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I. INTRODUCTION

Humans�can�efficiently�acquire� their� first� languages�
even� as� children.� We� note� two� essential� features� in�
human�language�acquisition�(1)�exposure�to�multimedia
information�including�visual,�vocal,�and�textual�formats�
(2) learning� from� easier� materials� to� more� difficult
ones.� Inspired� by� these� observations,�we� believe� it� is
important� to� study� language�acquisition� in� the�context
of�multimedia� data� such� as� incidentally� synchronized
video-text� pairs� in� narrated� videos� or� semantically
coherent� image-caption� pairs.� We� further� introduce
Curriculum�Learning� (CL)� [2]� to� language�acquisition
since�the�incremental�development�from�easier�to�more
complex�concepts�coincides�with�the�fundamental�idea
of�CL.

CL� trains� models� with� several� stages.� CL� adopts
sampling�distributions�that�favor�certain�instances�con-
sidered� as� “easier”.1� in� early� stages,� and� gradually�
smooths�sampling�distributions�to�the�uniform�distribu-
tion� to� take� full� advantage�of� the�whole� training�data.
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In language acquisition, we favor more informative
and well-aligned vision-text pairs instead of noisy
and overly verbose pairs. We hypothesize that in this
way, models can fast learn language ability from less
noisy instances and also avoid overfitting to dataset
biases, especially when trained without ample training
instances. We considered multimedia curriculum learn-
ing in two granularities: coarse-grained sentence-level
and fine-grained word level. We show the intuition
for both granularities in Figure 1, where the model
is trained on an easy subset in stage 1, and then on
the whole dataset in stage 2. We show the intuition
for both granularities in Figure 1, where the model is
trained on an easy subset in stage 1, and then on the
whole dataset in stage 2.

We explore two curriculum learning methods de-
rived from data without human guidance. The first
method is a word-level method based on word con-
creteness scores, emphasizing concrete concepts such
as body parts in Yoga Videos. These words are
more closely related to the associated visual scenes
and crucial for language acquisition. For comparison,
we experiment with another curriculum adapted from
transfer-based methods by [3], where we measure
vision-text pair “difficulties” according to the corre-
sponding losses from a pretrained captioning model.
Extensive experimental results show that both curricu-
lum learning approaches benefit learning for both cap-
tioning and visual retrieval tasks. Moreover, we demon-
strate that our proposed concreteness-based curriculum
brings more consistent improvements compared with
transfer-based curriculums.

To summarize, the main contributions of this paper
are:

• We explore curriculum learning methods in lan-
guage acquisition from multimedia data on both
sentence-level and word-level and proposed a new
concreteness-based word-level curriculum based
on the intuition that concrete words are easier to
learn because they are better aligned with visual
scenes.

• We propose evaluating language acquisition in
two aspects: captioning and visual retrieval, and
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great so draw it under
careful not to do and what
I just did keep the hips
square

Stage 1 Stage 2

relax your arms and lift
your heart

sweep the arms all the
way up and overhead

lower the right knee

Unfavored Pairs

Favored Pairs

Vision-Text Pairs Sampling Distribution

ig   n e a e f u i u u  ea ning e  e -a igne  vi e - en en e ai  a e a e  i h highe  
a i i  in age  e i e , n e e  ha  a e  in en en e  e e en  en a  e an i  in 

en en e  an  i  i  enefi ia   e ha i e u h vi i n-  ai

collect Yoga Videos as a new demonstrative
video-text dataset for language acquisition.

• We show that multimedia features are beneficial
in language acquisition to achieve more reliable
semantic representation.

II. APPROACH

A. Curriculum Learning

We give a general introduction to CL in this section.
We denote D = {(xi, yi)|xi 2 X , yi 2 Y} as the
training dataset of data-label pairs, F 2 F : X 7! Y
as the model to be trained, and L : F ⇥ X ⇥ Y 7! R
as the loss function. For instance, in captioning, let W
denote the vocabulary set. X is a set of visual scene
inputs (videos or images), Y = [1

n =1Wn is a set of
sentences, and F is a collection of models that can
produce a posterior distribution P (text|scene) given
scenes.

For vanilla Stochastic Gradient Descent (SGD) train-
ing on D, as well as optimization methods [4], [5], [6],
[7] derived from it, we sample the dataset from uniform
distribution U(D) over D for each step i. The model
F is trained to minimize the loss

F ⇤ = argmin
F

Ed⇠U(D)L (F, xi, yi) . (1)

On the contrary, curriculum learning uses a sequence
of evolving sampling distributions 'i 2 P(D) at each
step i. In common practice we adopt 'i ! U(D) to
take full advantage of the training data.

Let Q : D 7! R measure the difficulty of in-
stances. Since CL utilizes a training procedure that

favors easy instances in the early stage, we ex-
pect E(xi,yi)⇠'i

Q(xi, yi) to be monotonically non-
decreasing with respect to i.

