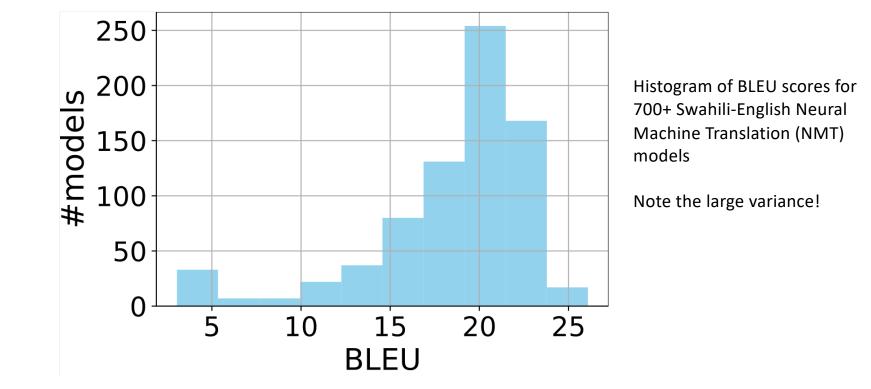
AutoML for Speech & Language Processing

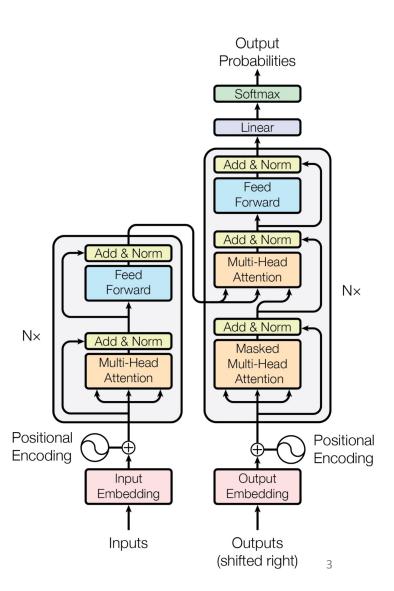
Kevin Duh and Xuan Zhang Johns Hopkins University

It's important to tune hyperparameters!



Hyperparameters

- Hyperparameters = Configurations of a model that are not updated in training
- Architectural hyperparameters:
 - # of layers
 - # of hidden units in feed-forward layer
 - # attention heads
 - Word embedding dimension
- Training pipeline hyperparameters:
 - # of subword units
- Optimizer hyperparameters:
 - Initial learning rate for ADAM, etc.



AutoML: Automated Machine Learning – what it might mean to different people

- For consumers: Democratization of ML
 - Upload own data, get ML model that can be plugged in application
- For developers: Reduce effort
 - Automate part of model building pipeline, more time for other priorities
 - Especially useful for optimizing models with speed-accuracy tradeoff
- For SLP researchers: Obtain state-of-the-art results
 - Fair comparison of methods
- For (some) ML researchers: Discover the next "Transformer"

AutoML: Automated Machine Learning – what it might mean to different people

- For consumers: Democratization of ML
 - Upload own data, get ML model that can be plugged in application
 Focus of this talk
- For developers: Reduce effort
 - Automate part of model building pipeline, more time for other priorities
 - Especially useful for optimizing models with speed-accuracy tradeoff
- For SLP researchers: Obtain state-of-the-art results
 - Fair comparison of methods
- For (some) ML researchers: Discover the next "Transformer"

AutoML as an umbrella term

- Topics that might appear at an AutoML conference
 - Hyperparameter Optimization (HPO)
 - Neural Architecture Search (NAS)
 - Meta-Learning
 - Bi-level Optimization
 - Automated Reinforcement Learning (AutoRL)
 - Algorithm Selection
 - Systems for Machine Learning (SysML)

Goal of this tutorial

- Motivate the importance of proper hyperparameter tuning or architecture search
- Explain a few popular methods in HPO and NAS (focus in-depth on a few illustrative methods, then describe general categorizations)
- Case study: describe our experiences in applying AutoML, hope it serves as a reference for you
- We hope AutoML will someday be a useful part of your toolbox!

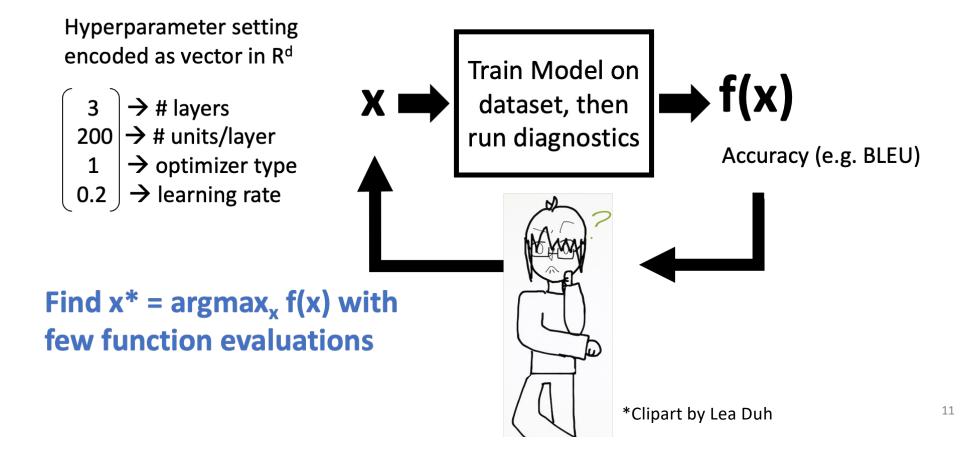
Roadmap

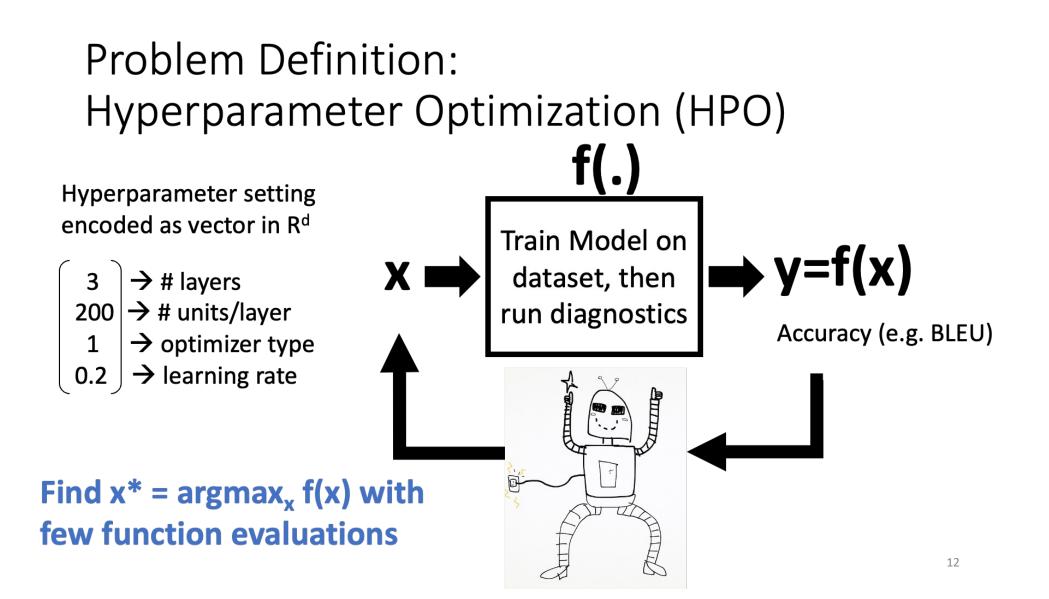
- 1. Motivation for AutoML
- 2. Hyperparameter Optimization (HPO)
- 3. Neural Architecture Search (NAS)
- 4. Extension to Multiple Objectives
- 5. Evaluation
- 6. Toolkits
- 7. Survey of HPO/NAS in SLP

Roadmap

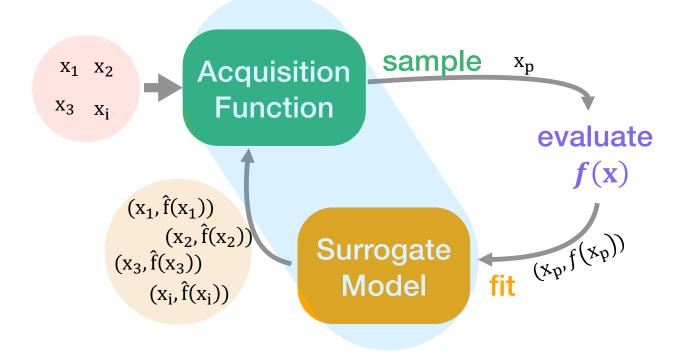
- 1. Motivation for AutoML
- 2. Hyperparameter Optimization (HPO)
 - Problem Formulation
 - Representative methods:
 - Bayesian Optimization
 - Grid/Random Search
 - Evolutionary strategies
 - Population-Based Training (PBT)
 - Hyperband
 - Generalizations
- 3. Neural Architecture Search (NAS)
- 4. Extension to Multiple Objectives
- 5. Evaluation
- 6. Toolkits
- 7. Survey of HPO/NAS in SLP

Problem Definition: Hyperparameter Optimization (HPO)

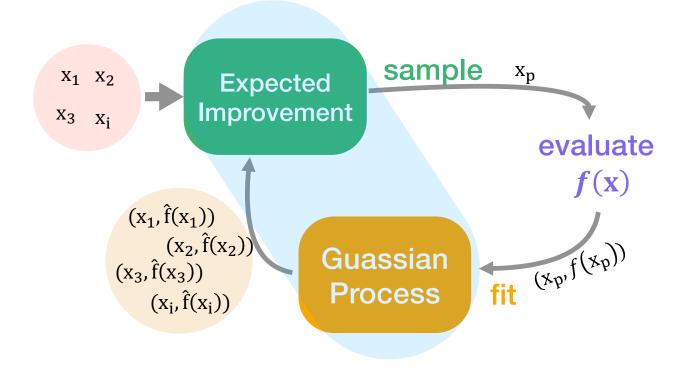


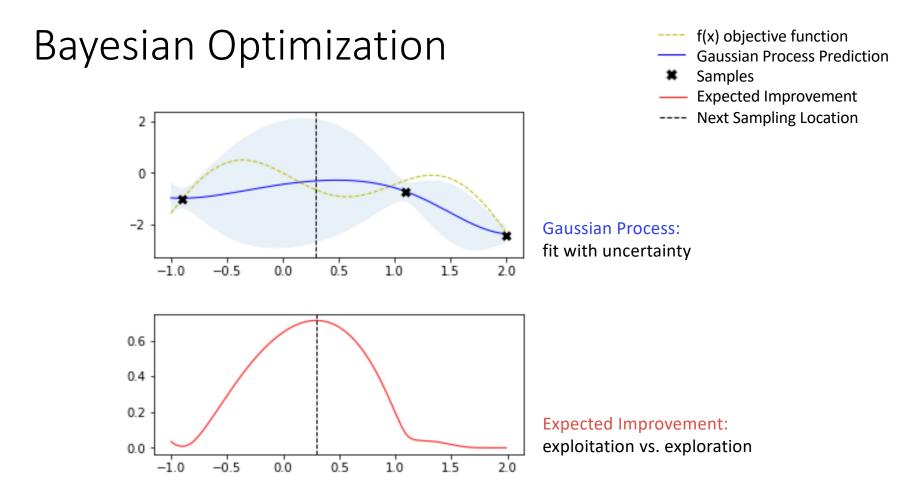


Sequential Model-Based Optimization (SMBO)



