Automatic Learning of Language Model Structure

Kevin Duh and Katrin Kirchhoff {duh,katrin}@ee.washington.edu University of Washington, USA

Introduction

Motivation:

- Factored Language Models have been applied to various tasks with good results, but specifying model parameters is tedious.
- Desire an automatic method for finding model parameters.

Approach:

- View the problem as a structure learning / model selection problem
- Develop a Genetic Algorithm solution

Result:

- A structure learning algorithm that finds good model parameters in a data-driven fashion
- Perplexity reductions in Arabic and Turkish

Introduction

Motivation:

- Factored Language Models have been applied to various tasks with good results, but specifying model parameters is tedious.
- Desire an automatic method for finding model parameters.

Approach:

- View the problem as a structure learning / model selection problem
- Develop a Genetic Algorithm solution

Result:

- A structure learning algorithm that finds good model parameters in a data-driven fashion
- Perplexity reductions in Arabic and Turkish

Our Goal in this Talk:

- Show the effectiveness and usability of Factored Language Model combined with Structure Learning
- Encourage researchers to try it for their own tasks

Outline

- Factored Language Models
 - Why Use Factors?
 - Factored Word Representation
 - Backoff Graph
- Structure Learning for Factored Language Models
- Experiments and Results

Word-based Language Models

Standard word-based language models

$$p(w_1, w_2, ..., w_T) = \prod_{t=1}^{T} p(w_t \mid w_1, ..., w_{t-1})$$

$$\approx \prod_{t=1}^{T} p(w_t \mid w_{t-1})$$

- How to get robust n-gram estimates (e.g. $p(w_t \mid w_{t-1})$)?
 - Smoothing
 - · E.g. Kneser-Ney, Good-Turing
 - Class-based language models

$$p(w_t | w_{t-1}) \approx p(w_t | C(w_t)) p(C(w_t) | C(w_{t-1}))$$

- Words are inseparable whole units.
 - E.g. "book" and "books" are distinct vocabulary units

- Words are inseparable whole units.
 - E.g. "book" and "books" are distinct vocabulary units
- Especially problematic in <u>morphologically-rich</u> <u>languages</u>:
 - Arabic, Finnish, Russian, Turkish
 - Many unseen word contexts and high perplexity

- Words are inseparable whole units.
 - E.g. "book" and "books" are distinct vocabulary units
- Especially problematic in <u>morphologically-rich</u> <u>languages</u>:
 - Arabic, Finnish, Russian, Turkish
 - Many unseen word contexts and high perplexity

Arabic k-t-b	
Kitaab	A book
Kitaab-iy	My book
Kitaabu-hum	Their book
Kutub	Books
Kataaba	To write

Solution: Word as Factors

- Decompose words into "factors" (e.g. morphemes)
- Build language model over factors: P(w|factors)

Solution: Word as Factors

- Decompose words into "factors" (e.g. morphemes)
- Build language model over factors: P(w|factors)
- Previous approach:
 - Linear sequence of morphemes [e.g. Geutner, 1995]
 - Models relations between affixes/stems
 - What we really want is a model that predicts words, but uses affixes/stems for robust estimation

Solution: Word as Factors

- Decompose words into "factors" (e.g. morphemes)
- Build language model over factors: P(w|factors)
- Previous approach:
 - Linear sequence of morphemes [e.g. Geutner, 1995]
 - Models relations between affixes/stems
 - What we really want is a model that predicts words, but uses affixes/stems for robust estimation
- Our approach: Factored Language Models
 - [Kirchhoff et. al., 2002], [Bilmes & Kirchhoff, 2003]
 - Parallel sequence of "factors"
 - Novel backoff procedure

•
$$w = \{f^1, f^2, ..., f^K\} = f^{1:K}$$

•
$$p(w_1, w_2, ..., w_T) \equiv p(f_1^{1:K}, f_2^{1:K}, ..., f_T^{1:K})$$

$$\approx \prod_{t=1}^T p(f_t^{1:K} \mid f_{t-1}^{1:K}, f_{t-2}^{1:K})$$

•
$$w = \{f^1, f^2, ..., f^K\} = f^{1:K}$$

•
$$p(w_1, w_2, ..., w_T) \equiv p(f_1^{1:K}, f_2^{1:K}, ..., f_T^{1:K})$$

$$\approx \prod_{t=1}^T p(f_t^{1:K} \mid f_{t-1}^{1:K}, f_{t-2}^{1:K})$$

- Advantageous in backoff
 - Words may not be observed, but factors are
 - Simultaneous class assignment