B. Basic Settings

We consider two important aspects of human lan-
guage acquisition in a multimedia setting: describing
a new scene and illustrating a descriptive text. We
simplify these two tasks as modeling two posterior:
P (text|scene) (captioning) and P (scene|text) (visual
retrieval). We introduce how we model P (text|scene)
for captioning and P (scene|text) for visual retrieval in
this section. We denote each multimedia data sample
d = (v, w1:n) as a pair of visual input v and textual
instruction w1:n, where wi 2 W are words in the
vocabulary.

Captioning: For the image/video caption generation
problem, we apply a basic encoder-decoder framework
to demonstrate the impact of curriculum learning. Each
input visual data sample v is first encoded into a hidden
representation,

v = VisualEncoder(v).

Then we feed v as the initial hidden state of a
LSTM [8] decoder and decode the hidden represen-
tation auto-regressively,

P (wi|v, w1:i�1; ✓) = LSTMDecoder(v, w1:i�1).

The final output from LSTM decoder is a con-
ditional distribution over all sentences given v, and
we summarize the captioning model F as F (v) 2
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P([1
n=1Wn). For sentence-level curriculum training,

we minimize the objective function below for step i,

E
(v,w1:n)⇠'i

L(F, v, w1:n)

= E
(v,w1:n)⇠'i

� logPF (w1:n|v)

= E
(v,w1:n)⇠'i

�
nX

j=1

logPF (wj |v, w1:j�1)

(2)

where PF is the probability density given by F (v). For
word-level, we transform sampling vision-word pairs
(v, wj) into weighting over token-level loss

E
(v,w1:n)⇠U(D)

1jn

'i(v, wj) logPF (wj |v, w1:j�1). (3)

For vanilla training, 'i = U(D), and losses in Equa-
tion (2) and Equation (3) become equivalent. We use
beam search with beam size 10 for decoding.

Visual Retrieval: We model visual retrieval by
Bayesian inference

P (scene|text) / P (text|scene)P (scene),

where P (scene) is roughly estimated by fitting an
Gaussian Mixture model on hidden representations
v from captioning model. We leave better modeling
of P (scene) for future work. Since our modeling of
P (scene) could be sub-optimal, we use

Score(scene|text) = logP (text|scene)
+ � logP (scene)

for retrieval. We set � 2 [0, 2] and tune this parameter
on validation set.

C. Language Curriculum
To set up a curriculum, we need to select a difficulty

function Q to stress easier instances that can benefits
training, and a sampling strategy {'i|i = 1, 2, . . . ,1}
based on Q.

Difficulty Measures: The selection of Q should
underscore informative vision-text pairs as illustrated
in 1. We explore two measures that can be derived
directly from data without human guidance.

Transfer-based Metric. A pretrained captioning
model F̂ capturing the connection between visual
scenes and text semantics should render higher
probabilities (or lower losses) for more informative
vision-text pairs. For vision-sentence pairs, we define
Q(w1:n, v) = � logPF̂ (w1:n|v); for vision-word pairs,
we define Q(wi, v) = � logPF̂ (wi|v, w1:i�1).

Word Concreteness. We assume concrete words are
naturally better aligned with visual scenes and compose
more informative vision-word pairs. We follow [9]
to learn concreteness scores of words from multi-
media datasets. We evaluate a word’s concreteness

by assessing how close its associated visual scene
representations v are to each other. We include details
in Appendix. Then Q(wi, v) is defined as concreteness
score of wi. Word concreteness is also an important
concept in linguistics. For additional comparison, we
also experiment with a manually constructed word con-
creteness database [10], which includes concreteness
scores for most common words.

Sampling Strategy: Given a specific difficulty mea-
sure Q, sampling strategies should favor easier vision-
text pairs with smaller Q in early stages. We adopt
a simple but effective two-stage curriculum learning
strategy [3] based on a single step hyper-parameter N
and a difficulty threshold q0, where

'i =

⇢
U(DE) i  N
U(D) i > N

,

and DE = {(xi, yi)|Q(xi, yi) < q0}. Our choice of N
is elaborated in Appendix. We choose q0 to balance
the samples such that |DE | = |D\DE |. Although
this method can be extended to multi-step sampling
with more steps and threshold parameters, a two-step
method is enough to show the effect of curriculum
learning since our training dataset is relatively small
in scale.

Although collecting an easy subset with hard selec-
tion using difficulty scores is common in curriculum
learning, we empirically find that for transfer-based
methods, switching hard selection to soft selection
can be sometimes more beneficial. To be concrete,
with pretrained model F̂ and corresponding posterior
distribution PF̂ , we define the soft sampling strategy
for vision-sentence pairs as

'i =

⇢
/ PF̂ (w1:n|v) i  N

U(D) i > N
.

and for vision-word pairs as

'i =

⇢
/ PF̂ (wi|v, w1:i�1) i  N

U(D) i > N
.