Bayesian Optimization

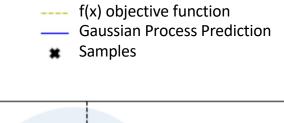


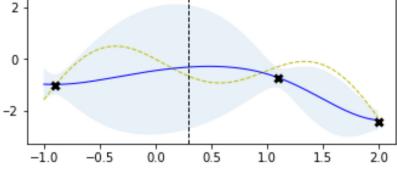


From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

Gaussian Process Regression

- Nonparametric / kernel methods
- f_{GP}(x_{1:n}) is jointly Gaussian; i.e. GP fits each
 f_{GP}(x) w/ a Gaussian distribution.
- To predict xnew, GP compares how "similar" it is to x1:n, which is measured by kernel.
- μ(x_{new}) depends on the prior μ₀(x_{new}) & f(x_{1:n})

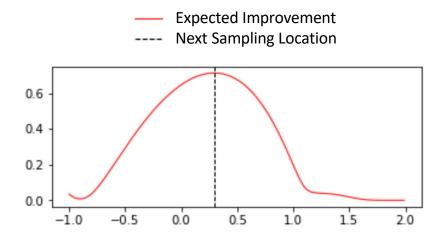




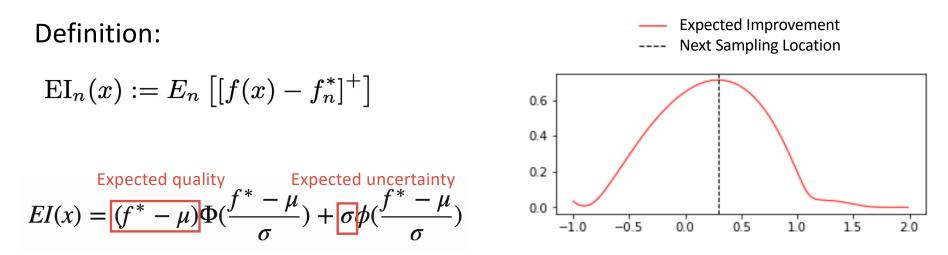
Expected Improvement

Definition:

 $EI_n(x) := E_n \left[[f(x) - f_n^*]^+ \right]$



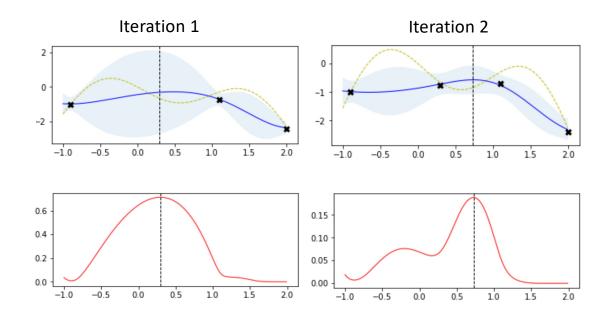
Expected Improvement

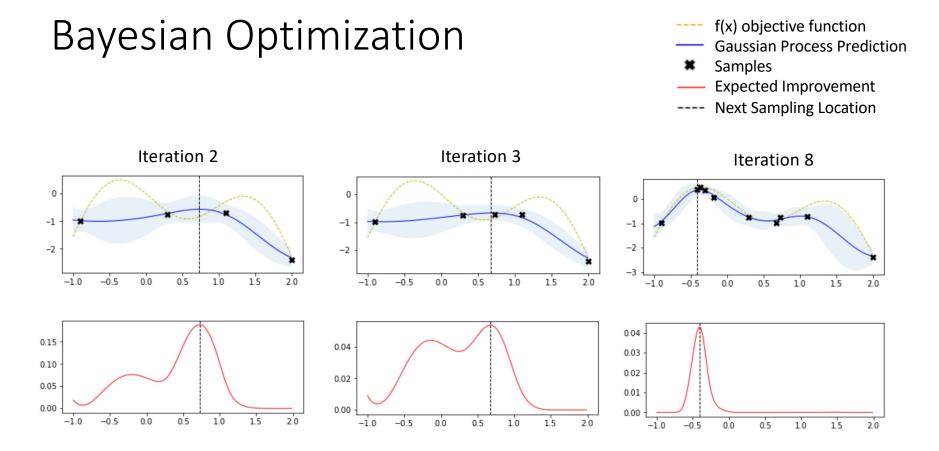


where ϕ, Φ are the PDF, CDF of standard normal distribution.

Bayesian Optimization

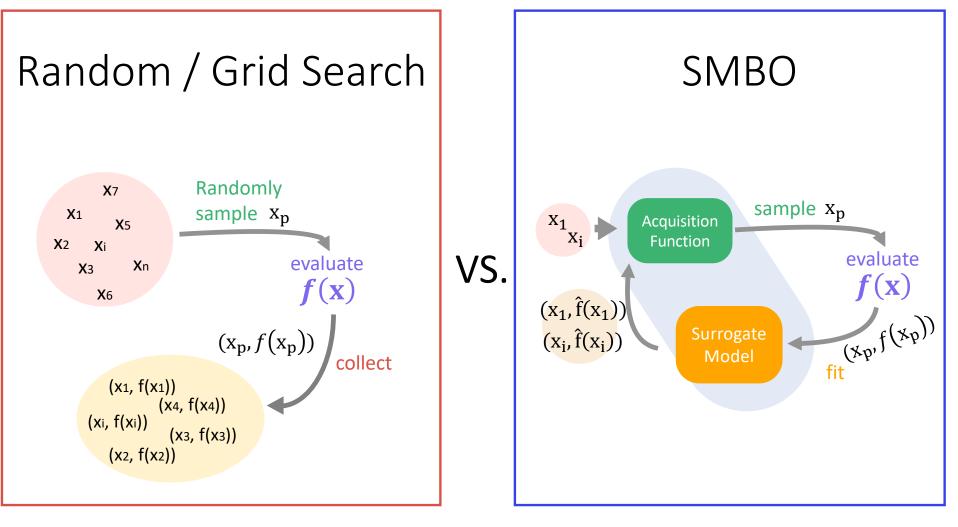
- ---- f(x) objective function
- Gaussian Process Prediction
- Samples
- Expected Improvement
- ---- Next Sampling Location

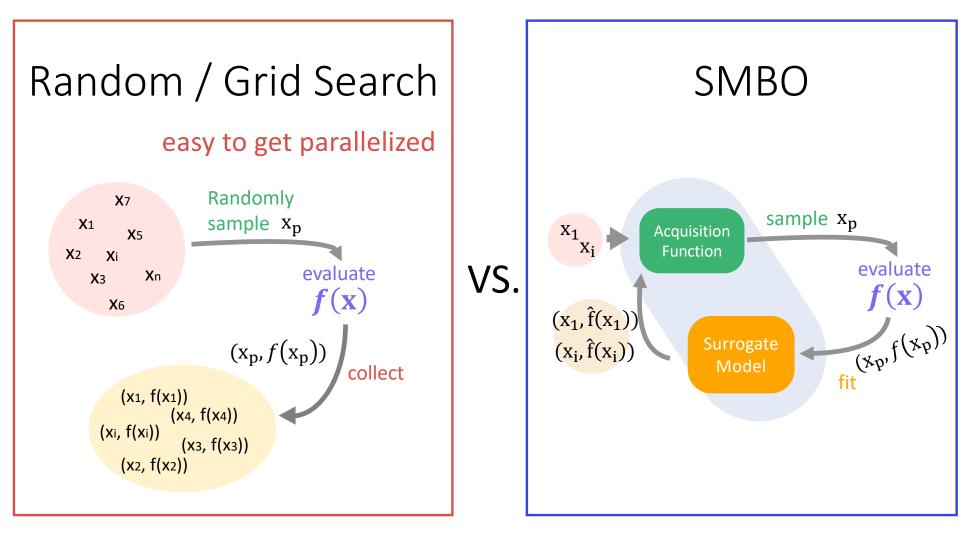




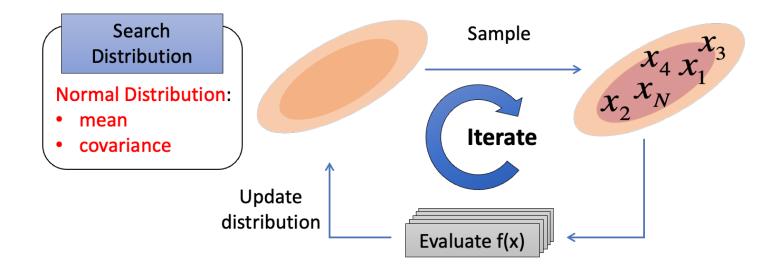
From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

20



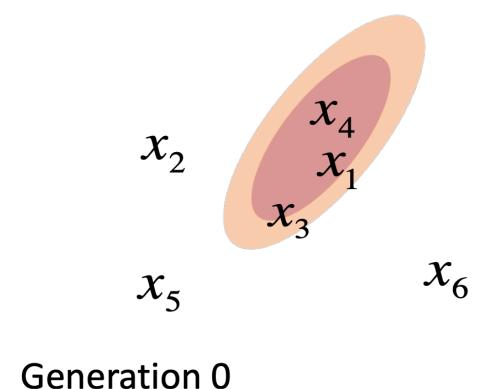


Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)



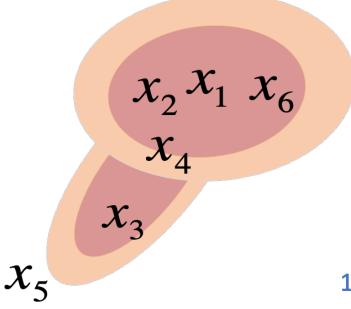
N. Hansen, S. D. Muller, and P. Koumoutsakos, "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)," Evolutionary Computation, vol. 11, no. 1, pp. 1–18, 2003.

