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Abstract
Pretrained multilingual sequence-to-sequence models have been successful in improving trans-
lation performance for mid- and lower-resourced languages. However, it is unclear if these
models are helpful in the domain adaptation setting, and if so, how to best adapt them to both
the domain and translation language pair. Therefore, in this work, we propose two major
fine-tuning strategies: our language-first approach first learns the translation language pair via
general bitext, followed by the domain via in-domain bitext, and our domain-first approach
first learns the domain via multilingual in-domain bitext, followed by the language pair via
language pair-specific in-domain bitext. We test our approach on 3 domains at different levels
of data availability, and 5 language pairs. We find that models using an mBART initialization
generally outperform those using a random Transformer initialization. This holds for languages
even outside of mBART’s pretraining set, and can result in improvements of over +10 BLEU.
Additionally, we find that via our domain-first approach, fine-tuning across multilingual in-
domain corpora can lead to stark improvements in domain adaptation without sourcing addi-
tional out-of-domain bitext. In larger domain availability settings, our domain-first approach
can be competitive with our language-first approach, even when using over 50X less bitext.

1 Introduction

Recent pretrained multilingual sequence-to-sequence (seq2seq) models have provided a basis to
easily create neural machine translation (MT) systems via the pretrain and fine-tune paradigm
ubiquitous throughout NLP (Liu et al., 2020; Xue et al., 2021). Due to the fact that fine-tuning
these models generally requires less data than is needed for from-scratch translation models,
pretrained models are great candidates for MT domain adaptation tasks, where domain-specific
bitext is generally less available as compared to general bitext. However, these models have
seldom been studied in domain-specific settings.

For MT domain adaptation, pretrained multilingual seq2seq models must be adapted to
both 1) the language pair and 2) the domain of interest. Previous work has introduced several
methods for adapting general translation models to domains, including training first on general
bitext to bolster the total amount of bitext available, followed by training on smaller domain-
specific bitext (Luong and Manning, 2015; Freitag and Al-Onaizan, 2016). However, in the case
of multilingual sequence models, the initial pretraining objective differs significantly from the
task of machine translation, which suggests that alternative adaptation approaches are necessary.
Additionally, approaches involving additional general bitext may not even benefit these models
as they were already initially trained on large amounts of general pretraining data.



Therefore, it is currently unclear 1) if pretrained multilingual seq2seq models have useful
properties for MT domain adaptation and 2) how to best adapt them to both the translation
language pair and domain. As a result, in this work, we aim to systematically compare fine-
tuning approaches for applying mBART to domain adaptation (Liu et al., 2020). We choose
to focus on mBART as it has previously shown the most promising results in the MT setting
among comparable models (Liu et al., 2021; Lee et al., 2022).

By framing language pair and domain as decoupled entities to learn during the fine-tuning
process, we can compare two major approaches to the adaptation process. The first fine-tunes
mBART on general bitext, followed by in-domain bitext. The second uses multilingual fine-
tuning on in-domain bitext across several language pairs followed by bilingual fine-tuning on
in-domain bitext in the language pair of interest (Tang et al., 2020). In other words, the first
approach adapts to the language pair first, and the second approach adapts to the domain first,
before both eventually fine-tune on the small amount of in-domain, language pair-specific bitext.
We emphasize the importance of a multi-staged approach as we find that they are consistently
better than naively fine-tuning mBART only on domain-specific bitext, especially when this
data is limited.

Figure 1: Summaries of our two major approaches. Our language pair first approach first fine-
tunes the multilingual pretrained model on language-pair specific translation, and then on the
domain. Our domain first approach first fine-tunes the multilingual pretrained model on the
domain of interest, followed by the specific language pair.

