Large Language Models: the basics

Kevin Duh
Johns Hopkins University
June 2024
Today’s Agenda

• 9:00-10:20: Tutorial on LLM basics
• 10:20-10:40: Break
• 10:40-12:00: Research showcase: invited talks that illustrate different research areas related to LLMs
• 12:00-13:00: Lunch
• 13:00-13:30: Computer lab setup
• 13:30-17:00: Lab
Goals of this tutorial

• Establish common terminology
• Point out standard thinking that might require re-thinking
 • items marked ⚡️ = Caution: don’t fully believe at face value

• Outline:
 1. Why LLMs are fundamentally different from what came before
 2. How LLMs are built
 3. Survey of popular LLM implementations
 4. Quick sampling of some advanced topics
1. Why LLMs are fundamentally different from what came before
What defines a Large Language Model (LLM)?

• Size?
• Architecture?
• Training objectives?
• Anything can be called LLM if it’s good for the press release?
• Intended Use (my preferred definition):
 • LLM are models that have *emergent abilities* and are intended to be used for *multiple purposes*
LM, PLM, & LLM

- Distinction based on intended use

- Language Model (LM)
 - use case: probability of next word

- Pre-trained Language Model (PLM) – BERT
 - use case: one NLP task after fine-tuning

- Large Language Model (LLM) – GPT-3.5
 - use case: multi-purpose & emergent ability
LM: Probability of Next Word

- LMs can be used in many applications, e.g. Speech Recognition

\[
p(w) = p(w_n \mid w_{n-1}, w_{n-2}, \ldots, w_1) \times p(w_{n-1} \mid w_{n-2}, \ldots, w_1) \\
\times p(w_{n-2} \mid w_{n-3}, \ldots, w_1) \times p(w_{n-3} \mid w_{n-4}, \ldots, w_1) \\
\times p(w_{n-4} \mid w_{n-5}, \ldots, w_1) \times \ldots \times p(w_2 \mid w_1) \times p(w_1)
\]

- n-gram LM: Next word probability from counts:
 \[
p(w_2 \mid w_1) = \frac{\text{Count(“} w_1 w_2\text{”)}}{\text{Count(“} w_1\text{”)}}
\]

- neural LM: Next word probability from neural net:
 \[
p(w_i \mid w_{i-2}, w_{i-1})
\]
LM objective: Perplexity

- **Information**: Let E be an event which occurs with probability P(E). If I told you E occurred, then I’ve given you $I(E) = -\log_2 P(E)$ bits of info.

- **Entropy**: suppose distribution $p(x)$ with K possible values. What is the average amount of info?

 $$H(p) = \sum_{k=1}^{K} P(X = x_k)I(x_k) = \sum_{k=1}^{K} p(x_k)I(x_k) = - \sum_{k=1}^{K} p(x_k) \log_2 p(x_k)$$

- **Cross-Entropy**: suppose we don’t know true distribution $p^*(x)$ but have a model $p(x)$ that approximates it. How good is the model?

 $$H(p^*, p) = \sum_{m=1}^{M} P^*(X = x_m)I(x_m) \approx \frac{1}{K} \sum_{k=1}^{K} I(x_m) = - \frac{1}{K} \sum_{k=1}^{K} \log_2 P(X_k = x_m)$$

- **Perplexity**: given a test set of K words, $PPL = 2^{-\frac{1}{K} \sum_{k=1}^{K} \log_2 P(X_k=x_m)}$
LM example

\[P(\text{current word} = k) = y_k = \frac{\exp(W_{jk}^T h)}{\sum_{k'} \exp(W_{jk'}^T h)} \]

Compress: \(h = \sigma(M^T v) \)

Word at t-2, \([x_1, x_2, x_3] = [0, 1, 0]\)

Word at t-1, \([x_4, x_5, x_6] = [1, 0, 0]\)

PLM: Fine-tuning for one task

- Intuition: pre-training finds good “representations” of data, so only small amounts of task-specific labels are needed

Pre-trained LM
e.g. BERT

LM objective (next word prediction, etc.) on large amounts of raw text (easy to obtain)

Fine-tuned Model for Task A
Supervised training objective on small amounts of Task A data/labels

Fine-tuned Model for Task B
Supervised training objective on small amounts of Task B data/labels

Deploy on Task A test data

Deploy on Task B test data
BERT vs GPT-4

• Both trained with Language Model objectives but something seems fundamentally different

Pre-train on large data
+ *Fine-tune on Task A*
 = *Great performance on Task A*

Pre-train on large data
+ *Scale Up*
 = *Emergent ability on many tasks (AGI?)*
LLM: “Emergent” Abilities

“Emergence is when quantitative changes in a system result in qualitative changes in behavior.” – Philip Anderson (physicist), 1972