Evolutionary Strategy for HPO



- Start with a population of "individuals", each representing a hyperparameter setting
- 2. The "fittest" ones (high **f(x)**) survive and produce offspring 24

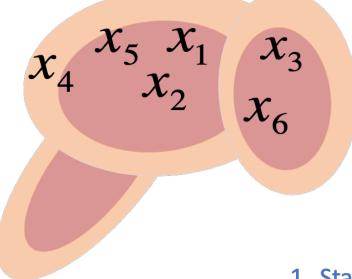
Evolutionary Strategy for HPO



Generation 1

- Start with a population of "individuals", each representing a hyperparameter setting
- 2. The "fittest" ones (high **f(x)**) survive and produce offspring

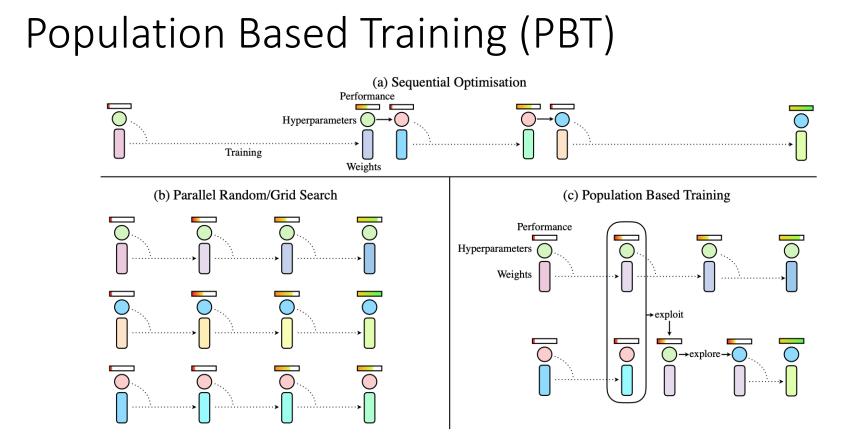
Evolutionary Strategy for HPO



Generation 2

- Start with a population of "individuals", each representing a hyperparameter setting
- 2. The "fittest" ones (high **f(x)**) survive and produce offspring 26

Estimating the search distribution



From : Population Based Training of Neural Networks, Jaderberg et al. 2017

Population Based Training (PBT)

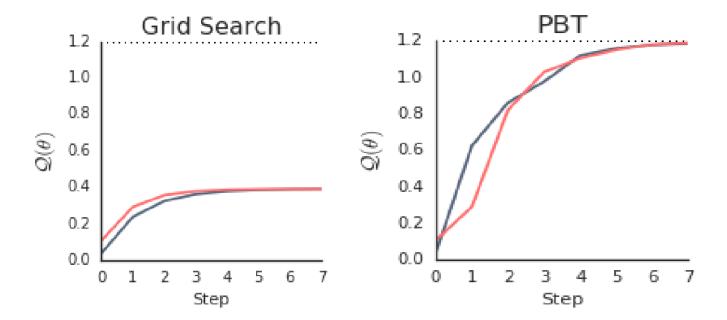


Figure. The objective function value of each worker over time.

From : Population Based Training of Neural Networks, Jaderberg et al. 2017

Go Beyond Blackbox HPO

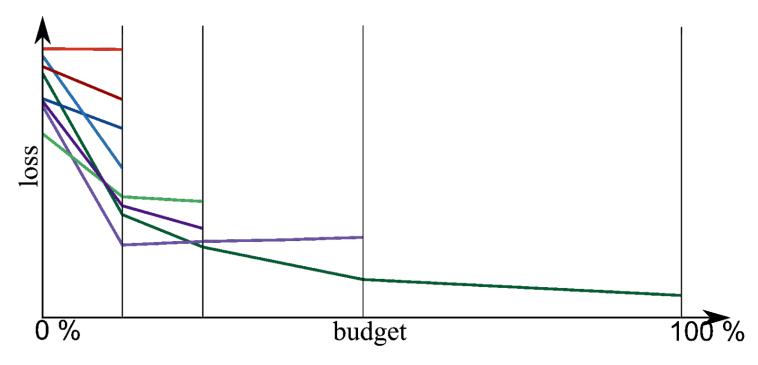
- No need to train to completion every time.
- Performance early in training is highly correlated with performance late in training. (Dodge, et al. 2020.)
- Multi-fidelity Optimization:

Use cheap approximations of the blackbox.

e.g. fewer training steps.

Successive Halving (SHA)

-- multi-armed bandit algorithm to perform early stopping



From : automl.org

Successive Halving (SHA)

Two inputs: Budget B, #configs N

B/n: resources allocated on average across the configurations

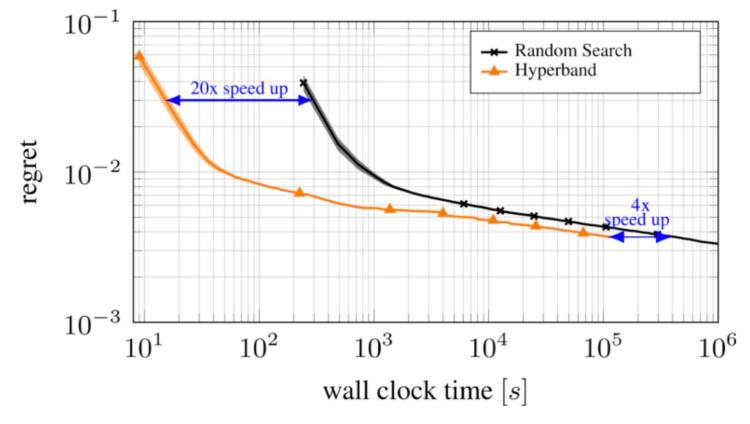
- Large N: small B/N, not enough training time
- Small N: large B/N, not enough configurations are evaluated

HyperBand

-- addresses the "n vs. B/n" problem by calling SHA multiple times with different n

	N=81		N=27		N=9		N=6		N=5	
rung	n	r	n	r	n	r	n	r	n	r
0	81	1	27	3	9	9	6	27	5	81
1	27	3	9	9	3	27	2	81		
2	9	9	3	27	1	81				
3	3	27	1	81						
4	1	81								

HyperBand



From : automl.org

Generalizations

- There are many HPO methods, but they can be categorized along various aspects
 - Parallel vs Sequential
 - Search Algorithm vs Scheduler
 - Blackbox, Graybox, multi-fidelity

Generalization: Parallel vs Sequential

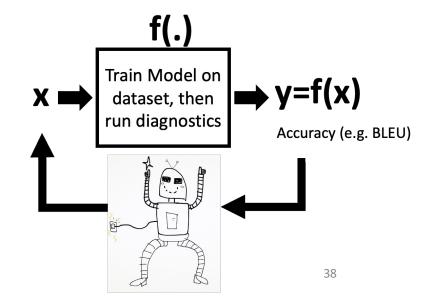
- Parallel vs Sequential:
 - Parallel: Evolutionary strategies, Population-based training
 - Sequential: Bayesian Optimization
 - What's best may depend on your compute setup & requirements
- All methods are iterative
 - All methods are about building on past experience in a HPO run
 - New research area: Meta-learning or transfer learning for HPO
 - Building on past experience from HPO runs on other problems

Generalization: Search Algorithm vs Scheduler

- Search algorithm: what to sample next (e.g. Bayes Opt vs CMA-ES)
- Scheduler: when to train a model, when to stop training (Hyperband)
- So these can be mixed and match!
 - HyberBand = Early stopping scheduler + Random Search
 - BOHB = Early stopping scheduler + Bayes Optimization

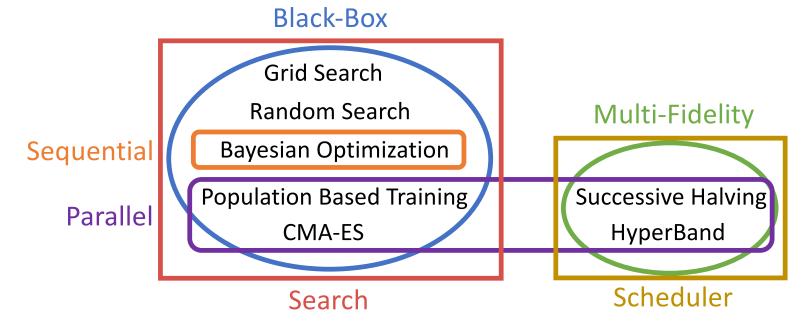
Generalization: Blackbox, Graybox, Multi-fidelity

- Blackbox methods don't look inside the model training process
- Graybox methods like Hyperband can improve HPO runtime
- Generally, multi-fidelity methods exploit approximations
 - Limit training time (analogous to Hyperband)
 - Training blackbox on smaller subset of data
 - Noisy measurements
 - --> assume precise accuracy isn't needed



Section Summary

- Problem Formulation of HPO
- Representative methods:

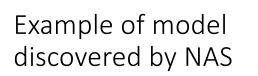


Roadmap

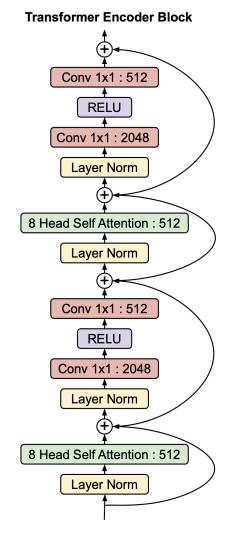
- 1. Motivation for AutoML
- 2. Hyperparameter Optimization (HPO)
- 3. Neural Architecture Search (NAS)
 - NAS vs HPO
 - Designing the NAS Search Space
 - NAS Search Strategy + Performance Estimation
 - Methods similar to HPO
 - One-shot NAS methods
- 4. Extension to Multiple Objectives
- 5. Evaluation
- 6. Toolkits
- 7. Survey of HPO/NAS in SLP

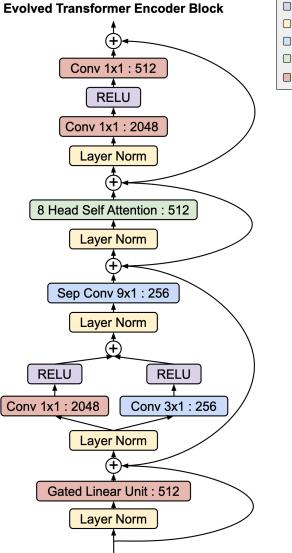
Hyperparameter Optimization (HPO) vs Neural Architecture Search (NAS)

	Hyperparameter Optimization (HPO)	Neural Architecture Search (NAS)
Machine learning model	Neural Network, Random Forests, Support Vector Machines, etc.	Neural Network
Hyperparameters	Architectural: - #layer for neural net - tree depth for random forests - kernel for support vector machine Training Pipeline: - Preprocessing, Data selection Optimization: - ADAM vs AdaGrad, Learning rate	Architectural - #layer, #dim - "Novel" non-standard architectures
Example of a discovered model	4-layer encoder, 3-layer decoder, each with FFN of 512 dimensions	4-layer encoder: layer 1 has 512 dim, layer 2 has 1024 dim, layer 3 uses 12 heads rather than 8, etc.
Summary	General technique, course-grained but diverse hyperparameters	Focused technique on neural nets, fine- grained architectural space



from: D. So, C. Liang, Q. Le. The Evolved Transformer (2019)





- ActivationNormalization
- Wide Convolution
- Attention
- Non-spatial Layer

Three components to an NAS method

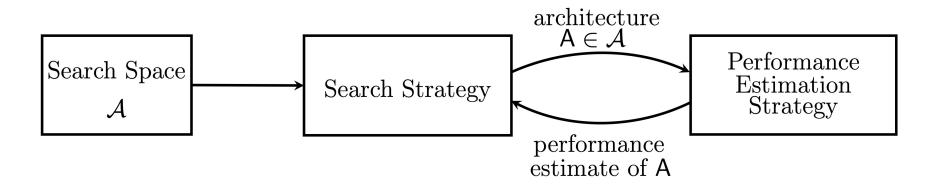


Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy selects an architecture A from a predefined search space \mathcal{A} . The architecture is passed to a performance estimation strategy, which returns the estimated performance of A to the search strategy.