•
$$w = \{f^1, f^2, ..., f^K\} = f^{1:K}$$

•
$$p(w_1, w_2, ..., w_T) \equiv p(f_1^{1:K}, f_2^{1:K}, ..., f_T^{1:K})$$

$$\approx \prod_{t=1}^{T} p(f_t^{1:K} \mid f_{t-1}^{1:K}, f_{t-2}^{1:K})$$

- Advantageous in backoff
 - Words may not be observed, but factors are
 - Simultaneous class assignment

•
$$w = \{f^1, f^2, ..., f^K\} = f^{1:K}$$

•
$$p(w_1, w_2, ..., w_T) \equiv p(f_1^{1:K}, f_2^{1:K}, ..., f_T^{1:K})$$

$$\approx \prod_{t=1}^T p(f_t^{1:K} \mid f_{t-1}^{1:K}, f_{t-2}^{1:K})$$

- Advantageous in backoff
 - Words may not be observed, but factors are
 - Simultaneous class assignment

•
$$w = \{f^1, f^2, ..., f^K\} = f^{1:K}$$

•
$$p(w_1, w_2, ..., w_T) \equiv p(f_1^{1:K}, f_2^{1:K}, ..., f_T^{1:K})$$

$$\approx \prod_{t=1}^T p(f_t^{1:K} \mid f_{t-1}^{1:K}, f_{t-2}^{1:K})$$

- Advantageous in backoff
 - Words may not be observed, but factors are
 - Simultaneous class assignment

Language Model Backoff

Idea: When n-gram count is low, use (n-1)-gram estimate

Word-based language model: Backoff most distant word

Factored language model:

Backoff graph: multiple backoff paths possible

$$p_{bo}(F \mid F_1, F_2, F_3) = \begin{cases} \beta \cdot p_{ML}(F \mid F_1, F_2, F_3) & \text{if count } \ge \text{threshold} \\ \alpha \cdot g(F, F_1, F_2, F_3) & \text{else} \end{cases}$$

Outline

- Factored Language Models
- Structure Learning for Factored Language Models
 - What Parameters to Learn?
 - Genetic Algorithms Overview
 - Genetic Algorithms Applied to Structure Learning
- Experiments and Results

Parameters for Factored Language Models

1. Initial conditioning factors

- E.g. If there are 4 available factors: $\{S_{-1}, S_{-2}, t_{-1}, t_{-2}\}$
 - Do we use all of them? $p(w_0 \mid s_{-1}, s_{-2}, t_{-1}, t_{-2})$
 - Or some subset of them? $p(w_0 \mid s_{-1}, t_{-1})$

Backoff graph

E.g. 3 backoff graphs are possible for 2 initial factors

The Need for Automatic Structure Learning

- Previously, parameters have been specified by hand.
- But search space is large:
 - 1. For a total of K available factors.... $\sum_{n=1}^{K} {K \choose n}$ possible subsets of factors
 - 2. For a set of M factors (from 1).... M! possible backoff graph configurations

The Need for Automatic Structure Learning

- Previously, parameters have been specified by hand.
- But search space is large:
 - 1. For a total of K available factors.... $\sum_{n=1}^{K} {K \choose n}$ possible subsets of factors
 - 2. For a set of M factors (from 1).... M! possible backoff graph configurations
- Solution:
 - Genetic Algorithms!

Genetic Algorithms Overview

- General search/optimization technique inspired by evolution and genetics
 - Potential solutions are encoded as "genes"
 - "Evolve" genetic population using "fitness function", etc.

Genetic Algorithms for Factored Language Models

- Each gene represents a particular model structure, in particular:
 - Initial Factors
 - Backoff Graph

```
Initial Factors → 0 1 1 0 1 1 0 1 1 0 1 0 1 0 ← Backoff Graph
```

- Fitness function: Dev Set perplexity
- The hope: Genetic algorithm creates successive populations of genes with better model, lower perplexity

Gene for Initial Factors

0 or 1 indicates whether to use a factor

E.g. 6 available factors. Which ones to use?

$$p(w_0 \mid w_{-1}, w_{-2}, s_{-1}, s_{-2}, t_{-1}, t_{-2})$$

0 0 1 1 1 0

$$p(w_0 \mid w_{-2}, s_{-1}, t_{-1})$$

- 0 or 1 indicates whether to activate a <u>Graph-</u>
 <u>Grammar Production Rule</u>
 - Rule indicates which factor to backoff

```
Rule1: \{X1,X2,X3\} \rightarrow \{X1,X2\}
Rule2: \{X1,X2,X3\} \rightarrow \{X1,X3\}
Rule3: \{X1,X2,X3\} \rightarrow \{X2,X3\}
```

$$W_{t} \mid W_{t-1} S_{t-1} T_{t-1}$$

- 0 or 1 indicates whether to activate a <u>Graph-</u>
 <u>Grammar Production Rule</u>
 - Rule indicates which factor to backoff

```
✓ Rule1: \{X1,X2,X3\} \rightarrow \{X1,X2\}
Rule2: \{X1,X2,X3\} \rightarrow \{X1,X3\}
Rule3: \{X1,X2,X3\} \rightarrow \{X2,X3\}
```


