Motivation

Hyperparameter optimization is important but often done haphazardly.
- **Insufficient exploration** may lead to poor results, killing a promising research idea
- **Inequitable allocation** of compute for hyperparameter optimization may lead to exaggerated differences among models

We need tools to standardize the process and make things easy for researchers.

Contribution: a toolkit for optimizing Neural Machine Translation transformer models (in Sockeye3 framework) on a distributed grid

https://github.com/kevinduh/sockeye-recipes3

Example: High variance in model accuracy & speed due to different hyperparameters. The tool finds good models automatically.

![700+ Transformer models on a sw-en Machine Translation task](image)

Hyperparameter optimization is important but often done haphazardly.
- **Insufficient exploration** may lead to poor results, killing a promising research idea
- **Inequitable allocation** of compute for hyperparameter optimization may lead to exaggerated differences among models

We need tools to standardize the process and make things easy for researchers.

Contribution: a toolkit for optimizing Neural Machine Translation transformer models (in Sockeye3 framework) on a distributed grid

https://github.com/kevinduh/sockeye-recipes3

Example: High variance in model accuracy & speed due to different hyperparameters. The tool finds good models automatically.

![700+ Transformer models on a sw-en Machine Translation task](image)

Problem Formulation

Hyperparameter Optimization (HPO):

Given a fixed budget of “function evaluations”, find as many Pareto-optimal hyperparameter settings \(x \) as possible

Hyperparameter setting encoded as vector in \(\mathbb{R}^d \):

\[
\begin{align*}
3 & \rightarrow \# \text{ layers} \\
200 & \rightarrow \# \text{ units/layer} \\
1 & \rightarrow \text{ optimizer type} \\
0.2 & \rightarrow \text{ learning rate}
\end{align*}
\]

Accuracy: \(f_1(x) \)

Inference Speed: \(f_2(x) \)

Train Model on dataset

Definition:

Assume we want to find \(x \) that maximizes \(f_1(x) \) and \(f_2(x) \). A point \(p \) is **pareto-optimal** iff there does not exist a \(q \) such that \(f_k(q) \geq f_k(p) \) for all \(k \) and \(f_k(q) > f_k(p) \) for at least one \(k \).

Software Design

1. **User defines hyperparameter space**
2. Sample a subset of configurations. These are candidates for training on the compute grid.
3. Run hyperparameter optimization, which intelligently decides whether or when to train each config given budget

Specific Implementation: ASHA

Many hyperparameter optimization methods:
- Bayesian Optimization
- Evolutionary Algorithms
- Population-based Training
- Bandit Learning

See our EACL23 tutorial:

We implement a bandit method called **ASHA** (Asynchronous Successive Halving Algo):
- Trains multiple config in parallel
- After few checkpoints, pre-emptively stop training for models that under-perform
- **Assume:** learning curves are comparable
- **Resources are spent on promising config**