In a sense, the hard sampling strategy is a rectified
approximation of the soft sampling.

III. EXPERIMENTS

A. Dataset and Experiment Setting
We include preprocessing and hyperparameters in

Appendix. We experiment with two datasets.
a) Yoga Videos.: We collect the Yoga Videos

dataset as a case study from yoga instructional videos,
which have realistic yet simple visual scenes of in-
structors performing yoga with a static background.
Instructions are mostly in synchronization with the
action of moving body parts in videos. We collect
18, 705 short videos of yoga actions, clipped from
297 yoga instructional videos from YouTube. The
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average duration of short videos is 3.1s. We use the
synchronized transcripts as captions and tokenize them
using spaCy [11]. These captions are usually short,
informative, and can be easily grounded into some
visual scene (for example straighten arm, lift
leg), which is ideal for language acquisition study.
We keep only the lemmatized form of each alphabetic
token in the dataset, resulting in a vocabulary of 763
words. The average caption length in the dataset is
9.6. We randomly split the dataset into 14, 127 training
video-text pairs, 2, 246 validation pairs and 2, 332 test
pairs.

b) MS COCO Captioning.: We use MS COCO
to explore the generalization ability of curriculums and
the effect of the curriculum with respect to dataset size.
We follow the validation and test splits released by
[12], and combine both train split with restval
split in the original dataset as the full training split.
In MS COCO, each image is paired with 5 captions
on average. As a result, we have 113, 287 images
and 414, 113 captions for training, 5, 000 images and
25, 010 captions for validation and 5, 000 images and
25, 010 captions for testing.

To study curriculum learning with varying data
sizes, we randomly sample four expanding training
subsets containing 4k, 8k, 16k, and 32k training images
respectively. Note that the smallest subset contains
around 20k vision-text pairs, which is close to Yoga
Videos. We have another held-out subset of 81, 287
training images, which is disjoint with all previous 4
subsets.

c) Methods in Comparison: We compare
transfer-based curriculum, concreteness-based
curriculum methods to the vanilla model trained
without curriculum. Since the concreteness is a
novel metric, we add additional comparison for this
metric, including reverse concreteness curriculum,
random concreteness curriculum, and the linguistic
concreteness metric.
Vanilla. The model trained without curriculum learn-
ing.
Loss. We use loss to denote transfer-based curriculum,
since it is based on the losses of a pretrained model.
We experiment with this method in both sentence-level
and word-level as described in Section II-C. We also
empirically study the soft selection methods, denoted
as soft loss.
Concreteness and Concreteness L. Our proposed
word-level curriculum using concreteness scores
learned from multimedia data (Concreteness).We also
explore using manually annotated scores by linguistics
(Concreteness L).
Reverse Concreteness. We reverse the word ranking
in concreteness curriculum.
Random Concreteness. We set random concreteness
scores for each word. In our experiment we average

over 3 random assignments and report the average
performance.

B. Captioning and Visual Retrieval
We summarize the main results on Yoga Videos

in Table I. We use Yoga Videos dataset to evaluate
the impact of curriculum learning on two aspects
of language acquisition. For captioning aspects, we
present BLEU-4 [13] scores (CIDEr and ROUGE-
L share similar trends, so we leave those results in
Appendix for simplicity) .

In addition to classic captioning scores, we evaluate
Verb Noun Recall of generated captions, i.e., recall of
action verbs and body part nouns (e.g. lift leg) in
generated captions. We assume these words represent
the central semantics of yoga instructions. We manually
select 37 frequent body-part nouns from all the cap-
tions and run part-of-speech tagging and dependency
parsing using spaCy [11] on test captions to obtain
head verbs for these nouns on the dependency tree.
In this way, we collect 1 ⇠ 2 verb-noun pairs for each
caption. We compute the average recall of these nouns,
verbs, and verb-noun pairs for each caption.

For visual retrieval aspects, we have two evaluation
metrics: Hit@20, as the ratio of the target video ranked
top 20 among 2, 332 (1%) test videos. Hit@20 reflects
how likely for models to successfully retrieve the target
videos; Mean Rank(MR), which is defined as

MR =
1

|Dtest|
X

(v,w1:n)2Dtest

Rank(v|w1:n).

Here Dtest refers to the test dataset and Rank(v|w1:n)
is the rank of target video v given text w1:n. MR offers
a more general view of retrieval results.

We further use MS COCO image captioning dataset
to study the generalization ability of the proposed
curriculum and the effects of the curriculum on varying
data size. We also explore the impact of curriculum
learning in terms of data efficiency. We show BLEU-
4 in Table II and leave CIDEr and ROUGE-L in
Appendix. For subsets with varying size we exper-
iment with Concreteness, Concreteness L and Soft
Loss curriculums. For Concreteness curriculum, word
concreteness scores are always learned from the cor-
responding training subset. For Soft Loss curriculums,
we experiment with three pretrained models to collect
losses, pretrained on the corresponding training subsets
(Self), on held-out subset with 81, 287 images (Held)
and whole training data (Whole) respectively.