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Three components to an NAS method

We'll discuss:

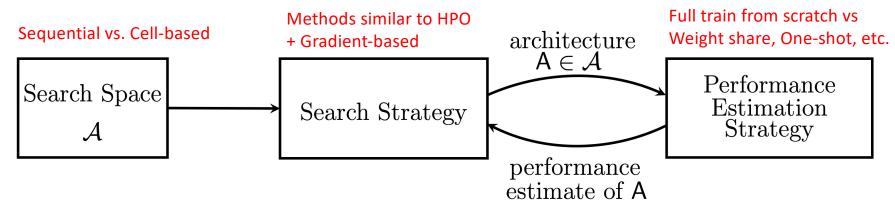


Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy selects an architecture A from a predefined search space \mathcal{A} . The architecture is passed to a performance estimation strategy, which returns the estimated performance of A to the search strategy.

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Search Space defined by sequential decisions

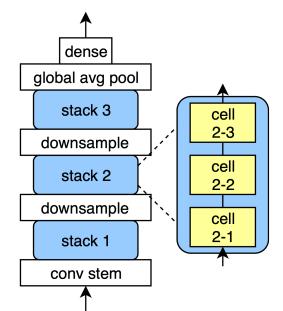
- Suppose we want feed-forward network with convolution layers
- Use a "controller" to predict hyperparameters in sequence

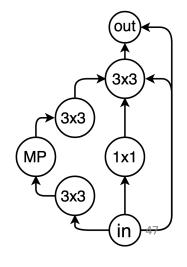


From: Zoph & Le. Neural Architecture Search with Reinforcement Learning, ICLR2017

Cell-based Search Space

- Focus search on smaller cells, which are stacked
- Example:
 - V nodes per cell (e.g. Max |V| = 7)
 - Each node takes one of L operations: 3x3 convolution, 1x1 convolution, 3x3 max-pool
 - Edges connect nodes, form Directed Acyclic Graph (DAG) starting from "in" to "out" node. (e.g. 21 edges max)
 - Encoding: 7x7 upper-triangular matrix + list of 5 operations. 2^21 x 3^5 = 510M unique cells





From: Ying et. Al. NAS-Bench-101: Toward Reproducible NAS

Cell-based Search Space (exercise)

Adjacency matrix of the module
matrix=[[0, 1, 1, 1, 0, 1, 0], # input layer
 [0, 0, 0, 0, 0, 0, 0, 1], # 1x1 conv
 [0, 0, 0, 0, 0, 0, 1], # 3x3 conv
 [0, 0, 0, 0, 0, 1, 0, 0], # 5x5 conv (replaced by two 3x3's)
 [0, 0, 0, 0, 0, 0, 1], # 5x5 conv (replaced by two 3x3's)
 [0, 0, 0, 0, 0, 0, 1], # 3x3 max-pool
 [0, 0, 0, 0, 0, 0, 0]], # output layer
Operations at the vertices of the module, matches order of matrix
ops=[INPUT, CONV1X1, CONV3X3, CONV3X3, CONV3X3, MAXPOOL3X3, OUTPUT])

From: Ying et. Al. NAS-Bench-101: Toward Reproducible NAS

Three components to an NAS method

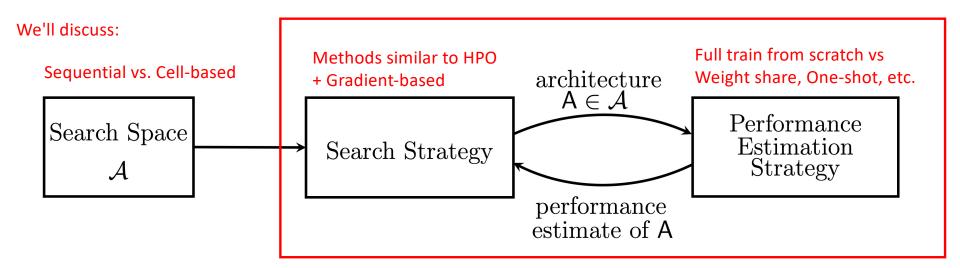
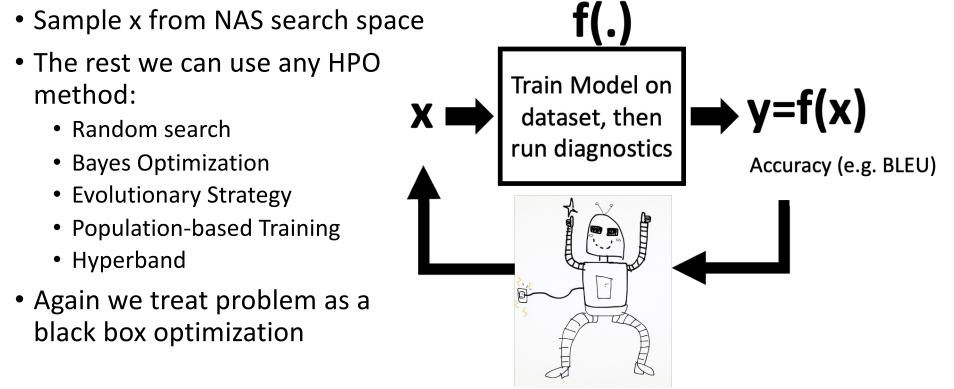


Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy selects an architecture A from a predefined search space \mathcal{A} . The architecture is passed to a performance estimation strategy, which returns the estimated performance of A to the search strategy.

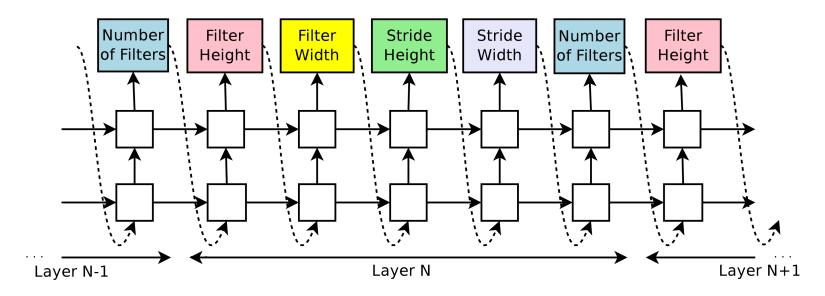
From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Search Strategy Options: HPO methods



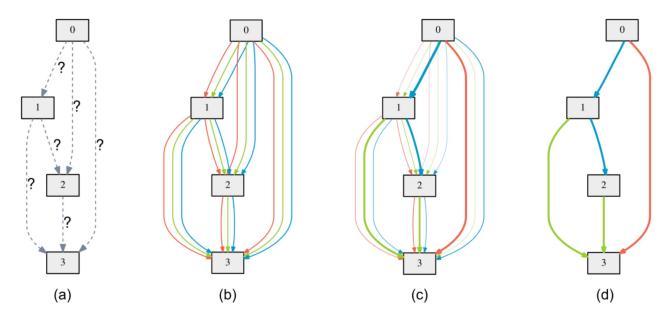
Search Strategy Options: Reinforcement Learning

View exploration/exploitation in search space as a sequence of decisions



Search Strategy Options: Gradient-based

- DARTS: Differentiable Architecture Search (Liu, Simonyan, Yang; 2019)
 - addresses scalability issue in search + performance estimation by relaxing search space to be continuous



DARTS

- Let O be set of candidate operations (e.g. convolution, max-pool, zero)
- For each edge (i,j), we have a distribution $\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$

Algorithm 1: DARTS – Differentiable Architecture Search

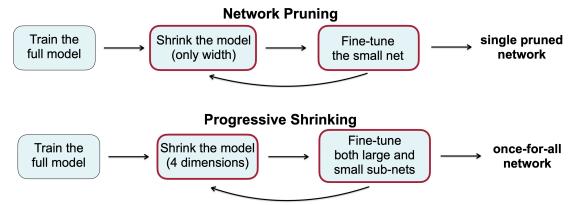
Create a mixed operation $\bar{o}^{(i,j)}$ parametrized by $\alpha^{(i,j)}$ for each edge (i,j) while not converged **do**

- 1. Update architecture α by descending $\nabla_{\alpha} \mathcal{L}_{val}(w \xi \nabla_{w} \mathcal{L}_{train}(w, \alpha), \alpha)$
 - $(\xi = 0 \text{ if using first-order approximation}) # learn alpha on validation set}$
- 2. Update weights w by descending $\nabla_w \mathcal{L}_{train}(w, \alpha)$ # fix alpha, standard training of parameters

Derive the final architecture based on the learned α . # pick argmax edges, retrain final model

Another one-shot NAS method: Once-for-All

- A single "supernet" is trained once
- Subnets x are sampled from supernet, and f(x) is measured without retraining x from scratch
- Progressive shrinking technique:
 - Potentially more representative subnets in supernet



From: Cai et. al. Once-for-all: Train one network and specialize it for efficient deployment. ICLR2020

Pros & Cons of One-Shot NAS

- Pros:
 - Much faster than black-box search + performance estimation
 - Explore much larger achitectural space
- Cons:
 - Difficult to know if the assumption of weight sharing is valid
 - Empirical results are mixed and unstable (some researchers may disagree)
 - Supernet needs to fit in memory
- NAS (one-shot & in general) is a very active research area stay tuned!

Section Summary

We discussed:

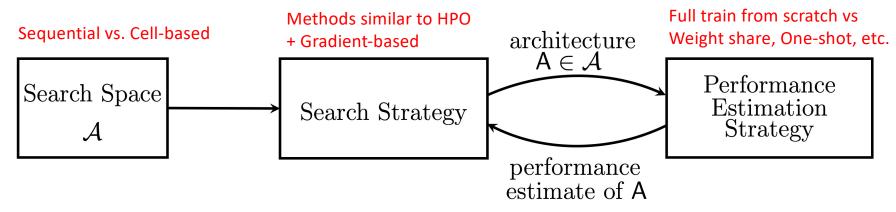


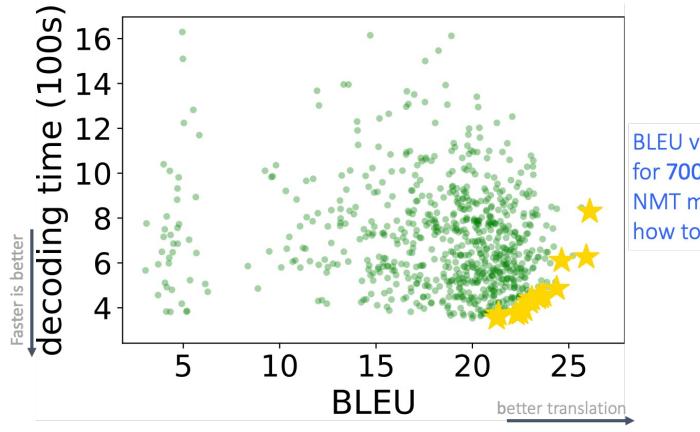
Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy selects an architecture A from a predefined search space \mathcal{A} . The architecture is passed to a performance estimation strategy, which returns the estimated performance of A to the search strategy.

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Roadmap

- 1. Motivation for AutoML
- 2. Hyperparameter Optimization (HPO)
- 3. Neural Architecture Search (NAS)
- 4. Extension to Multiple Objectives
 - Why it's important
 - Pareto optimality
 - Example Multi-objective HPO/NAS methods
- 5. Evaluation
- 6. Toolkits
- 7. Survey of HPO/NAS in SLP

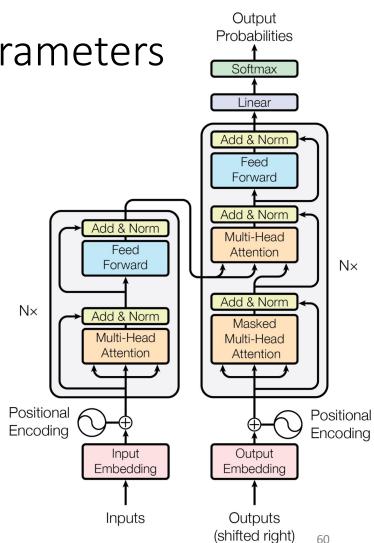
When deploying models, we care about multiple objectives. But it's complex.