- 0 or 1 indicates whether to activate a <u>Graph-</u>
 Grammar Production Rule
 - Rule indicates which factor to backoff

```
✓ Rule1: \{X1,X2,X3\} \rightarrow \{X1,X2\}
✓ Rule2: \{X1,X2,X3\} \rightarrow \{X1,X3\}
Rule3: \{X1,X2,X3\} \rightarrow \{X2,X3\}
```


- 0 or 1 indicates whether to activate a <u>Graph-</u>
 Grammar Production Rule
 - Rule indicates which factor to backoff

```
✓ Rule1: \{X1, X2, X3\} → \{X1, X2\} ✓ Rule2: \{X1, X2, X3\} → \{X1, X3\} ✓ Rule3: \{X1, X2, X3\} → \{X2, X3\}
```


Production Rules:

R1: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X2\}$

R2: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X3\}$

R3: $\{X1 \ X2 \ X3\} \rightarrow \{X2 \ X3\}$

R4: $\{X1 X2\} \rightarrow \{X1\}$

R5: $\{X1 X2\} \rightarrow \{X2\}$

Production Rules:

R1: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X2\}$

R2: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X3\}$

R3: $\{X1 \ X2 \ X3\} \rightarrow \{X2 \ X3\}$

R4: $\{X1 \ X2\} \rightarrow \{X1\}$

R5: $\{X1 X2\} \rightarrow \{X2\}$

Gene

Production Rules:

R1: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X2\}$

R2: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X3\}$

R3: $\{X1 \ X2 \ X3\} \rightarrow \{X2 \ X3\}$

R4: $\{X1 \ X2\} \rightarrow \{X1\}$

R5: $\{X1 X2\} \rightarrow \{X2\}$

Gene

Production Rules: R1: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X2\}$ R2: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X3\}$ R3: $\{X1 \ X2 \ X3\} \rightarrow \{X2 \ X3\}$ R4: $\{X1 \ X2\} \rightarrow \{X1\}$ R5: $\{X1 X2\} \rightarrow \{X2\}$ R5 **R**3 **R4**)

Gene

Production Rules:

R1: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X2\}$

R2: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X3\}$

R3: $\{X1 \ X2 \ X3\} \rightarrow \{X2 \ X3\}$

R4: $\{X1 \ X2\} \rightarrow \{X1\}$

R5: $\{X1 X2\} \rightarrow \{X2\}$

Gene

 $W_{t} \mid W_{t-1} S_{t-1} T_{t-1}$

Production Rules:

 \checkmark R1: {X1 X2 X3} \rightarrow {X1 X2}

R2: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X3\}$

R3: $\{X1 \ X2 \ X3\} \rightarrow \{X2 \ X3\}$

R4: $\{X1 \ X2\} \rightarrow \{X1\}$

R5: $\{X1\ X2\} \rightarrow \{X2\}$

Gene

Production Rules:

 \checkmark R1: {X1 X2 X3} \rightarrow {X1 X2}

R2: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X3\}$

✓ R3: {X1 X2 X3} → {X2 X3}

R4: $\{X1 \ X2\} \rightarrow \{X1\}$

R5: $\{X1\ X2\} \rightarrow \{X2\}$

Gene

Gene for Backoff Graph: Example

Production Rules:

 \checkmark R1: {X1 X2 X3} \rightarrow {X1 X2}

R2: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X3\}$

✓ R3: {X1 X2 X3} → {X2 X3}

✓ R4: {X1 X2} → {X1}

R5: $\{X1\ X2\} \rightarrow \{X2\}$

Gene

Backoff Graph

Gene for Backoff Graph: Example

Production Rules:

 \checkmark R1: {X1 X2 X3} \rightarrow {X1 X2}

R2: $\{X1 \ X2 \ X3\} \rightarrow \{X1 \ X3\}$

✓ R3: {X1 X2 X3} → {X2 X3}

✓ R4: {X1 X2} → {X1}

R5: $\{X1\ X2\} \rightarrow \{X2\}$

Gene

Outline

- Factored Language Models
- Structure Learning for Factored Language Models
- Experiments and Results
 - Experimental Setup
 - Turkish Language Models
 - Arabic Language Models
 - Conclusion