In general, curriculum learning methods improve
performance over both captioning and visual retrieval
settings across multiple datasets. We found that the pre-
train posteriors are more beneficial for smaller datasets
(see results on MS COCO in Table II), while con-
creteness curriculums bring consistent improvements.
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Curriculum Captioning Verb Noun Recall Visual Retrieval
BLEU-4 Pair(%) Verb(%) Noun(%) Hit@20(%) MR

Vanilla 8.12 13.45 16.16 21.81 13.95 564.18

Sentence Level

Loss 8.70 13.46 16.50 23.21 13.94 566.89
Soft Loss 9.05 14.89 17.72 23.94 14.25 553.70

Word Level

Loss 8.11 12.63 15.57 21.07 12.82 606.06
Soft Loss 9.35 13.34 16.62 22.11 10.59 631.95

Concreteness 8.74 14.19 17.00 22.24 14.51 513.17
Concreteness L 8.46 13.58 16.27 22.16 14.02 561.64

Reverse Con 7.97 13.42 16.13 21.54 13.29 589.47
Random Con 8.26 13.03 15.93 21.74 12.49 595.94

a e  e u  n Y ga i e  e high igh  he e  e u  f  en en e- eve  an  - eve  
e e ive   vi ua  fea u e e ieva ,  i  he ean an  f a ge  vi e  a ng  e  vi e  

C n e ene  efe   ea ne  n e ene  u i u u  ha  au a i a  u e n e ene  e  
C n e ene   efe   ingui i  n e ene  u i u u  an  C n an  eve e C n a e an  
an  eve e  a e ine  f  he n e ene  u i u u

Besides, we also notice that curriculums based on
word losses show inferior performance in some metrics
on Yoga Videos. We present further analysis later by
probing into pretrained posterior distribution, together
with other interesting observations below.

Method Number of Training Images
4k 8k 16k 32k Whole

Vanilla 21.51 23.13 24.75 25.83 28.04

Con L 22.66 24.10 24.88 26.03 29.41
Con 22.08 23.66 25.34 26.89 28.78

W
Self 21.68 23.66 24.81 25.97 27.87
Held 21.38 23.38 25.41 26.39 /

Whole 21.25 23.19 25.05 26.61 /

S
Self 22.06 23.72 24.81 26.37 27.59
Held 21.76 23.85 24.56 26.07 /

Whole 21.85 23.41 25.55 25.99 /

Table II: BLEU-4 scores (%) trained on various subsets 
of MS COCO with pretrained posteriors obtained from 
self, held and whole subsets. Column of Whole contain 
scores with models trained on whole training data (⇠ 
113k), for which we only considered pretrained 
posteriors from itself. Con refers to learned concrete-
ness curriculum. Con L refers to linguistic concreteness 
curriculum. Random Con and W and W are sentence-
level and word-level version of soft loss curriculum.

a) Loss-based� curriculum� accelerates� training� in
early� stage.:� We� show� learning� curves� of� loss� and�
soft� loss� curriculums� with� respect� to� gradient� steps�
in� Figure� 2a-2b� for� Yoga� Videos.� We� use� BLEU-4�
for�sentence-level�experiments,�and�BLEU-1�for�word-
level.� We� use� BLEU-1� for� word-level� because� it� can�
better� reflects� the� learning�of� individual�words� for� the

word-level curriculums. Loss-based curriculums learn
faster at the beginning of training, and soft sampling
methods are even faster than easy subset sampling.
We also show learning curves on MS COCO under
4k and 32k training datasets. Here we use BLEU-4
scores to compare both the word-level and sentence-
level methods.

b) Concreteness improves data efficiency.: We
show test BLEU-4 scores of proposed concreteness
curriculum and linguistic concreteness curriculum with
respect to training data size in 4. Having noticed the
linearity of these curves when data size is in logscale,
we run linear regression as shown in Table III.

Here the incline factor a indicates the data effi-
ciency. In fact, suppose we have n training instances for
vanilla methods. If n is relatively large such that bias
terms b can be ignored, approximate numbers of train-
ing samples for the learned concreteness and linguistic
concreteness methods to achieve similar performances
are n1 = n

1.934
2.028 = n0.954 and n2 = n

1.934
1.975 = n0.979.