BLEU vs Time Scatterplot for **700+** Swahili-English NMT models: unclear how to get best tradeoff

Quiz: How do these hyperparameters impact accuracy and speed?

- Architectural hyperparameters:
 - # of layers
 - # of hidden units in feed-forward layer
 - # attention heads
 - Word embedding dimension
- Training pipeline hyperparameters:
 - # of subword units
- Optimizer hyperparameters:
 - Initial learning rate for ADAM, etc.



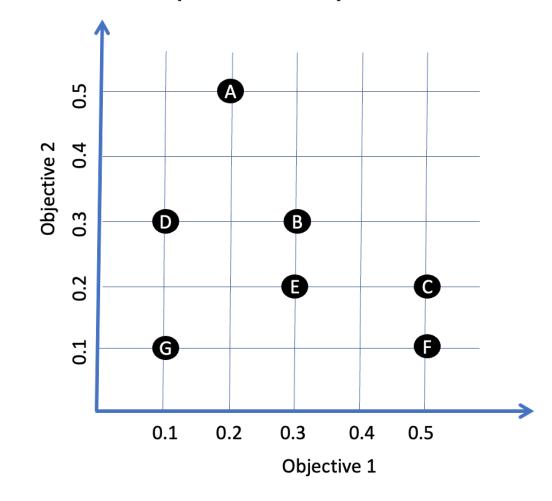
Objectives one may care about

- Accuracy
 - BLEU, COMET, Human evaluation
- Inference speed
 - On GPU, on CPU, in batch or not
 - Throughput vs Latency
- Deployment resource consumption
 - Memory, disk, energy
- Training resource consumption

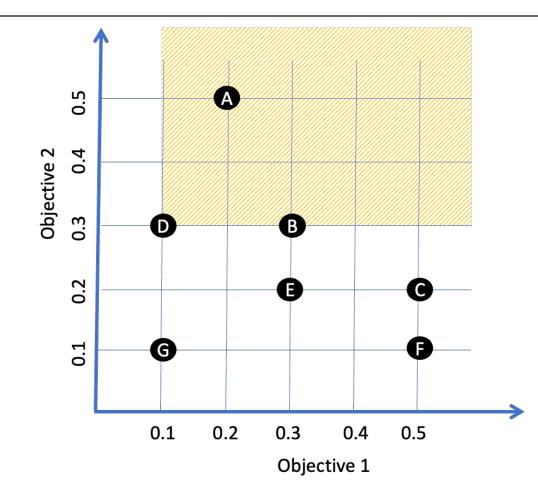
Motivation for Multiple Objectives

- IMHO, this is the strongest motivation for AutoML in deployment
 - While an engineer/researcher may develop good heuristics for tuning hyperparameters for accuracy alone, it is very difficult to reason through multiple interacting objectives
- Ideal future, where AutoML is part of everyone's toolkit
 - import AutoMLtool
 - A=search_space()
 - O=[accuracy(), speed(), memory()]
 - models = multi_objective_NAS(A, O)

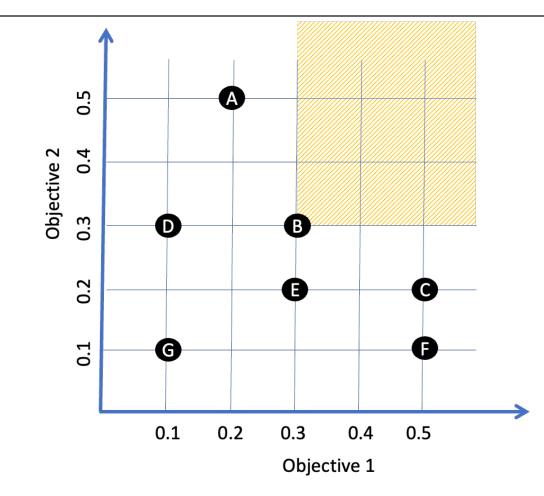
How to define optimality for multi-objective?



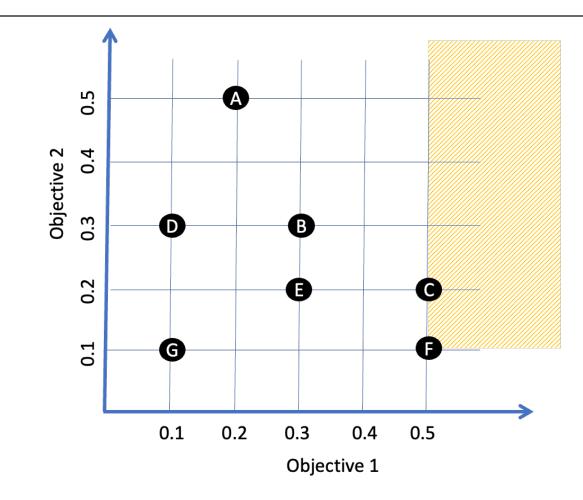
Definition: A point p is weakly pareto-optimal iff there does not exist another point q such that $F_k(q) > F_k(p)$ for all k



Definition: A point p is weakly pareto-optimal iff there does not exist another point q such that $F_k(q) > F_k(p)$ for all k

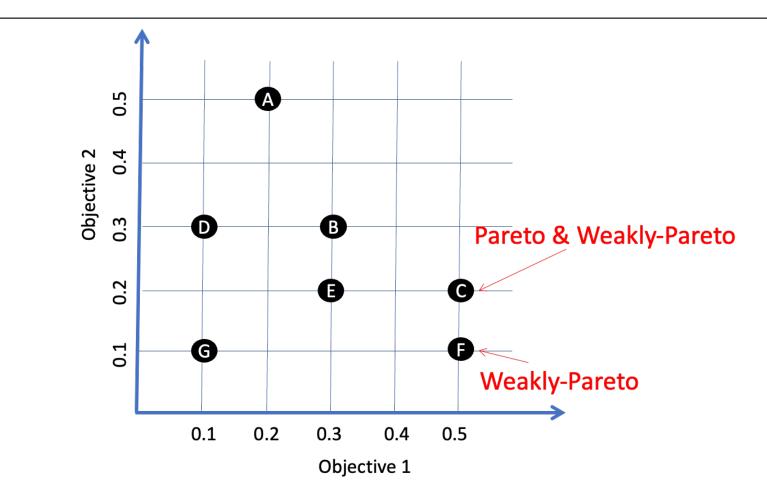


Definition: A point p is weakly pareto-optimal iff there does not exist another point q such that $F_k(q) > F_k(p)$ for all k

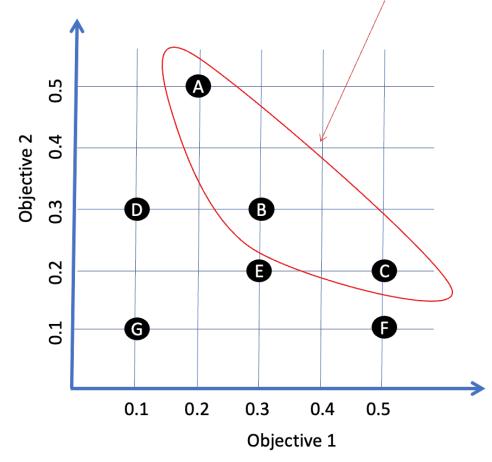


66

Definition: A point p is **pareto-optimal** iff there does not exist a q such that $F_k(q) \ge F_k(p)$ for all k and $F_k(q) \ge F_k(p)$ for at least one k



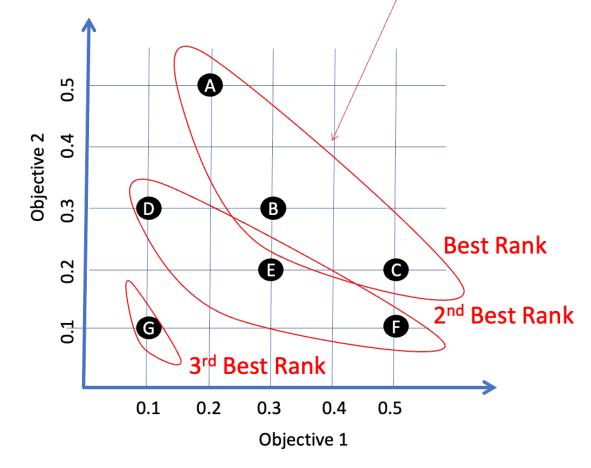
Given a set of points, the subset of pareto-optimal points form the Pareto Frontier



Computing Pareto

- Pseudo-code:
 - Set N=[]
 - For p in ListOfSamples:
 - Set d = 0
 - For q in ListOfSamples:
 - For k in ListOfObjective, see if $F_k(q) > F_k(p)$. If yes, d+=1
 - If d=0, add p to N
 - Return N
- Basic implementation is O(KN^2)
 - K = #objectives, N= #samples
 - O(K NlogN) is possible in two-objective case
- Generally, #pareto increases with K

Points can be ranked by successively peeling off the Pareto Frontier and recomputing



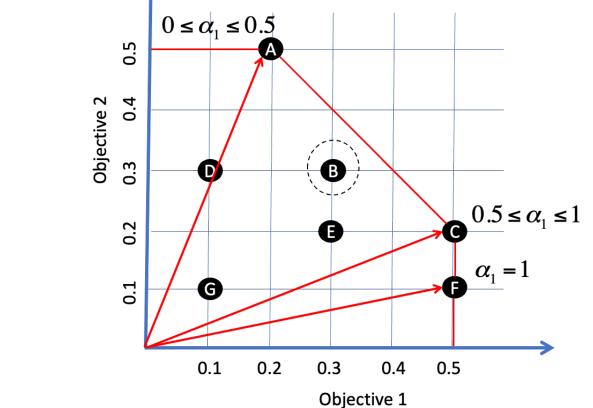
Aside: Alternative to Pareto Optimality

• Combine multiple objectives into one

$$\max_{x} [f_{1}(x), f_{2}(x), \dots, f_{M}(x)]$$

Scalarization:
$$\max_{x} [\sum_{m} \alpha_{m} f_{m}(x)] \qquad \alpha_{m} \ge 0, \sum_{m=1}^{M} \alpha_{m} = 1$$

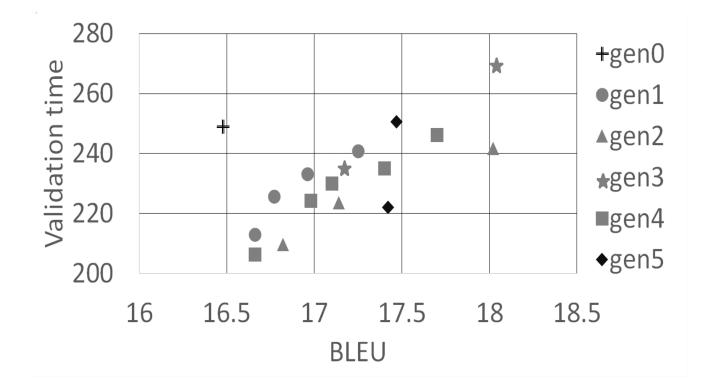
Scalarization misses Pareto points that are not on Convex Hull