An ability is emergent if it is not present in smaller models but is present in larger models [Wei, et al (2022). Emergent Abilities of Large Language Models]
In-Context Learning (an example of emergent ability)

I: Instruction
E1: Example1
T: Test Input

Translate English to French

[en]: A discomfort which lasts. [fr]: Un malaise qui dure

[en]: HTML is a language for formatting [fr]: HTML est un langage de formatage

[en]: After you become comfortable with formatting

Zero Shot

I: Instruction
T: Test Input

Few Shot (w/ Instruction)

I: Instruction
E1: Example1
E2: Example2
T: Test Input

Few Shot (Example only)

E1: Example1
E2: Example2
T: Test Input
Chain-of-Thought Prompting (also emergent)

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27. ❌

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. ✔

Wei, et al. (2023) Chain-of-Thought Prompting Elicits Reasoning in LLMs
“There’s this idea of emergence that caught me and also, I think, many researchers, by surprise – that you can just train a language model, predict the next token on a tons of raw text, and then it can answer questions, it can summarize documents, have dialogue, translate, classify text, learn all sorts of different kind of pattern manipulation, format dates, and so on. It was just really eye-opening ...”
– Percy Liang (Stanford), 2022/06
https://web.stanford.edu/class/cs224u/podcast/liang/
Why do these abilities emerge? Still unknown

- Large scale?
- Overparameterization?
- Instruction tuning?
- Training on code?
- RLHF?
- Magic?

How does GPT Obtain its Ability? Tracing Emergent Abilities of Language Models to their Sources
LLM’s multi-purpose and emergent abilities contradict some machine learning intuitions

• No Free Lunch Theorem
 • If a method does well on certain class of problems, it must be paying for degraded performance on other problems.

• Objective function, Structural Risk Minimization
 • Generalization Error is bounded by Training Error + Capacity Term
Scaling Law

• Language modeling performance improves smoothly as we increase model size, dataset size, amount of compute for training.

Next word prediction is massively multitask?

Johns Hopkins (May 19, 1795 – December 24, 1873) was an American merchant, investor, and philanthropist. Born on a plantation, he left his home to start a career at the age of 17, and settled in Baltimore, Maryland, where he remained for most of his life.

Hopkins invested heavily in the Baltimore and Ohio Railroad (B&O), which eventually led to his appointment as finance director of the company. He was also president of Baltimore-based Merchants' National Bank.[a] Hopkins was a staunch supporter of Abraham Lincoln and the Union, often using his Maryland residence as a gathering place for Union strategists. He was a Quaker and supporter of the abolitionist cause.

Is this why LLM are multi-purpose? Small models must sacrifice long tail, whereas large models scaling up enable memorization of different knowledge.
Hypotheses on the emergence of in-context learning

• Task identification?
 • Xie et al. (2021). An explanation of in-context learning as implicit Bayesian inference
 • Raventos, et al. (2023). Pretraining task diversity and the emergence of non-Bayesian in-context learning for regression

• Some kind of "learning" without model updates?
 • Akyurek, et al. (2024). In-context language learning: architectures and algorithms
 • von Oswald, et al. (2023). Transformers learn in-context by gradient descent

• Both?
 • Pan, et al. (2023). What in-context learning "learns" in-context: disentangling task recognition and task learning
Min, et al., Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?, EMNLP 2023
On the dangers of over-trusting emergent and multi-purposes abilities

Research workflow, pre-LLM

Generate idea

Think carefully: does idea match my intuitions about language or learning?

yes

Implement and experiment

no

Research workflow (for some), now

Generate idea

Assume LLM can handle whatever task you need.

Implement and experiment

revise

revise

yes

no
2. How LLMs are built
Main stages of building a LLM

Data Preparation
Very important. Often under-appreciated

Pre-training
1. Architecture design
2. Grid infrastructure
3. LM objective

Fine-tuning & Alignment
1. Instruction Tuning
2. Alignment: RLHF

Downstream Fine-Tuning
For developers building on top of LLM: e.g. Parameter-efficient Fine-tuning (PEFT)

GPT-4
Llama etc
Data Preparation

“To spur innovation in data-centric AI approaches, perhaps it’s time to hold the Code fixed and invite researchers to improve the data.”