For example if n = 50k, we have n1 = 30k and
n2 = 40k, reducing 40% and 20% training instances
respectively. We notice that the learned concreteness
curriculum has a larger a than the linguistic con-
creteness curriculum. This is possibly because of the
gap between vision-text dataset and human annotated
concreteness scores that also consider modality other
than vision such as sound, smell and taste.

c) Better Captioning can be worse language ac-
quisition.: Soft word loss achieves good captioning
performance but much worse verb-noun recall and
visual retrieval performance. This indicates that the
method captures good sentence patterns but fail to
improve the learning of semantics and concrete con-
cepts in multimedia data. In Table IV we have ex-

Pengfei Yu, Heng Ji, Shih-fu Chang,  Kevin  Duh

ILC
Line



0 200 400 600 800 1000 1200
Steps

0

0.05

0.1

0.15

0.2

0.25

0.3

BL
EU

1

Vanilla
Word Loss
Word Soft Loss

(a) BLEU-1 score on oga ideos test set with
respect to gradient steps.
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(b) BLEU-4 score on oga ideos test set with
respect to gradient steps.

y = a log x+ b a b R

Vanilla 1.934 5.709 0.996
Concreteness A 2.028 5.483 0.994

Concreteness 1.975 6.124 0.992

Table III: Linear regression of BLEU-4 with respect to 
log(TrainingSi e). R is correlation coefficient.

amples of vision-word pairs (v, wj) with higher pos-
terior PF̂ (wj |v, w1:j�1). Word pretrained posteriors
are affected by the word frequency and render lower
losses for frequent words like the, your. Due to
auto-regressive modeling, word loss curriculums are
better at capturing nouns, descriptive adjectives, and
adverbs than verbs since verbs usually have shorter
prior context. These features help produce complete
and natural sentences, but harm the grounding of
language semantics into visual scenes by suppress-
ing some concrete words. We believe good language
acquisition methods should succeed in both aspects,
and captioning cannot represent language acquisition.
Pretrained posterior is a good measure of vision-word

pair difficulty for captioning but less effective for
language acquisition.

No Examples

1 Lower the right knee.

2 Relax your arms, and lift your heart.

3 sweep the arms all the way up and overhead.

Table I : E amples of vision-word pairs. We bold the 
words that have lower losses from the pretrained 
model.

C. Impact of Multimedia Learning

Pairs Text Vanilla Con L Con

left, right 0.5926 0.4471 0.3681 0.3599
open, close 0.1422 0.0881 0.0835 0.0724
up, down 0.2133 0.1528 0.1532 0.1485

straighten, bend 0.1989 0.1734 0.1195 0.1527
spread, bend 0.1411 0.0810 0.0374 0.0525

Table : Cosine similarities between opposite word 
pairs. We compare embeddings from four language 
mdoels: Te t refers to a language model trained on 
te t corpus of oga ideos with the same 
architecture as captioning decoder  anilla is the 
vanilla captioning decoder  Con refers to learned 
concreteness curricu-lum that automatically compute 
concreteness scores. Con L refers to linguistic 
concreteness curriculum. We highlight the lowest 
similarity score for each pair.

Some� concepts� are� hard� to� learn� only� from� tex-
tual�context.�For� instance�distinguishing�words�sharing�
highly� similar� textual� context� with� opposite� meaning�
(e.g.� left� and� right)� can� be� difficult.� However,�
learning� from�multimedia� dataset� can� compensate� this�
deficiency.�We�use�Yoga�Videos�for�qualitative�analysis�
and�take�the�parameter�of�decoder�output�layers�as�word�
embeddings.�Cosine�word� similarities�between�5�pairs�
of� opposite�words� are� shown� in�Tabel�V.�We� can� see�
that�multimedia�models� learn� less� similar� embeddings�
for� these� opposite� words.� Besides,� concreteness� cur-
riculums� stress� on� these� concrete� words� and� are� very�
helpful�with�distinguish� these�opposite�concepts.

IV. RELATED�WORK

Language� Acquisition:� Classical� theories� about� chil-
dren� language� acquisition� include� the� nativist�
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(a)�BLEU-4�score�on�MS�COCO� test�set�with�respect� to�
gradient� steps� using� 4k� training� images� and� curriculum�
from�held-out�data.
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(b)�BLEU-4�score�on�MS�COCO� test�set�with�respect� to�
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ig. 3: Learning curves with various number of training images on MS COCO.
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UIFory� [14],� the� learning� theory� [15],� and� the�
social� interactionist� theory� [16].� There� is� also� work�
in� lan-guage� acquisition� from� the� NLP� community�
[17],� [18],[19],� [20],� [21],� [22],� [23],� [24],� [25],�
but� they� all� focus� on� a� specific� language�
phenomenon� or� task.�On� the� contrary,� we� formulate�
multimedia� language�acquisition� in� a� general� way� as�
modeling� two� aspects� and� explore� impact� of�
curriculum� learning.
Curriculum� Learning:� Various� human� language�
learning� theories� [26],� [27],� [28]� all� state� that�humans�
learn�language�much�better�when�the�learning�materials�
are� organized� in� increasing� order� of� difficulty� instead�
of� random� order.� [29],� [30],� [31]� bootstrap� language�
acquisition�by� learning�words� first�and� then�grammati-
cal� structures� later.� Inspired� from� these� theories,� some�
recent� work� applies� curriculum� learning� [2]� to� NLP�
applications� including� name� tagging� [32],� question�
answering� [33],� [34],� neural� machine� translation[35],