We test our approach on 5 language pairs and 3 domains: TED Talks, Microblogs, and
COVID-19 related information. We note that the amount of available in-domain bitext varies
greatly across these domains. Because we want our method to be broadly applicable to new
domains where data may be very limited and/or expensive to procure, we test our approaches
on a small, fixed amount of domain data, as well as on the entirety of the domain data available.
We find that in comparable approaches, those with an mBART initialization outperform those
with a vanilla Transformer initialization in a majority of our language pairs and domains, and
across our two domain availability settings. This holds even in the cases of higher-resourced
language pairs originally unhelped by mBART’s multilingual pretraining, and in language pairs
outside of mBART’s pretraining set. For our out-of-mBART Persian-English language pair,
simply using an mBART initialization leads to +4.8 to 12.8 BLEU points across our domains.
In addition, we find that our domain-first approach provides an efficient alternative to using
additional general bitext by leveraging available multilingual in-domain corpora via multilin-
gual fine-tuning. We show that in our whole domain availability setting, which is still several
times smaller than the data needed for our language-first approach, our domain-first approach
consistently shows improvements over baselines, and is sometimes competitive with our more
data-heavy language-first approach.



This paper makes the following contributions:
• We explore various approaches for fine-tuning multilingual sequence models for special-

ized domains in machine translation. We demonstrate that our multi-step fine-tuning ap-
proaches can out-perform single-step and non-pretrained baselines—even for language
pairs that normally do not see benefits from using multilingual models.

• We demonstrate the importance of in-domain data, showing that fine-tuning on this with
multiple languages outperforms methods only using in-domain data in the target setting.

• We are able to get substantial BLEU point improvements on languages that are not even
included during pretraining.

2 Background and Related Work

2.1 mBART
mBART is a pretrained multilingual sequence-to-sequence denoising autoencoder based on
the Transformer architecture (Liu et al., 2020). Using the self-supervised BART objectives of
masked language modeling and sentence permutations (Lewis et al., 2020), mBART is trained
to recover noised Common Crawl texts across 25 languages. When fine-tuned on bitext for
sentence-level machine translation, mBART’s pretraining leads to performance gains across
multiple low- and medium-resource language pairs. The shared, multilingual parameter space
in the single encoder-decoder model are thought to be particularly helpful in lower-resourced
language pairs. In the original release of mBART, fine-tuning on a single language pair, or
bilingual fine-tuning, was the proposed method of adapting mBART to the translation task.

However, in follow up work, Tang et al. (2020) propose multilingual fine-tuning, where
mBART is fine-tuned on bitext across multiple language pairs at the same time, creating a
model capable of multilingual machine translation. Multilingual fine-tuning was shown to result
in improvements over bilingual fine-tuning for translation, especially in the many-to-one setting
where multiple languages are translated into the same target language.

2.2 Domain Adaptation
Generally, MT systems drop in performance when applied in a domain different from the train-
ing data, in a scenario known as domain mismatch (Koehn and Knowles, 2017). Additionally,
while large amounts of general bitext may be available for a language pair, it is generally harder
to find large amounts of data that fit a specific domain.

Continued training, or fine tuning, is a common training procedure-related approach to MT
domain adaptation where a model first trains to convergence on general bitext, and then con-
tinues to train on domain-specific bitext (Luong and Manning, 2015). In this work, we expand
upon the original multi-step fine-tuning ideas from continued training for domain adaptation.

Later work has focused on more complex ways to select and order data for domain adap-
tation. Xu et al. (2021) propose gradual fine-tuning for iteratively training a model on data
that slowly approaches the distribution of the in-domain data. Xie et al. (2021) also use grad-
ual fine-tuning to select data to adapt a multilingual MT model to in-domain data. Similar to
gradual fine-tuning with respect to purposefully ordering samples for domain adaptation, cur-
riculum learning based approaches have been proposed to sort and order samples based on their
similarity to the domain of interest (Zhang et al., 2019). Dynamic data selection techniques
have also been proposed to alter available training data between epochs in order to present more
relevant data in later stages of training (van der Wees et al., 2017). While these methods enforce
a stricter curriculum at a sample level, we draw inspiration from these methods by adhering to
a coarse ordering of least-domain-relevant to most-domain-relevant (Saunders, 2021).

