical results, we show that by learning to approximate lookahead functions, we can

achieve good approximation with fewer samples than vanilla importance sampling. In

§ 7 we have described neuralized finite-state machines, and proposed neural finite-state

transducers (NFSTs) as an effective sequence transduction paradigm for tasks that show

monotonic alignments. We have proposed a method to effectively train NFSTs. We also

devised a method to decode from them. Empirically we have shown that NFSTs compare

very favorably against seq2seq models. In § 8, we further described neuralized regular

expressions (NREs), which generalize NFSTs to allow for modularity.

9.2 Future work

This work initiates further research questions. We conclude from §§ 3 and 5 that autoregres-

sive latent-variable sequence models as an appealing choice, because of their expressiveness
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and tractability. However, these models have no known exact inference methods, and must

resort to approximate methods, such as neural particle smoothing (§ 6). On the other hand,

there are latent-variable sequence models that admit exact inference (Kim, 2021; Rastogi,

Cotterell, and Eisner, 2016; Libovickỳ and Fraser, 2021; Kong, Dyer, and Smith, 2016). These

models belong in the class ELN and are therefore not expressive, under our classification in

§ 3. However, many of these models perform really well empirically — why? Specifically,

we would like to answer the following questions:

Why do these ‘weak’ models work well in practice? The theoretical analysis in § 3

is mostly a worst-case result. It is possible that many sequence modeling tasks in real

life can be approximated well using ELN weighted languages. If this is true, can we

formally characterize these sequence modeling tasks as a weighted language class?

Do we need the full expressiveness of latent variables? As a concrete example, the

expressiveness of NFSTs come from the expressiveness of their mark string scoring

functions: there is no Markov assumption. However such expressiveness comes at

a great cost — even forced decoding cannot be done exactly; and we must always

use approximate inference methods. Would it be a good trade-off, if we make the

mark string scoring functions Markov (and weak), and use the spare compute budget

to featurize input and output strings? A large scale empirical study that compares

between slow-but-expressive and fast-but-weak sequence models on a variety of

tasks could help answer this question.
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