[36],� [37],� [38],� coreference� resolution� [39],� semantic�
parsing�[40]�and�dialog�systems�[41],�[42].�In�addition�
to�NLP�applications,�how�curriculum�learning�can�help�
on� noisy� dataset� [43]� or� smaller� dataset� [44]� is� also�
studied.� [45]� and� [3]� propose� curriculum� learning� by�
transfer� and� theoretically� analyze� the� effect� of� loss-
based�curriculum� learning�methods�under�certain�con-
ditions.
Image� Captioning,� Video� Captioning� and� Multi-
modal� Language� Modeling:� Our� task� is� related� to�
image� captioning� [46],� [47],� [48],� [49],� [50],� [51],
[52],� [53],� [54],� [55],� [56],� [57],� [58],� [59]� and� video�
captioning� [23],� [60],� [61],� [62],� [63],� [64],� [65],
[66].� However,� we� focus� on� curriculum� learning� for�
language� acquisition.� Therefore,� we� only� use� simpler�
encoder-decoder� framework� to� demonstrate� the� power�
of�our�proposed�curriculum� learning�methods,�and�our�
evaluation� is� not� only� based� on� captioning.�Also� it� is�
worth�mentioning� that� our� proposed�CL�methods� can�
be�naturally�adapted�to�most�state-of-the-art�captioning�
methods.� Another� line� of� work� on� multimodal� lan-
guage�modeling�[67],�[68],�[69],�[70],�[71],�[72],�[73],
[74],� [75],� [76]� focuses�on�use� large-scale�multimodal�
resources� for� universal� pre-training� that� can� benefit�
downstream� tasks,�while� our�work� aims� at� effectively�
using� smaller�multimodal�corpora� for� language�acqui-
sition.

V. CONCLUSIONS AND FUTURE WORK
We� explore� transfer-based� and� concreteness-based

curriculum� learning,� both� of� which� can� be� derived�
from�multimedia�data�alone�without�additional�human�
guidance.�We�observe�that�both�transfer-based�methods�
are�effective�in�improving�learning�speed�for�captioning�
in�early�stage,�and�our�proposed�concreteness�curricu-
lum� is� a� more� effective� framework� in� acquisition� of
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reliable�language�knowledge�with�more�consistent�final�
performance�across�various�settings�in�both�directions.�
Concreteness�curriculum�also�improves�data�efficiency.�
We�also�found�that�multimedia�features�can�compensate�
contextual� bias� in� small� text� data� for� language� acqui-
sition.

Our�work�explores�curriculum� learning� in� language�
acquisition.� We� model� visual� retrieval� as� Bayesian�
inference� based� on� captioning� model� such� that� the�
captioning� curriculum� learning� can� be� directly� used�
to� compare� on� visual� retrieval,� but� its� performance� is�
less� desirable� than� training� a� specialized� model� for�
visual� retrieval.� Besides,� more� advanced� curriculum�
learning�strategies�may�be�applied� to�our�concreteness�
metric,� such� as� better� sampling� schedule� instead� of�
simple� two-stage� curriculum� ,� and� adding� homework�
into� our� curriculum� so� that� the� learner’s� performance�
on� homework� can� be� exploited� to� dynamically� adjust�
future�learning�materials.�We�also�plan�to�explore�more�
visual� features� such� as� motion� dynamics,� temporal�
action�compositions�to�further�enhance�our�curriculum.
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A ENDI
A. Other Captioning Metrics

We show other captioning metrics for MS COCO in
Table VI and Table VII.

B. Preprocessing and Hyperparameters
For Yoga Videos, we preprocess the original videos

into 2D poses using AlphaPose 2 and transform 2D
poses into 3D using VideoPose3D[77]3. For each
frame, output 3D pose is a 51-dimensional coordinate
vector of 17 joints. We encode pose sequences into v
as final hidden states of a 2-layer bidirectional GRU
with hidden size 768 (384 for each direction). For
decoder, we use another 2-layer unidirectional GRU
with hidden size 768 and an output layer to map hidden
states into word distribution. We used 768-dimensional
input word embeddings. For training, we use AdamW
[7] with learning rate 1e� 3. For sentence level train-
ing, we use batch size 64. Word level training batch
size selection is elaborated in Appendix D. Maximum
number of training epoch is 60. We evaluate models
on validation set every 50 gradient steps and stop
training if performance is not improved in consecutive
10 evaluations. For Yoga Videos we run all methods

2https://github.com/MVIG-SJTU/AlphaPose
3https://github.com/facebookresearch/VideoPose3D

with�3� random� seeds� and� report� results� using� average�
scores�over�3� runs.