Recent work has introduced domain adaptation techniques for multilingual MT systems.
One such work proposes methods for multilingual and multi-domain adaptation via domain-



specific and language-specific adapter modules (Cooper Stickland et al., 2021). Dabre et al.
(2019) exploit multi-parallel domain corpora in one-to-many multilingual MT setup to boost
low-resource domain translation. Another closely related work, which specifically looks at the
use of mBART for poetry translation, introduces multilingual fine-tuning for domain adaptation
using mBART50 (Chakrabarty et al., 2021; Tang et al., 2020). In this domain, multilingual fine-
tuning on available domain data was shown to outperform multilingual fine-tuning on general
bitext, as well as bilingual fine-tuning on domain data, hinting at the use of multilingual in-
domain data as an important tool in multilingual MT domain adaptation. In a comprehensive
overview of the capabilities of mBART, Lee et al. (2022) find that mBART fine-tuned on smaller
amounts of in-domain bitext can outperform a Transformer translation model trained on larger
amounts of in-domain bitext, suggesting that mBART’s pretraining may be valuable for domain
adaptation in lower-resourced domains. In this work, we expand upon and formalize these initial
results suggesting that mBART may be useful for domain adaptation, and provide a comparison
of various techniques for pretrained model-specific domain adaptation.

3 Approach

Because mBART is a multilingual denoising autoencoder, it is trained only to reconstruct text
in the source language given. We detail our two major approaches to domain adaptation us-
ing mBART, focusing on translation language pair and domain. Our approaches propose two
different ways to learn these competencies. We summarize our approaches in Figures 2 and 3.

3.1 Language Pair First
In our language pair first approach, we first focus on adapting mBART to the specific language
pair, and then to the domain of interest. We note that in all of our experiments, we have several
source languages, and one target language. For our ith source language Si and target language
T , we label general bitext as Bgen(Si, T ), and in-domain bitext as Bin(Si, T ). In the first stage,
we fine-tune our original model, M0 on Bgen(Si, T ) to achieve a general-domain bilingual
translation model, denoted as Mgen(Si, T ). In the second stage, we fine-tune Mgen(Si, T ) on
Bin(Si, T ), obtaining our final domain adapted bilingual model, Min(Si, T ), as desired. This
approach is very similar to the conventional continued training approach for domain adaptation
where a MT model is trained on out-of-domain bitext, and then subsequently fine tuned on the
smaller in-domain bitext. The key difference between this approach and a general continued
training approach for domain adaptation is the initialization of model parameters that mBART’s
pretraining provides.

Symbol Reference
Si ith source language
T target language
Bgen(Si, T ) general bitext from Si to T
Bin(Si, T ) in domain bitext from Si to T
M0 original model, before fine-tuning
Mgen(Si, T ) general domain translation model from Si to T
Min(Si, T ) in-domain translation model from Si to T

3.2 Domain First
In our domain-first approach, we first focus on adapting mBART to the domain of interest,
and then adapt to the relevant language pair. Because at first we adapt only to the domain,
and not yet language pair, we propose to perform the first stage via multilingual fine-tuning on



Figure 2: Our language pair first approach. We first fine-tune our original model, M0 on general
bitext, Bgen(Si, T ), to create a language-pair adapted model, Mgen(Si, T ). We then fine-tune
our new interim model on in-domain bitext, Bin(Si, T ), to achieve a both language pair- and
domain-adapted translation model: Min(Si, T ).

available domain data (Tang et al., 2020). In particular, we focus on many-to-one fine-tuning.
In this case, we denote a multilingual in-domain dataset as the union of all available bilingual
in-domain datasets:

⋃
i Bin(Si, T ).