– Andrew Ng, 2021

• Nontrivial questions:
 • Optimal mix of data sources
 • What kind of cleaning
 • How to tokenize
 • How to guess the impact of all these decisions?
Data mixture (an example)

Stage 1 Pre-training

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Tokens (B)</th>
<th>Epochs</th>
<th>Sampling prop. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RedPajama-CommonCrawl</td>
<td>879.37</td>
<td>1</td>
<td>63.98</td>
</tr>
<tr>
<td>RedPajama-GitHub</td>
<td>62.44</td>
<td>1</td>
<td>4.54</td>
</tr>
<tr>
<td>RedPajama-Books</td>
<td>65.18</td>
<td>2.5</td>
<td>4.74</td>
</tr>
<tr>
<td>RedPajama-ArXiv</td>
<td>63.32</td>
<td>2</td>
<td>4.61</td>
</tr>
<tr>
<td>RedPajama-StackExchange</td>
<td>21.38</td>
<td>1</td>
<td>1.56</td>
</tr>
<tr>
<td>C4 from 6 CC dumps (2019 - 2023)</td>
<td>191.50</td>
<td>0.2</td>
<td>13.93</td>
</tr>
<tr>
<td>Wikipedia-English</td>
<td>19.52</td>
<td>4</td>
<td>1.42</td>
</tr>
<tr>
<td>Wikipedia-21 other languages</td>
<td>62.04</td>
<td>2</td>
<td>4.51</td>
</tr>
<tr>
<td>Pile-DM Mathematics</td>
<td>7.68</td>
<td>2</td>
<td>0.56</td>
</tr>
<tr>
<td>Apex code from 6 CC dumps</td>
<td>2.09</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>Total</td>
<td>1374.52</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Stage 2 Pre-training

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Tokens (B)</th>
<th>Sampling prop. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data from stage 1</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>BigCode Starcoderdata</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>110</td>
<td>100</td>
</tr>
</tbody>
</table>

From: Shafiq Joty’s CLSP Seminar (2024).
Unleash the Potential of LLMs through Task & Data Engineering
https://www.youtube.com/@jhuclsp/videos
Data Filtering (an example)

Penedo, et al. (2023) The Refined Web dataset for Falcon LLM
A Pretrainer’s Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity [Longpre et al, NAACL 2024]

Some findings: strongly encourage to read the paper!

• “temporal shift between evaluation data and pretraining data leads to performance degradation, which is not overcome by finetuning”

• “a trade-off between performance on standard benchmarks and risk of toxic generations... there does not exist a one-size-fits-all solution to filtering.”
LLM Architectures

• Decoder-only transformer is now standard
 • But still need to decide hyperparameters
 • Larger context window

• There are also architecture innovations:
 • e.g. Mixture-of-Experts, State-space models

From: Dong, et al. (2019). Unified LM Pre-training for NLU and Generation
Number of Parameters

• <1 billion
• 1-10 billion
 • Llama2-7b (7b)
 • Bloom-3b (3b)
• 10-100 billion
 • GPT-3.5-turbo (20b)
 • Alpaca (13b)
• >100 billion
 • davinci-003 (175b)
 • Claude 2 (137b)

• Impact on model size & inference
 • usu. 4 bytes per parameter:
 • Bloom-3b → 12GB on disk
 • 2 bytes per parameter (FP16):
 • Llama2-70b → 140GB on disk

• Impact on training
 • extra ~6x bytes for optimizer state, gradient, temporary activations
 • Bloom-3b → 72GB GPU RAM
• hardware requirements:
 • Smaller models: Single or Multi-GPU training on single node (w/ 4 NVIDIA A100, 40GB RAM each)
 • Larger models: Multi-node Multi-GPU distributed training required. Fast interconnect.
Pre-training Cost

• Llama2-70b:
 • 6000 GPUs for 12 days,
 • trained on 2TB tokens of text,
 • 4k sequence length
 • 1×10^{24} FLOPS \rightarrow $2M$

• xGen-7b:
 • trained on 1.5T tokens of text
 • 8k sequence length
 • $150k$ on Google Cloud TPU-v4
Fine-Tuning, Instruction Tuning, Alignment

• I’ll group everything under Fine-Tuning because they’re not all that different in my opinion.
 • Is “Alignment” really aligning models to “human values” more so than running backprop on manually created data?

• Why fine-tune?
 • Specialize to a task
 • Learn to chat
 • Get used to prompts and instructions
 • Inject more human feedback
Instruction Tuning

Sanh, et al. (2022). Multitask prompted training enables zero-shot task generalization

Summarization
The picture appeared on the wall of a Poundland store on Whymark Avenue [...] How would you rephrase that in a few words?

Sentiment Analysis
Review: We came here on a Saturday night and luckily it wasn’t as packed as I thought it would be [...] On a scale of 1 to 5, I would give this a

Question Answering
I know that the answer to “What team did the Panthers defeat?” is in “The Panthers finished the regular season [...]”. Can you tell me what it is?

Natural Language Inference
Suppose “The banker contacted the professors and the athlete”. Can we infer that “The banker contacted the professors”?