For� MS� COCO[1],� we� adapt� the� implementation�
in� https://github.com/ruotianluo/self-critical.pytorch�
for� curriculum� learning.� Following� their� parameter
TFUUJOHTPS�WJTJPO�XFBOE�DPMMFDUMBOHVBHWF�
UBTLTPDBCVMBSZ� XJUI� XPSET� BQQFBS� BU� MFBTU� �� UJNFT�
SFTVMUJOH� JO� ����� XPSET�� 8F� VTF� UIF� JNBHF� GFBUVSFT�
GSPN� MBTU� MBZFS� PG� QSFUSBJOFE� 3FT/FU���� <��>� BT� W��
8F� VTF� TJOHMF�MBZFS� -45.<�>� XJUI� IJEEFO� TJ[F� ����
BT� EFDPEFS�� 8F� VTF� "EBN� <�>� XJUI� JOJUBM� MFBSOJOH�
SBUF� ������� XIJDI� JT� EFDBZFE� XJUI� GBDUPS� ���� FWFSZ�
�� FQPDIT�� *O� .4� $0$0� FBDI� JNBHF� JT� BTTPDJBUFE�
XJUI� NVMUJQMF� DBQUJPOT�� 'PS� TFOUFODF� MFWFM� USBJOJOH�
XF� VTF� CBUDI� TJ[F� ��� UP� TBNQMF� JNBHFT� BOE� TBNQMF�
�� DBQUJPOT� GPS� FBDI� JNBHF�� 5P� NBLF� TVSF� FBDI�
WJTJPO�TFOUFODF� QBJST� BSF� TBNQMFE� VOJGPSNMZ� XF�
TBNQMF� JNBHFT� XJUI� QSPCBCJMJUZ� QSPQPSUJPOBM� UP�
OVNCFS� PG� BTTPDJBUFE� DBQUJPOT� BOE� TBNQMF� DBQUJPOT�
GPS� FBDI� JNBHF� VOJGPSNMZ�� 8PSE� MFWFM� USBJOJOH� CBUDI�
TJ[F� TFMFDUJPO� JT� FMBCPSBUFE� JO� "QQFOEJY� %�� 8F� USBJO�
NPEFMT� GPS� ��� FQPDIT� BOE� CFTU� NPEFMT� BSF� TFMFDUFE�
BDDPSEJOH� UP� QFSGPSNBODF� PO� WBMJEBUJPO� TFU�

For�curriculum� learning�methods,�we� set� the�max-imal�
number� of� curriculum� training� epochs� as� 5.� The�
corresponding�maximal�number�of�training�steps�N�may�
vary�since�the�number�of�training�instances�varies�across�
datasets.� We� add� early-stop� mechanism� in� curriculum�
training,� which� will� stop� the� curricu-lum� when� the�
training�losses�converge.�For�concrete-ness�curriculums,�
we�experiment�with� (�1,��2)�2�{(0,�1),� (0.5,�0.5),� (1,�
0)}�on�Yoga�Videos�and�select�the�best�combination�(0,�
1) for�all�the�experiments.
C. Collection� of� Verb-Noun� Pairs� for� Verb-Noun� Re-
call

We� manually� select� 38� (see� Table� VIII)� frequent�
body-part�nouns�from�all�gold�captions,�and�run�part-of-
speech� tagging� using� spaCy� [11]� on� gold� captions� to�
obtain�head�verbs�for�these�nouns.�In�this�way�we�collect�
1�⇠�2�gold�verb-noun�pairs�for�each�gold�caption.

D. Additonal Dataset and Experiment Details
We use single Nvidia Tesla V100 with 16GB DRAM

for all experiments. Numbers of parameters for models
on Yoga Videos are all 11, 946, 247, and for mod-
els on MS COCO are 13, 400, 848 (not including
pretrained resnet). We use implementation in https://
github.com/ruotianluo/self-critical.pytorch to compute
BLEU, CIDEr and ROUGE scores. Number of hyper-
parameter search trials for �1,�2 and � are 3, and we
select the ones with best results as stated previously.
Yoga Videos dataset is collected automatically from
yoga videos on YouTube, and textual captions are
closed captions provided by YouTube. We collect short
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Method B-1 B-4 C R-L B-1 B-4 C R-L

4k training images 8k training images

Vanilla 64.22 21.51 63.25 46.79 66.48 23.13 71.08 48.32

Concreteness 65.55 22.66 68.14 47.86 67.84 24.10 74.30 48.79
Concreteness A 65.34 21.86 67.36 47.42 67.26 23.87 73.47 48.83

Word
Self 64.64 21.68 64.81 47.12 66.97 23.66 72.99 48.62
Held 63.83 21.38 63.25 46.88 66.68 23.38 72.31 48.33