In the first stage, we multilingually fine-tune our original model, M0 on
⋃

i Bin(Si, T ) to
achieve a domain-specific and multilingual translation model, denoted as Min(

⋃
i Si, T ). In our

second step, we reintroduce Bin(Si, T ) that matches our language pair of interest, and bilin-
gually fine-tune Min(

⋃
i Si, T ) on Bin(Si, T ) to achieve our final domain-adapted bilingual

model, Min(Si, T ). Because this approach only uses in-domain data and does not introduce
external data, its training can use noticeably less data for domains with limited data, as com-
pared to our language-first approach.

Figure 3: Our domain first approach. We first fine-tune our original model, M0 on multilingual
in-domain bitext,

⋃
i Bin(Si, T ), to create a domain adapted model, Min(

⋃
i Si, T ). We then

fine-tune our new interim model on translation pair-specific in-domain bitext, Bin(Si, T ), to
achieve a both domain- and language pair-adapted translation model: Min(Si, T ). We note that
this approach can use far less data than our language-first approach.

3.3 Limiting the Amount of Domain Data
In comparing our approaches in adapting mBART for domain-specific MT, we also compare two
scenarios in which 1) all available domain data is included, the size of which can very greatly
by domain, and 2) domain data is heavily limited (≤ 1000 lines). In our first scenario, where all
domain data is used, we wish to provide comparisons of our domain adaptation techniques at
original levels of domain availability. By keeping all data, we can make recommendations for



domains that may be more available than in our limited setting. Our second scenario aims to
compare our methods across each domains via a fixed amount of data, as some of our domain
data is very limited (≤ 1000 lines). This is the case of the Translation Initiative for COVID-19
challenge, where domain-specific translation is needed to quickly translate emergency content
related to the COVID-19 pandemic (Anastasopoulos et al., 2020). Additionally, being able
to create data-efficient methods helps reduce cost of dataset creation. For example, current
translation services are priced around 0.06 to 0.12 US Dollars per word1, and Germann (2001)
note services costing up to 0.30 US Dollars per word. Assuming an average of 20 words per
sentence, it can cost anywhere from approximately $1,200 to $6,000 to create a small 1000 line
dataset. By including these two levels of domain availability, we hope to show the efficiency of
our methods, as well as their generalizability to additional domains.

4 Experiments

4.1 Data
We translate 5 languages into English for our experiments: Arabic (ar), Persian (fa), Portuguese
(pt), Russian (ru), and Chinese (zh). Arabic, Russian, and Chinese appear in mBART25’s
pretraining set, and Portuguese and Persian do not.

For each of our language pairs, we piece together general bitext from OPUS sources
(Tiedemann, 2012). The general bitext make up part of our language-first adaptation approach.
In particular, depending on availability, we sample bitext from Global Voices (GV), QCRI Ed-
ucational Domain (QED), the United Nations Parallel Corpus (UN), Open Subtitles (OS), and
Europarl (EP) (Nguyen and Daumé III, 2019; Abdelali et al., 2014; Ziemski et al., 2016; Lison
and Tiedemann, 2016; Koehn, 2005). We first collect 1.5 million lines from these combined
sources. We then remove sentences with more than 50% punctuation, deduplicate our data,
remove all evaluation data from training data, and apply length ratio cleaning (Fan et al., 2021).
We shuffle all lines and sample 1 million sentence pairs for a general bitext training set, and
2000 for a development set. The full composition of our general bitext is detailed in Table 1.

For domain adaptation, we choose 3 different domains with varying levels of data avail-
ability. We use translations of TED talks (Duh, 2018), Microblogs (McNamee and Duh, 2022),
and documents from the Translation Initiative for COVID-19 (TICO-19) (Anastasopoulos et al.,
2020). We note that originally, the TICO-19 dataset contains only 971 sentences in a develop-
ment set, and 2100 in a test set. In our work, we split the original test set to create a new
development and test set with 1050 lines each, and reallocate the original 971-line development
set into our training set.2 For each domain, we detail the amount available training data in Table
1. TED dev/test splits are 1958/1982 lines, and Microblog dev/test splits are 3000/3000 lines
for ar-en and ru-en, and 2000/2000 lines for fa-en, pt-en, and zh-en.