Experimental Setup

- Main Question:
 - Can we find good factored language model structures automatically?
- 3 methods for getting factored language models:
 - Genetic Algorithms (50 genes/iteration, 10-50 iterations)
 - Search by hand
 - Random Search (500-2500 samples)
- Compare perplexities of different models

Turkish Language Models

Data:

- Newspaper text from web [Hakkani-Tür, 2000]
- Train: 800K tokens / Dev: 100K / Test: 90K
- Factors from morphological analyzer
 - Word, Root, Number, Case, POS for inflection groups

Eval Set perplexities

Ngram	Word LM	Hand FLM	Random FLM	Genetic FLM	Δppl(%)
2	609.8	558.7	525.5	487.8	-7.2
3	545.4	583.5	509.8	452.7	-11.2
4	543.9	559.8	574.6	527.6	-5.8

The best models used Word, POS, Case, Root factors, and various parallel backoff

Arabic Language Models

Data:

- Conversational Egyptian Arabic speech transcripts (LDC)
- Train: 170K words / Dev: 23K / Test: 18K
- Factors from morphological analyzer [Darwish, 2002]
 - Word, Morphological tag, Stem, Root, Pattern

Eval Set perplexities

Ngram	Word LM	Hand FLM	Random FLM	Genetic FLM	Δppl(%)
2	249.9	230.1	239.2	223.6	-2.8
3	285.4	217.1	224.3	206.2	-5.0

The best models used all available factors (Word, Stem, Root, Pattern, Morph), and various parallel backoffs

Conclusions

- Genetic algorithm finds superior models than handderived factored and word-based models.
- Improves perplexity by 5% (Arabic), 11% (Turkish)
- Enables fast development of factored language models in other tasks
 - Researchers can concentrate on developing good factors. Genetic algorithm automatically finds good structure.
- Promising Arabic speech recognition results
 - [Vergyri et. al., ICSLP 2004]

Choosing Backoff Paths: A Priori

 Determine fixed backoff order a priori based on linguistic knowledge

In following examples:

- -W = Word
- -S = Stem
- -T = Tag (POS)

$$p_{bo}(w_{t} \mid w_{t-1}, s_{t-1}, t_{t-1}) = \begin{cases} d_{c} p_{ML}(w_{t} \mid w_{t-1}, s_{t-1}, t_{t-1}) \text{ if count} \ge \text{threshold} \\ \frac{\alpha}{2} [p_{bo}(w_{t} \mid w_{t-1}, s_{t-1}) + p_{bo}(w_{t} \mid w_{t-1}, t_{t-1})] \text{ else} \end{cases}$$

Joint Optimization of Initial Factors and Backoff Graph

01101 10110101001110

Initial Factors

Backoff Graph

- Genetic Algorithm Parameters:
 - Population: 30-50
 - Mutation probability: 0.01
 - Crossover probability: 0.90
 - Crossover method:1-point, 2-point, point-wise
 - Selection method: Roulette wheel, universal stochastic sampling
 - Elitist Strategy (best gene always survives)
- Fitness Function Convergence: $avg(1/ppl2) avg(1/ppl1) \le 10^{-5}$

Bayesian Networks Perspective

Structure Learning = What dependencies (arrows) to add?

Turkish/Arabic Factored Words

Turkish:

- Yararlanmak (word)
- Yarar (root)
- NounInf-N:A3sg (part-of-speech),
- Pnon (other)
- Nom (case)

Arabic

- II+dOr (word)
- noun+masc-sg+article (morphological info)
- dOr (stem)
- dwr (root)
- CCC (pattern)

Turkish: Comparison of Perplexities

Dev Set perplexities

Ngram	Word	Hand	Random	Genetic	Δppl(%)
2	593.8	555.0	556.4	539.2	-2.9
3	534.9	533.5	497.1	444.5	-10.6
4	534.8	549.7	566.5	522.2	-5.0

Eval Set perplexities

Ngram	Word	Hand	Random	Genetic	Δppl(%)
2	609.8	558.7	525.5	487.8	-7.2
3	545.4	583.5	509.8	452.7	-11.2
4	543.9	559.8	574.6	527.6	-5.8

The best models used Word, POS, Case, Root factors, and various parallel backoff

Arabic: Comparison of Perplexities

Dev Set perplexities

Ngram	Word	Hand	Random	Genetic	Δppl(%)
2	229.9	229.6	229.9	222.9	-2.9
3	229.3	226.1	230.3	212.6	-6.0

Eval Set perplexities

Ngram	Word	Hand	Random	Genetic	Δppl(%)
2	249.9	230.1	239.2	223.6	-2.8
3	285.4	217.1	224.3	206.2	-5.0

The best models used all available factors (Word, Stem, Root, Pattern, Morph), and various parallel backoffs