Whole 64.66 21.25 64.55 46.90 67.28 23.19 73.04 48.66

Sentence
Self 64.75 22.06 66.23 47.26 66.85 23.72 73.03 48.70
Held 64.48 21.76 65.92 47.06 66.67 23.85 72.89 48.76

Whole 64.46 21.85 66.56 47.33 66.96 23.41 72.96 48.64

16k training images 32k training images

Vanilla 68.26 24.75 77.94 49.48 69.62 25.83 82.49 50.42

Concreteness 68.28 24.88 79.05 49.58 70.05 26.30 84.89 51.00
Concreteness A 68.35 25.03 80.01 49.86 70.03 26.48 85.80 50.84

Word
Self 68.51 24.81 79.27 49.61 69.63 25.97 83.30 50.59
Held 68.69 25.41 79.13 49.97 69.96 26.39 83.93 50.77

Whole 68.85 25.05 79.52 49.86 70.18 26.61 84.57 50.86

Sentence
Self 68.19 24.81 78.02 49.64 69.56 26.37 82.90 50.58
Held 68.18 24.56 77.61 49.58 69.33 26.07 81.67 50.42

Whole 68.59 25.55 79.18 49.77 69.72 25.99 82.69 50.43

Table I: Captioning Results trained on various subsets of MS COCO

Method B-1 B-4 C R-L

Vanilla 71.36 28.04 90.20 51.87
Concreteness 72.46 29.41 94.30 52.54

Concreteness A 72.09 28.78 92.20 52.16
Word 71.29 27.87 90.38 52.02

Sentence 71.02 27.59 87.80 51.66

Table II: Captioning Results trained on whole MS 
COCO

waist, tongue, mouth, nose, thigh, elbow, ear, thumb,
forearm, neck, foot, cheek, hand, lip, eyelash, fist, fin-
gertip, leg, back, knee, bum, head, belly, calf, forehead,
hair, toe, eye, shoulder, hip, finger, chin, nostril, arm,
bottom, rib, ankle, wrist

Table III: list of manually selected nouns.

clips� that� presents� yoga� actions� by� selecting� video�
segments� whose� captions� contain� the� nouns� listed� in�
table�VIII.

We� compute� word� concreteness� scores� using� pre-
sentation�v� following� [9].�For�Yoga�Videos�we�use�v�
from� pretrained� vanilla�models.�We� first� compute� co-
sine� similarity� between� two� videos/images�S(v,�v0)�=�
cos(v,�v0).�We�find�k�nearest�neighbouring�video�clips�
for�every�clip�v�using� this�similarity�measure,�denoted
as�NNk(v).� We� denote� the� set� of� video� clips� whose�
paired�captions�contain�w� as�Vw:

Vw�=�{v|9(v,�w1:n)�2�D� and�j�2�[1,�n],�wj�=�w}.
(4)

The concreteness of w is computed as

cw =

P
v2Vw

|NNk(v) \ Vw|
|Vw|2

(5)

In experiments k = 50 and we use Annoy4 library
to compute approximate neareast neighbours following
[9].

Word level training requires sampling (v, wj) from
training data. However, due to the sequential compu-
tation of LSTMs and GRUs, it is highly inefficient to
train on only one word in sentences by minimizing
� logP (wj |v, w1:j). To improve the sampling effi-
ciency of word-level training, we approximate this
training process by associating weights to the sentence
level losses as follows

L(v, w1:n, F ) =
nX

j=1

�p(v, j) logPF (wj |v, w1:j)

where p(v, j)s are weights associated with (v, wj).
For vanilla training, all p(v, j) = 1. For easy subset
sampling curriculums, p(v, j) = 1 for pairs in the
easy subset and p(v, j) = 0 otherwise. For soft sam-
pling, p(v, j) is proportional to sampling probability of
(v, wj). In this way, if we sample each vision-sentence
pair uniformly, the overall training objective is equiva-
lent to sampling vision-word pairs with corresponding
sampling distributions. We use the same batch size
to sample vision-sentence pairs for soft sampling. For

4https://github.com/spotify/annoy
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easy subset sampling, since we have half of instances
in the easy subset, the expected number of vision-word
pairs with p(v, j) = 1 in each sentence is also half
of the sentence length. We therefore doubled sentence
batch size for easy subset sampling for fair comparison
of learning pace with respect to gradient steps, al-
though we notice similar trends in performance without
doubling the batch size. After we sampled a batch of
vision-word pairs following the above procedure, we
normalize the loss weights p(v, j) to sum 1 within the

batch to balance the learning rate.
We notice close performance for vanilla sentence

level training and vanilla word level training with
above approximation of sampling (note that vanilla
training objectives are the same for sentence level and
word level), which shows that above appoximation is
effective. We report vanilla performance as average
of sentence-level and word level since they are close
enough.

Pengfei Yu, Heng Ji, Shih-fu Chang,  Kevin  Duh

ILC
Line