For our multilingual fine-tuning experiments for our domain-first approach, we include
additional languages that are available in the domain, included in mBART’s pretraining set, and
do not overlap with our language proxies for our out-of-mBART languages. For TED, we add
Czech, German, French, Japanese, Korean, Romanian, and Vietnamese (12 languages total).
For Microblogs, we add French and Korean (7 languages total). For TICO-19, we add French,
Burmese, and Nepali (8 languages total).

To measure the amount of domain shift between our general bitext and our domain-specific
bitext, we train a 5-gram language model with KenLM on our general bitext target-side training
data, and evaluate the perplexity (including OOVs) on the target-side training data for each
of our domains. We provide perplexity measures on our domain-specific bitext after applying

1https://gengo.com/pricing-languages/
2We create our own data split because the original TICO-19 data does not have a training set we could use for

fine-tuning. Our TICO-19 results should not be directly compared with those from other papers.



TED Micro. TICO Gen. GV QED UN OS EP
# lines # lines # lines # lines % % % % %

ar-en 175377 18634 971 1M 3.5 33.4 31.6 31.5 0
fa-en 116525 2647 971 1M 0.7 1.1 0 98.2 0
pt-en 153357 2085 971 1M 5.8 28.8 0 32.7 32.7
ru-en 181465 36734 971 1M 11.4 37.6 25.5 25.5 0
zh-en 170341 1580 971 1M 8.5 0.9 45.3 45.3 0
add’l. 988691 35710 2991 - - - - - -
total 1785756 97390 7976 - - - - - -

Table 1: Sizes in # of lines for each of the domain and general corpora used in our work. We
also provide the number of lines added with domain data from additional language pairs. We
additionally provide a breakdown of our general bitext across 5 OPUS sources. For our limited
domain experiments, we use 1K sentences per domain and language pair.

byte-pair encoding (Sennrich et al., 2016), and we measure vocabulary coverage on our data
that is tokenized with the Moses tokenizer, but not byte-pair encoded (Koehn et al., 2007). We
report vocabulary coverage and perplexity values in Table 2.

TED Micro. TICO
vocab coverage 99.9% 95.7% 97.2%
perplexity 2.65 740.53 366.67

Table 2: Vocabulary coverage and perplexity for each of our domains. We train 5-gram language
models on our general domain target data, and evaluate vocabulary coverage and perplexity on
our domain target-side training data. We see that our Microblogs corpus has the largest domain
shift while TED has the smallest, according to our perplexity measure.

4.2 Models
For all of our experiments using mBART, we use mbart.cc25 which has 12 encoder and
decoder layers, and covers 25 languages. We note that to begin decoding, mBART requires a
language identification token. For our out-of-mBART languages, we choose a related language
from the 25 mBART pretraining languages as a language identification token; we use ES as a
proxy for PT, and HI for FA (Madaan et al., 2020; Cahyawijaya et al., 2021).

We train our language pair-first approach on 1M lines of general data for up to 10 epochs
or 150,000 updates, whichever is first. We then fine-tune the model for up to an additional 10
epochs on domain data for the language pair, for both limited and whole domain availability.
For our domain-first approach, we train on multilingual domain data for up to 200,000 updates
or 60 epochs (whichever is first) in the whole domain approach, and up to 60 epochs in the
limited domain approach. We then fine-tune these models for up to another 60 epochs.

We include two baseline models in our experiments. Baseline model 1 uses a Transformer
with no pretraining, and trains on general bitext followed by domain bitext, much like our lan-
guage first approach. This model uses the transformer iwslt de en architecture as implemented
by fairseq (Ott et al., 2019; Vaswani et al., 2017). This model has an embedding dimension
of 512, feed-forward dimension of 1024, 4 attention heads, and 6 encoder/decoder layers each.
For each language pair, we learn 16k subword operations per language on the general domain
bitext, and use the subword vocabulary on our all of our Baseline 1 experiments (Sennrich et al.,
2016). Baseline model 2 naively fine-tunes mBART only on in-domain bitext.