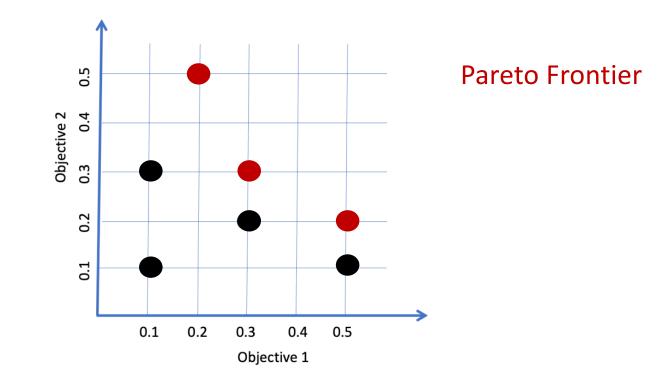
For more info, see tutorial: https://www.cs.jhu.edu/~kevinduh/notes/duh11multiobj-handout.pdf

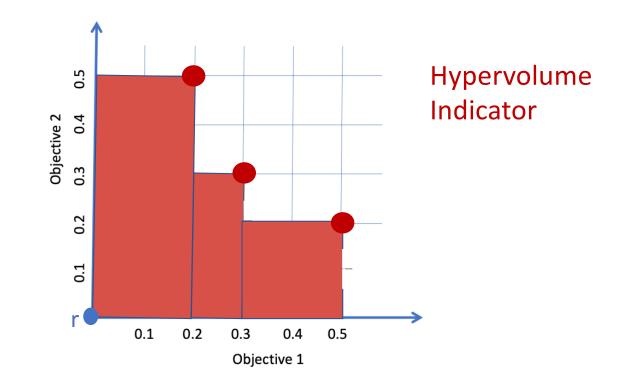
Incorporating Pareto into CMA-ES

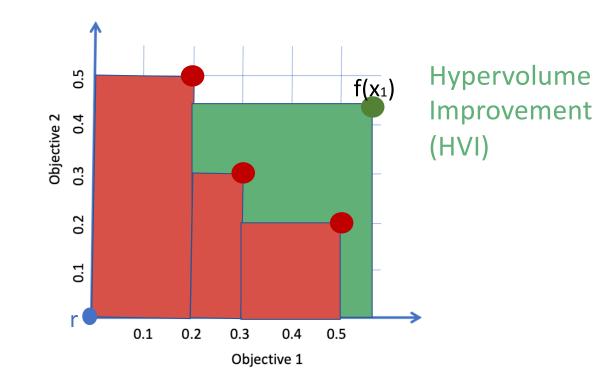
Example MT results from CMA-ES

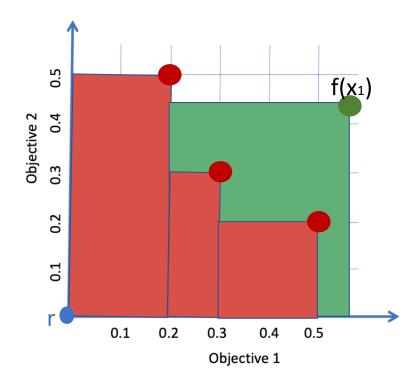


From: Qin, Shinozaki, Duh. Evolutionary strategy based automatic tuning of NMT systems, IWSLT 2017







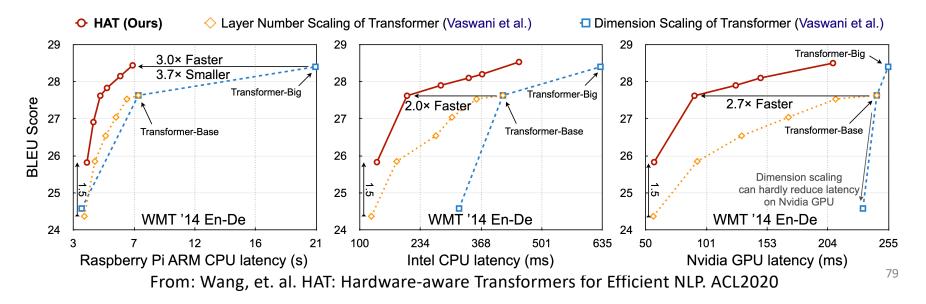


Objective function can be modeled as a multivariate Gaussian Process.

Expected Hypervolume Improvement: $\alpha_{\text{EHVI}}(\mathcal{X}_{\text{cand}}) = \mathbb{E}\Big[\text{HVI}(\boldsymbol{f}(\mathcal{X}_{\text{cand}}))\Big]$

Section Summary

- Pareto Optimality and multi-objective HPO/NAS
- Multi-objective is one of the strongest selling points of AutoML
 - Suppose Transformer-Big/Base doesn't fit your deployment scenario:



Roadmap

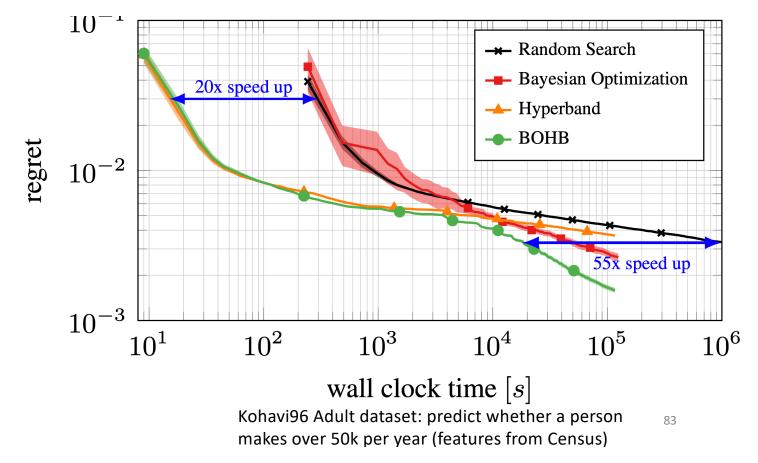
- 1. Motivation for AutoML
- 2. Hyperparameter Optimization (HPO)
- 3. Neural Architecture Search (NAS)
- 4. Extension to Multiple Objectives
- 5. Evaluation
 - Brief literature survey
 - Challenge of rigorous evaluation
 - Carbon footprint and broader issues
- 6. Toolkits
- 7. Survey of HPO/NAS in SLP

Which HPO/NAS method is best?

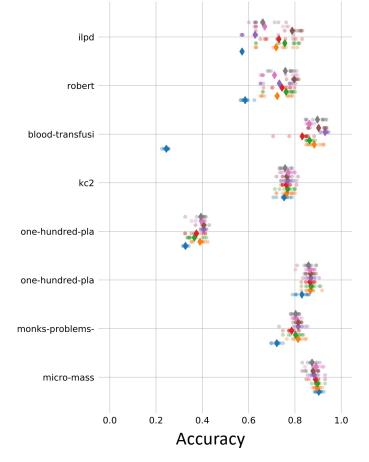
- This question is difficult to answer, perhaps even ill-defined.
 - Depends on budget, evaluation metric, task
- We'll survey 4 papers that compare HPO & NAS (on computer vision and simulation tasks), just to get a sense of the landscape
- We'll then describe competition result of the AutoML'22 MT benchmark.
- The message:
 - Evaluation of HPO/NAS methods is difficult due to computational constraints
 - The "best" solution for your problem will depend not just on the HPO/NAS method, but also on "best practices" for implementation (discussed later).

HPO comparison 1: Falkner, et. Al. BOHB: Robust and Efficient Hyperparameter Optimization at Scale. ICML2018

- "Best" method depends on your budget
- Compare methods by fixing budget, or "anytime" performance



HPO comparison 2: Zoller & Huber, Benchmark and Survey of Automated Machine Learning Frameworks, JAIR 2021





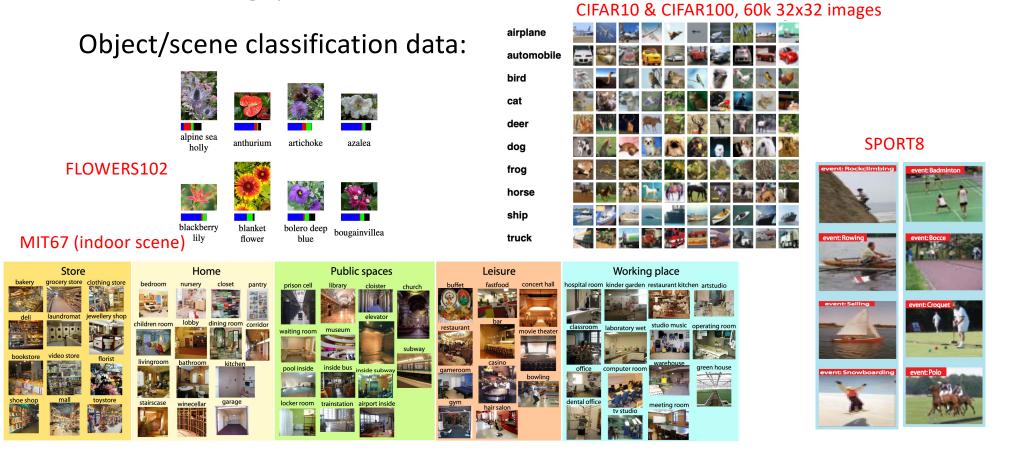
SMAC: SMBO with random forest
BOHB: Hyberband + Bayesian Optimization (TPE)
Optunity: Particle Swarm Optimization
Hyperopt: SMBO with Tree-structured Parzen Estimator (TPE)
RoBO: SMBO with Gaussian Process
BTB: Bandit Learning + Gaussian Process

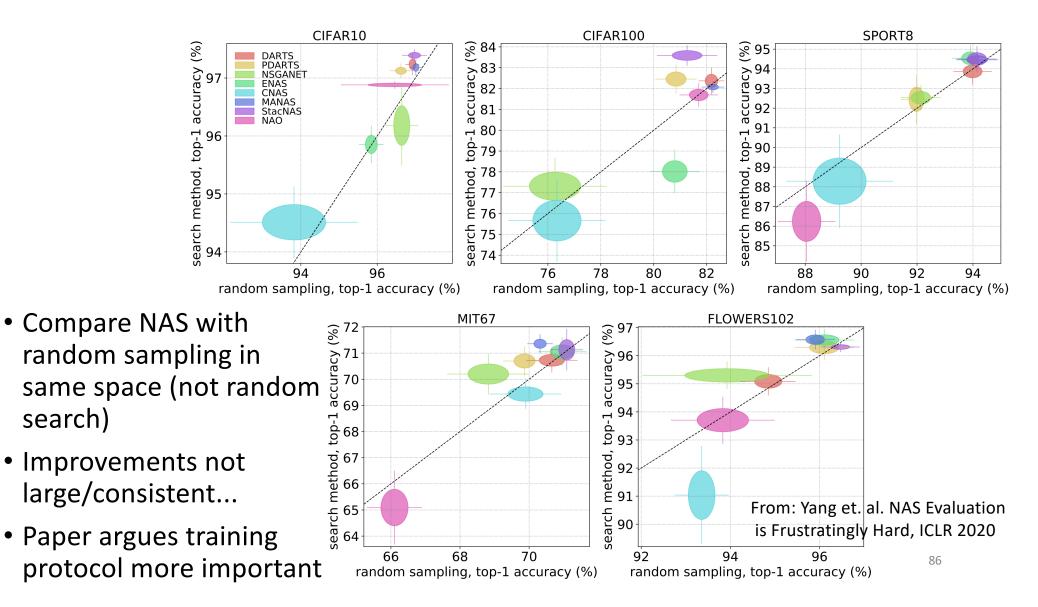
For datasets here, it seems:

- Some trends, e.g. Random Search is competitive, Grid search isn't

- But generally ranking is not consistent across datasets, variance is high

NAS Comparison 1: Yang et. al. NAS Evaluation is Frustratingly Hard, ICLR 2020





CIFAR-10: 32x32 pixel image, 10 classes, 60k samples

ImageNet (subset): 224x224 pixel image, 1000 classes, 1million samples

Reference	Published in	#Params (Millions)	Top-1 Acc(%)	GPU Days	#GPUs	AO	classes, 1million samples						
ResNet-110 [2]	ECCV16	1.7	93.57	-	-	Manually							
PyramidNet [207]	CVPR17	26	96.69	-	-	designed		Published	#Params	Top-1/5	GPU		
DenseNet [127]	CVPR17	25.6	96.54	-	-		Reference	in	(Millions)	Acc(%)	Days	#GPUs	AO
GeNet#2 (G-50) [30]	ICCV17	-	92.9	17	-		ResNet-152 [2]	CVPR16	230	70.62/95.51			
Large-scale ensemble [25]	ICML17	40.4	95.6	2,500	250					/	-	-	
Hierarchical-EAS [19]	ICLR18	15.7	96.25	300	200		PyramidNet [207]	CVPR17	116.4	70.8/95.3	-	-	
CGP-ResSet [28]	IJCAI18	6.4	94.02	27.4	2		SENet-154 [126]	CVPR17	-	71.32/95.53	-	-	Manually
AmoebaNet-B (N=6, F=128)+c/o [26]	AAAI19	34.9	97.87	3,150	450 K40	EA	DenseNet-201 [127]	CVPR17	76.35	78.54/94.46	-	-	designed
AmoebaNet-B (N=6, F=36)+c/o [26]	AAAI19	2.8	97.45	3,150	450 K40		MobileNetV2 [215]	CVPR18	6.9	74.7/-	-	-	
Lemonade [27]	ICLR19	3.4	97.6	56	8 Titan	Evolutionary	GeNet#2[30]	ICCV17	-	72.13/90.26	17	-	
EENA [149]	ICCV19	8.47	97.44	0.65	1 Titan Xp	Lyonutionary	AmoebaNet-C(N=4,F=50)[26]	AAAI19	6.4	75.7/92.4	3,150	$450 { m K40}$	
EENA (more channels) [149]	ICCV19	54.14	97.79	0.65	1 Titan Xp		Hierarchical-EAS[19]	ICLR18	-	79.7/94.8	300	200	TA
NASv3[12]	ICLR17	7.1	95.53	22,400	800 K40		AmoebaNet-C(N=6,F=228)[26]	AAAI19	155.3	83.1/96.3	3,150	450 K40	EA
NASv3+more filters [12]	ICLR17	37.4	96.35	22,400	800 K40		GreedyNAS [216]	CVPR20	6.5	77.1/93.3	1	-	
MetaQNN [23]	ICLR17	-	93.08	100	10		NASNet-A(4@1056)	ICLR17	5.3	74.0/91.6	2,000	500 P100	
NASNet-A (7 @ 2304)+c/o [15]	CVPR18	87.6	97.60	2,000	500 P100		NASNet-A(6@4032)	ICLR17	88.9	82.7/96.2	2,000	500 P100	
NASNet-A (6 @ 768)+c/o [15]	CVPR18	3.3	97.35	2,000	500 P100		Block-QNN[16]	CVPR18	91	81.0/95.42	96	32 1080Ti	
Block-QNN-Connection more filter [16]	CVPR18	33.3	97.65	96	32 1080Ti		Path-level EAS[139]	ICML18	-	74.6/91.9	8.3	52 100011	
Block-QNN-Depthwise, N=3 [16]	CVPR18	3.3	97.42	96	32 1080Ti	RL	ProxylessNAS(GPU) [132]	ICLR19		75.1/92.5	8.3	-	
ENAS+macro [13]	ICML18	38.0	96.13	0.32	1	Poinforcomor	ProxylessNAS(GFU) [132]		-			-	RL
ENAS+micro+c/o [13]	ICML18	4.6	97.11	0.45	1	Reinforcemer	ProxylessINAS-RL(mobile) [132]	ICLR19	-	74.6/92.2	8.3	-	
Path-level EAS [139]	ICML18	5.7	97.01	200	-		MnasNet[130]	CVPR19	5.2	76.7/93.3	1,666	-	
Path-level EAS+c/o [139]	ICML18	5.7	97.51	200	-	Learning	EfficientNet-B0[142]	ICML19	5.3	77.3/93.5	-	-	
ProxylessNAS-RL+c/o[132]	ICLR19	5.8	97.70		-	2001110	EfficientNet-B7[142]	ICML19	66	84.4/97.1	-	-	
FPNAS[208]	ICCV19	5.76	96.99	-	-		FPNAS[208]	ICCV19	3.41	73.3/-	0.8	-	
DARTS(first order)+c/o[17]	ICLR19	3.3	97.00	1.5	4 1080Ti		DARTS (searched on CIFAR-10)[17]	ICLR19	4.7	73.3/81.3	4	-	
DARTS(second order)+ $c/o[17]$	ICLR19	3.3	97.23	4	4 1080Ti		sharpDARTS[178]	Arxiv19	4.9	74.9/92.2	0.8	-	
sharpDARTS 178	ArXiv19	3.6	98.07	0.8	1 2080Ti		P-DARTS 128	ICCV19	4.9	75.6/92.6	0.3	-	
P-DARTS+c/o[128]	ICCV19	3.4	97.50	0.3	-		SETN[209]	ICCV19	5.4	74.3/92.0	1.8	-	
P-DARTS(large)+c/o[128]	ICCV19	10.5	97.75	0.3	-		GDAS [154]	CVPR19	4.4	72.5/90.9	0.17	1	
SETN[209]	ICCV19	4.6	97.31	1.8	-		SNAS[155]	ICLR19	4.3	72.7/90.8	1.5	-	
GDAS+c/o [154]	CVPR19	2.5	97.18	0.17	1	GD	ProxylessNAS-G[132]	ICLR19	_	74.2/91.7	_	_	
SNAS+moderate constraint+c/o [155]	ICLR19	2.8	97.15	1.5	1		BayesNAS[210]	ICML19	3.9	73.5/91.1	0.2	1	
BayesNAS[210]	ICML19	3.4	97.59	0.1	1		FBNet[131]	CVPR19	5.5	74.9/-	216	-	
ProxylessNAS-GD+c/o[132]	ICLR19	5.7	97.92	-	-		OFA[217]	ICLR20	7.7	77.3/-	-	_	GD
PC-DARTS+c/o [211]	CVPR20	3.6	97.43	0.1	1 1080Ti	Gradient	AtomNAS[218]	ICLR20	5.9	77.6/93.6		-	GD
MiLeNAS[153]	CVPR20	3.87	97.66	0.3	-	Gradient	MiLeNAS[153]	CVPR20	4.9		- 0.3	-	
SGAS[212]	CVPR20	3.8	97.61	0.25	1 1080Ti			CVPR20 CVPR20		75.3/92.4		-	
GDAS-NSAS[213]	CVPR20	3.54	97.27	0.4	-		DSNAS[219]			74.4/91.54	17.5	4 Titan X	
NASBOT[160]	NeurIPS18	-	91.31	1.7	-		SGAS[212]	CVPR20	5.4	75.9/92.7	0.25	1 1080Ti	
PNAS [18]	ECCV18	3.2	96.59	225	-	SMBO, e.	g PC-DARTS [211]	CVPR20	5.3	75.8/92.7	3.8	8 V100	
EPNAS[166]	BMVC18	6.6	96.29	1.8	- 1	SMIDO	Democratio	CVPR20	-	75.3/-	2.7	-	
GHN[214]	ICLR19	5.7	97.16	0.84	1	Bayesian	FBNetV2-L1[221]	CVPR20	-	77.2/-	25	8 V100	
NAO+random+c/o[169]	NeurIPS18	10.6	97.10	200	- 200 V100	Dayesiali	PNAS-5(N=3,F=54)[18]	ECCV18	5.1	74.2/91.9	225	-	
SMASH [14]	ICLR18	10.0	97.52 95.97	1.5	200 V 100		PNAS-5(N=4,F=216)[18]	ECCV18	86.1	82.9/96.2	225	-	SMBO
Hierarchical-random 19	ICLR18 ICLR18	16	95.97	1.5	200		GHN[214]	ICLR19	6.1	73.0/91.3	0.84	-	SMBO
RandomNAS [180]	UAI19	4.3	96.09	8 2.7	200	RS	SemiNAS[202]	CVPR20	6.32	76.5/93.2	4	-	
		4.3	97.15 96.71		-	Random Searc		ICLR18	-	79.6/94.7	8.3	200	
DARTS - random+c/o [17]	ICLR19 CVPR20	3.2 3.08	96.71 97.36	4 0.7	1	Nanuoni Sealt	OFA-random[217]	CVPR20	7.7	73.8/-		-	RS
RandomNAS-NSAS[213]					-	CD (SMDO	RENASNet[42]	CVPR19	5.36	75.7/92.6	-	-	EA+RL
NAO+weight sharing+ c/o [169]	NeurIPS18	2.5	97.07	0.3	1 V100	GD+SMBO	Evo-NAS[41]	Arxiv20		75.43/-	740		EA+RL EA+RL
RENASNet+c/o[42]	CVPR19	3.5	91.12	1.5	4	EA+RL			-	,		-	1
CARS[40]	CVPR20	3.6	97.38	0.4	-	EA+GD	CARS[40]	CVPR20	5.1	75.2/92.5	0.4	-	EA+@D

NAS comparison 2: He, et. Al. AutoML: A Survey of the State-of-the-Art, 2021

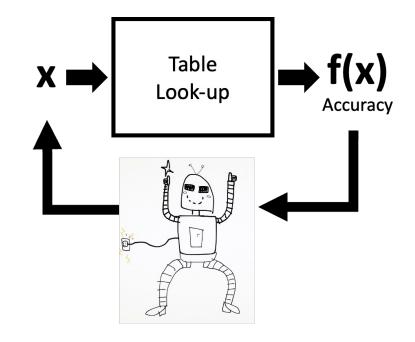
Many results! Different budgets...

Evaluation in HPO/NAS is extremely hard!