Multi-task training
Zero-shot generalization
Comparison labels

Step 1
Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2
Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3
Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

e.g. Reinforcement Learning by Human Feedback (RLHF)

- Ouyang et. al. (2022). Training language models to follow instructions with human feedback
Parameter Efficient Fine-Tuning (PEFT)

Example
LoRA: Low-rank adaptation of large language models [Hu 2021]
General-purpose LLMs \rightarrow Specialized LLMs

- **Data Preparation**
 - BloombergGPT (train from scratch)
 - LLaMa \rightarrow AstroLlama (train on specialized data)

- **Pre-training**

- **Fine-tuning & Alignment**
 - LLaMa \rightarrow Vicuna (trained on Chat-GPT generated data)

- **Downstream Fine-Tuning**
 - Xuan’s talk later on Machine Translation task

• Question: Generalized \rightarrow Specialized LLM, or dedicated model from start?
3. Survey of popular LLM implementations
Minae, et. al. (2024). Large Language Models: A Survey
ALPACA: instruction tuning on top of LLaMa

Example seed task

Instruction: Brainstorm a list of possible New Year's resolutions.

Output:
- Lose weight
- Exercise more
- Eat healthier

Example Generated task

Instruction: Brainstorm creative ideas for designing a conference room.

Output:
... incorporating flexible components, such as moveable walls and furniture ...
LLaVA (multimodal LLM)
PaLM

- 540b model, trained on 6144 TPU-v4 via model/data parallelism
- Illustrates growing importance of Systems work

[Chowdhery, et. al., 2022] PaLM: Scaling Language Modeling with Pathways
Which one would you choose for research/deployments: Open or closed models?

What are the important factors?
4. Quick sampling of some advanced topics
Smaller models

- **Input Set**:
 - **Labeling**: Update c, Expand x, Complete y
 - **Expansion**: Update c, Expand x, Complete y
 - **Data Curation**: Sample l, Create x, Complete y

- **Feature**: Extract x, Distribution Intermediate Feature

- **Feedback**: Guide x, Correct $y_1 > y_3$, Expand x'

- **Self-Knowledge**: Filter x, Feedback y

e.g. Distillation

Figure Xu et. al. (2024) A Survey on Knowledge Distillation of Large Language Models
Efficient Inference & Serving

Parameter (26GB, 65%) KV Cache (>30%) Others

NVIDIA A100 40GB

e.g., Efficient memory management for LLM Serving with PagedAttention [Kwon 2023]

Figure 1. Left: Memory layout when serving an LLM with 13B parameters on NVIDIA A100. The parameters (gray) persist in GPU memory throughout serving. The memory for the KV cache (red) is (de)allocated per serving request.
Better prompts

• e.g., Reflection: [Shinn et. al., (2023). Reflexion: Language Agents with Verbal Reinforcement Learning]

• (System 2 Thinking)

User: Please write code to do X

```
def do_something():
    ... xyz ...
```

User: Below is code that does X. Please fix the bugs.

```
def do_something():
    ... xyz ...
```

```python
def do_something():
    ... abc ...
```
Using External Knowledge

Using External Tools

• e.g., Schick et. al. (2023) Toolformer: Language Models Can Teach Themselves to Use Tools

The New England Journal of Medicine is a registered trademark of [QA(“Who is the publisher of The New England Journal of Medicine?”) → Massachusetts Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) → 0.29] 29%) passed the test.
LLM Agents

The Future? Combines tool use & planning
 - e.g. Shen (2023) HuggingGPT
Multiple LLM Agents

The Future? LLMs working together to solve complex tasks
 • e.g. Wu (2023) AutoGen

OpenAI 2024/05 demo:
Two GPT-4os interacting and singing
https://www.youtube.com/watch?v=MirzFk_DSIl
Responsible AI: broad spectrum of topics

• Reliability
 • e.g. reduce or detect hallucination
• Fairness
 • e.g. mitigate harmful bias and toxicity
• Accountability
 • e.g. design proper data governance policy
• Privacy
 • e.g. use LLM inference with confidentiality protection
• Security
 • e.g. guard against adversarial attacks on model
Summary

1. Why LLMs are fundamentally different from what came before
 → Definition by intended use: multi-purpose & emergent

2. How LLMs are built

3. Survey of popular LLM implementations

4. Quick sampling of some advanced topics
Today’s Agenda

• 9:00-10:20: Tutorial on LLM basics
• 10:20-10:40: Break
• 10:40-12:00: Research showcase: invited talks that illustrate different research areas related to LLMs
• 12:00-13:00: Lunch
• 13:00-13:30: Computer lab setup
• 13:30-17:00: Lab
Next up: Research Showcase

Invited talks:
• SCALE 2024 Workshop on Video-based Event Retrieval (Reno Kriz)
• Machine Translation with LLMs (Xuan Zhang)
• Continuous Training of LLMs (William Fleshman)
• LLM Performance on Challenging Analogy Tasks (Andrew Wang)
• Detection of Machine-Generated Text (Rafael Rivera Soto)
• LLMs for Hardware Design (Michael Tomlinson & Paola Vitolo)