We train Baseline 1 first on our general bitext for up to 40 epochs, and then on our domain



bitext for up to 10 additional epochs, keeping the best model. We train Baseline 2 for up to 40
epochs in the limited domain setting, and up to 100 epochs in the whole domain setting.

We evaluate all of our models with BLEU, as implemented by SacreBLEU3 (Post, 2018).

5 Results

Name Baseline 1 Language-First Domain-First Baseline 2
Initialization Random mBART mBART mBART
Step 1 Bgen(Si, T ) Bgen(Si, T )

⋃
i Bin(Si, T ) None

Step 2 Bin(Si, T ) Bin(Si, T ) Bin(Si, T ) Bin(Si, T )

TED

ar-en 37.0 37.4 36.0 36.4
fa-en 25.4 30.9 30.2 29.8
pt-en 46.9 48.2 47.7 47.6
ru-en 30.3 29.7 29.1 29.7
zh-en 19.0 22.0 21.5 21.1
avg 31.7 33.6 32.9 32.9

Microblogs

ar-en 40.0 42.6 40.8 40.3
fa-en 17.6 27.6 20.9 10.5
pt-en 40.0 44.6 39.7 33.9
ru-en 43.2 47.4 46.8 45.8
zh-en 19.7 25.9 25.4 22.1
avg 32.1 37.6 34.7 30.5

Table 3: BLEU scores for the whole domain data experiments. In this resource setting, we
have around 100K total lines in the Microblog domain, and 2M total lines in the TED domain.
We find that our language pair-first approach is consistently our best system. We also note
that both of our approaches outperform out baselines in a majority of language pair/domain
combinations. Besides out-of-mBART languages in our Microblogs domain, our domain-first
approach performs competitively, despite using 3X less data in TED, and 50X less data in the
Microblogs domain.

5.1 mBART initialization improves domain adaptation
Results for our whole domain setting are summarized in Table 3, and limited domain results
appear in Table 4. We recall that both Baseline 1 and our language pair-first setting are fine-
tuned on 1M lines of out-of-domain data, followed by in-domain data. In this setting, their main
difference is the initialization of parameters via either mBART or a random initialization. We
see that in a majority of domain/language pair settings, our language-first approach is our best
performing system, and in Table 5, we can see that this simple initialization can lead to drastic
improvements of several BLEU points.

mBART initialization improves ru-en in TICO-19 and Microblogs, and improves zh-en
in all domains. Both Chinese-English and Russian-English translation were reported to not
have benefited from mBART’s initialization in original fine-tuning experiments from Liu et al.
(2020). We also note that this initialization improves out-of-mBART language pairs, and ex-
plain this further in Section 5.4.

5.2 The importance of in-domain data
In our limited domain setting, although our domain-first approach is not consistently competi-
tive with our language-first approach, we do note a large BLEU difference between fine-tuning

3Signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1



Name Baseline 1 Language-First Domain-First Baseline 2
Initialization Random mBART mBART mBART
Step 1 Bgen(Si, T ) Bgen(Si, T )

⋃
i Bin(Si, T ) None

Step 2 Bin(Si, T ) Bin(Si, T ) Bin(Si, T ) Bin(Si, T )

TED

ar-en 36.3 33.5 25.0 17.5
fa-en 19.9 24.7 9.3 2.2
pt-en 44.4 44.3 32.5 22.9
ru-en 29.3 27.6 22.9 17.4
zh-en 14.6 17.4 14.4 9.4
avg 28.9 29.5 20.8 13.9

Microblogs

ar-en 32.8 37.4 31.4 26.9
fa-en 16.0 26.3 12.8 8.2
pt-en 38.8 43.6 32.8 22.7
ru-en 37.0 42.6 37.4 30.1
zh-en 19.5 25.0 23.2 20.1
avg 28.8 35.0 27.5 21.6

TICO-19

ar-en 29.7 32.5 21.4 21.2
fa-en 10.8 23.6 14.5 10.6
pt-en 42.3 45.6 30.7 29.3
ru-en 26.9 30.3 20.5 20.7
zh-en 18.1 23.2 14.1 13.9
avg 25.6 31.0 20.2 19.1

Table 4: BLEU scores for the limited domain data experiments. In this setting, we limit our
bilingual in-domain data to <1k sentence pairs. In the limited domain setting, we find that our
language pair-first approach consistently outperforms our baselines and our domain-first ap-
proach, with the exception of a few language pairs in TED. Additionally, although our domain-
first approach does not perform competitively in this resource setting, we see benefits of multi-
lingual in-domain learning by noting its improvements over Baseline 2.

Limited Domain Whole Domain
TED Microblogs TICO-19 TED Microblogs

ar-en -2.8 4.6 2.8 0.4 2.6
fa-en 4.8 10.3 12.8 5.5 10.0
pt-en -0.1 5.1 3.3 1.3 4.6
ru-en -0.9 3.8 0.7 -0.6 4.2
zh-en 2.8 5.5 5.1 3.0 6.2
avg 0.8 5.9 4.9 1.9 5.5

Table 5: ∆BLEU between initializing domain adaptation fine-tuning with mBART vs domain
adaptation fine-tuning with a random Transformer initialization. Overall, mBART’s initializa-
tion improves domain adaptation over a random Transformer initialization. This holds for the
fa-en and pt-en language pairs, which are outside of mBART’s pretraining set, sometimes lead-
ing to improvements of over 10 BLEU points.

on multilingual domain data (domain-first) and fine-tuning on bilingual in-domain data only
(Baseline 2). We report these differences in Table 6. By using multilingual in-domain data,
we can see up to 10 BLEU point improvements over using in-domain data only in the target
setting. We note that we see a reduced efficacy in TICO-19, which may be in part due to its



Limited Domain Whole Domain
TED Microblogs TICO-19 TED Microblogs

ar-en 7.5 4.5 0.2 -0.4 0.5
fa-en 7.1 4.6 3.9 0.4 10.4
pt-en 9.6 10.1 1.4 0.1 5.8
ru-en 5.5 7.3 -0.2 -0.6 1.0
zh-en 5.0 3.1 0.2 0.4 3.3
avg 6.9 5.9 1.1 0.0 4.2

Table 6: ∆BLEU between our domain-first approach using multilingual fine-tuning and our
Baseline 2 system, which uses bilingual fine-tuning on our in-domain bitext. The addition of
in-domain bitext outside of our source-target pair can be very useful for domain adaptation.
The use of a pretrained multilingual model allows us to utilize additional in-domain corpora for
improved in-domain performance via a shared parameter space.

multi-parallel nature. This multi-parallel nature also allows any improvement in this domain to
be explained purely through multilingual parameter sharing, rather than other factors like in-
creased diversity of tokens appearing in the target setting. In our TED and Microblog domains,
using multilingual corpora can lead to much better unigram vocabulary coverage of the target
language. For example, only 47% of the Microblog fa-en dev set unigrams are accounted for in
the corresponding in-domain training set. However, 74% of these unigrams are accounted for
across the in-domain multilingual training sets, providing a possible explanation for these large
improvements in our domains besides TICO-19.

In the whole domain setting, we still see strong improvements over Baseline 2 with Mi-
croblogs, but modest improvement in the TED setting. However, utilizing multilingual fine-
tuning results in ≤ 1 BLEU point of difference here, but is much more efficient by sharing
parameters within one model. In Table 2, we see that the TED domain and our general bitext
are far more similar than the Microblog or TICO-19 domain and our general bitext. The extent
of domain shift may also explain why in the whole domain setting, we see drastic improvement
in the Microblogs domain using multilingual fine-tuning, but modest improvement in TED.

5.3 Language-First vs Domain-First

In the limited domain setting, our language-first approach is consistently better than our domain-
first approach, and our language-first approach outperforms our baselines in a majority of set-
tings. We believe that in this setting, our limited domain data is insufficient to properly harness
the in-domain transfer across languages that we seek to gain from our domain-first approach.
Therefore, we recommend the use of additional general bitext in a low resource domain setting.

In the whole domain setting, we see a similar trend, however, the difference between the
two proposed approaches is less pronounced. In a majority of language pair/domain combina-
tions, both of our proposed approaches outperform our baselines. In both of our domains in our
whole domain setting, and for languages in mBART’s pretraining set, the difference between
our proposed approaches is within 2 BLEU points. For languages outside of mBART’s pretrain-
ing set, this difference is a bit more pronounced in the Microblogs domain. This may be due
to their small corpus size, where both Microblogs corpora are <3K parallel sentences for both
fa-en and pt-en. However, in the TED domain, even fa-en and pt-en have similar performance
across the two approaches.

While these two approaches may be comparable in terms of performance, their data and
parameter efficiencies are very different. In the language pair-first setting, we use 5M total lines
of bitext to create 5 different general-domain fine-tuned models. Fine-tuning these models on



in-domain bitext adds additional data overhead. In the domain-first setting, we use under 2M
total lines of in-domain bitext across 12 language pairs for TED, and under 100K total lines
of domain bitext across 7 language pairs for our Microblogs domain. This approach is also
more parameter efficient due to the shared representations across languages for one domain.
This in particular holds true for adapting to new languages, as we can reuse our fine-tuned
multilingual domain model, rather than bilingually fine-tune mBART on a new language pair as
in our language pair-first approach.

5.4 Out-of-mBART languages

As seen in Tables 5 and 6, both of our out-of-mBART language pairs benefit from multilingual
training, whether it be at the pretraining stage, or at the fine-tuning stage. In Table 5, we see
clear evidence of mBART’s utility for both fa-en and pt-en leading to several BLEU point im-
provements, even in the whole domain setting, where more in-domain bitext in these language
pairs is available. We also see clear benefits of multilingual fine-tuning in these language pairs,
resulting in consistent improvements in Table 6. Therefore, for languages outside of mBART25
(with a related language within mBART25), we believe that both of our proposed methods could
lead to effective domain adaptation.

5.5 Examples

We choose examples from our whole domain Persian-English TED translations to examine
differences in outputs generated from our approaches.

Baseline 1: No agricultural products will take the reformist of England.
Baseline 2: Without the genetically engineered crops, hunger will take over the U.K.
Domain-first: Without genetically engineered crops, Britain will be hungry.
Reference: Britain will starve without genetically modified crops.

Baseline 1: How are we going to apply human resources?
Baseline 2: How about the resources? How do we feed not billions of people?
Language-first: How about the resources? How do we want to feed nine billion people?
Reference: What about resources? How are we going to feed nine billion people?

In our first example, we see that in our domain-first approach, the addition of multilingual
in-domain bitext likely improves the in-domain style of the translation. While both generated
outputs are similar in their “gisting”, the style of the in domain-first most closely matches the
overall style of TED Talks. In our second example, we see a clear improvement of translation
quality at the lexical level as a result of additional bitext in the first fine-tuning step.

6 Conclusion

In this paper, we demonstrate that multilingual pretraining can be very effective in the domain
adaptation setting, and we propose two methods of adaptation that are more useful than a naive
adaptation approach. We also find that between our methods, our language-first approach where
models are first customized to a specific bilingual setting, is consistently our best system, es-
pecially in limited domain scenarios. However, we also find that when we first customize our
models to a domain, as in our domain-first approach, we achieve considerable translation qual-
ity at a fraction of the data needed in our language-first approach. Interestingly, we are also able
to show that multilingual pretraining and fine-tuning continue to be effective domain adaptation
techniques even when the pretrained model has not seen the language pair before.
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