- Note previous papers focused on mostly on smaller datasets
- Evaluation is hard due to computational constraint:
 - Suppose it takes 1 week to train one model
 - Each HPO algorithm samples and trains 100 models at best
- Cannot do head-to-head comparison, repeated trials don't know if an algorithm really works!
 - Li & Talwalkar (2019) Random search & Reproducibility for Neural Architecture Search: "Of the 12 papers published since 2018 at NeurIPS, ICML, and ICLR that introduce novel NAS methods, none are exactly reproducible."
 - Also: Lindauer & Hutter. Best Practices for Scientific Research on Neural Architecture Search, JMLR 2021. <u>https://www.jmlr.org/papers/volume21/20-056/20-056.pdf</u>

(Crazy) Solution: Tabular Benchmarks

- One-time fixed cost:
 - Run grid/random search, training MANY models on some dataset
 - Publish all {x,f(x)} pairs in a table
- HPO algorithm developers:
 - Experiment with HPO on finite universe
 - Can run repeated trials quickly



Tabular Benchmark for NMT (Zhang & Duh, TACL2020)

Hyperparameter Type	Possible Values
# BPE Subword Units	1k, 2k, 4k, 8k, 16k, 32k, 50k
# Transformer Layers	1, 2, 4, 6
Word embedding	256, 512, 1024
# Hidden Units	1024, 2048
# Attention Heads	8, 16
Initial Learning Rate for ADAM	3x10 ⁻⁴ , 6x10 ⁻⁴ , 10x10 ⁻⁴

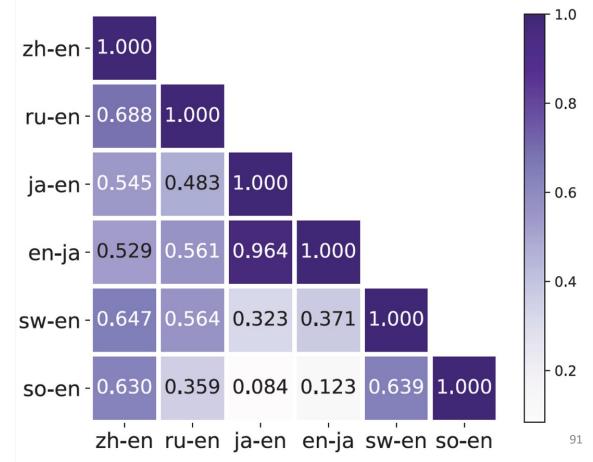
Total: 2245 Transformer models, trained on ~1550 GPU days; record BLEU, train/test time, etc. https://github.com/Este1le/hpo_nmt

Dataset	Domain	#models
zh-en	TED	118
ru-en	TED	176
ja-en	WMT	150
en-ja	WMT	168
sw-en	MATERIAL	767
so-en	MATERIAL	605 ₉₀

Diversity in dataset

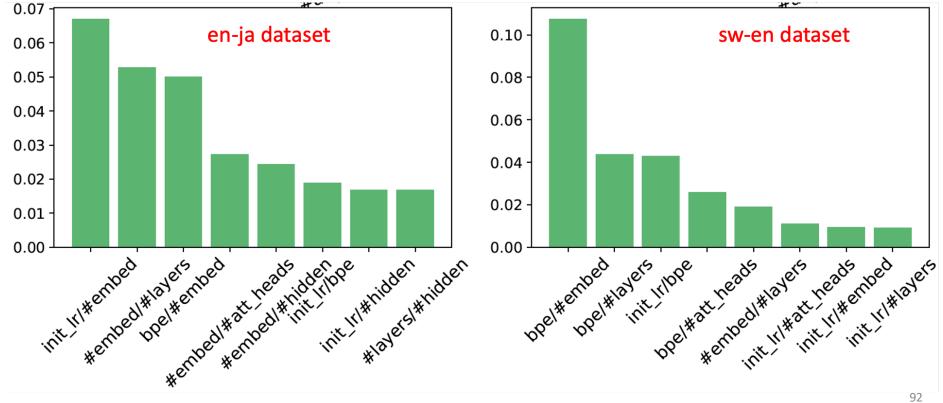
For each dataset, we order hyperparameter configurations by BLEU, then compare these rankings across datasets

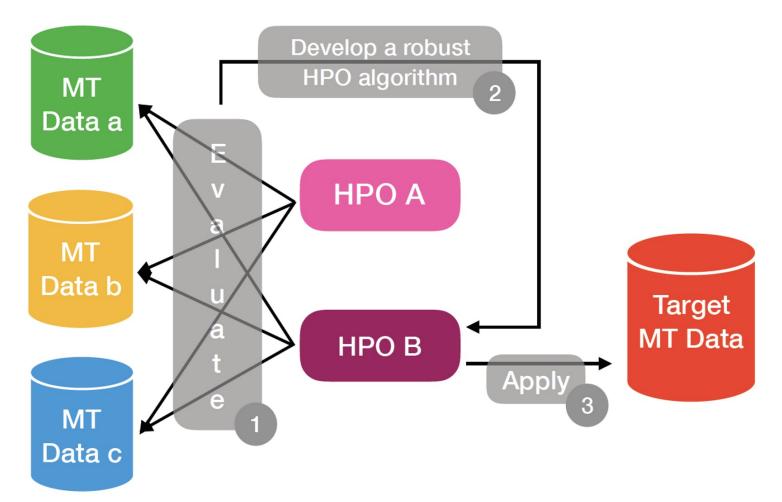
Low Spearman's correlation imply no single best set of Transformer model across datasets



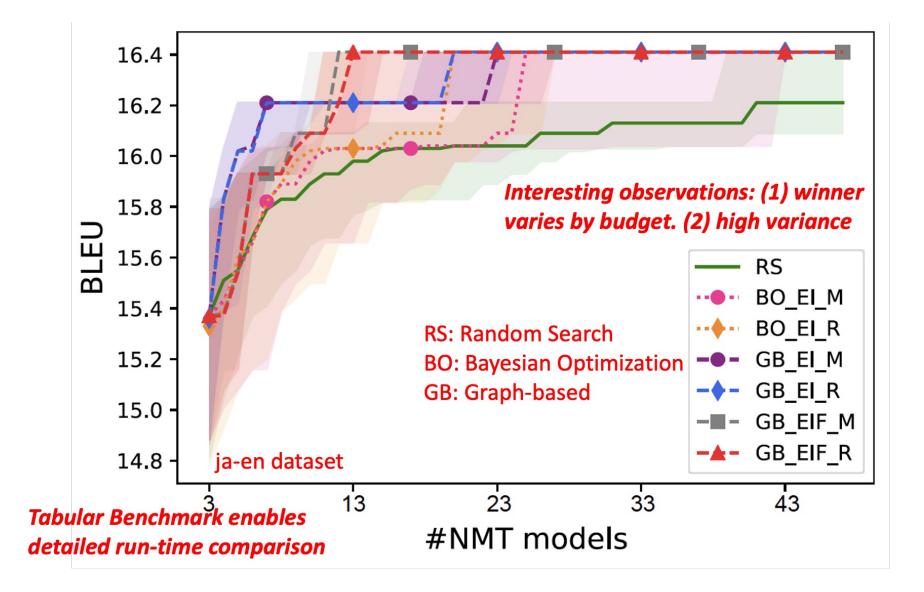
Diversity in dataset:

Hyperparameter importance by fANOVA, measuring BLEU variance when changing a specific hyperparameter value pairs



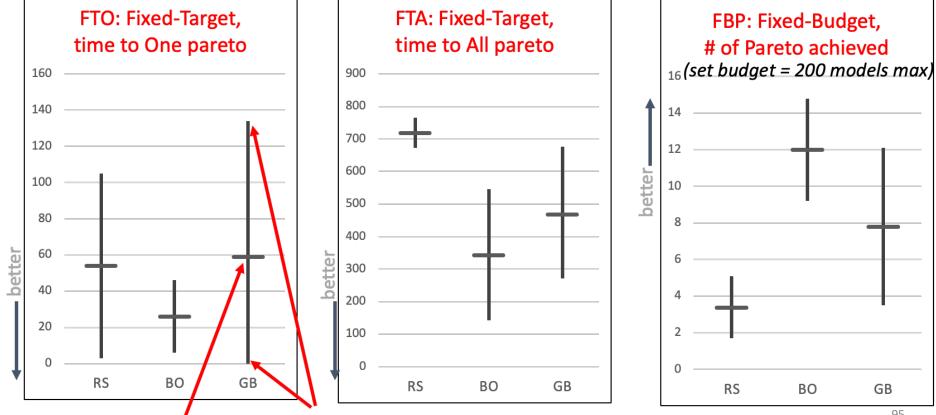


Evaluation philosophy: Find HPO methods that are robust over multiple datasets before applying to target real-world data



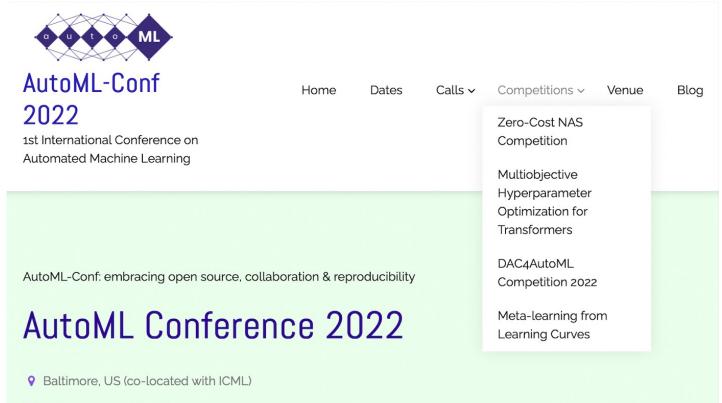
Multi-objective evaluation metrics

Example results on sw-en data, 700+ models in tabular benchmark, 14 pareto points



For each method, plot mean and one standard deviation bounds over 100 random runs

AutoML 2022 Competition https://automl.cc



Top performers in AutoML'22 Competition

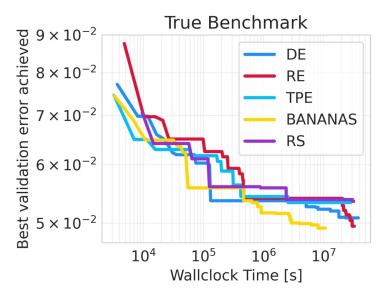
- ESI Algiers and LAMIH/CNRS France Evolutionary approach
 - Latin Hypercube Sampling for initial population
 - XGBRank for fitting x --> f(x), then creating "surrogate function"
 - Find next generation by optimizing NSGA-II on surrogate function
- AutoML@Freiburg Bayes Opt. approach, with transfer learning
 - Tree-structured Parzen Estimator (TPE) for Bayes Optimization
 - Transfer learning from multiple MT datasets
 - Define task similarity by how often similar hyperparameters perform well

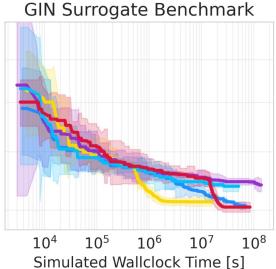
Beyond tabular benchmarks?

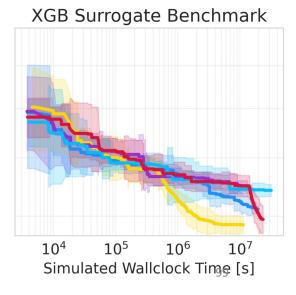
- Surrogate benchmark:
 - Use external ML model to estimate f(x)
 - These can create infinitely many new "rows" in table
- Open questions:
 - How many {x, f(x)} pairs are needed to train an accurate surrogate?
 - Will the surrogate model introduce bias?
 - IMHO, I'm not convinced we can do this for complex and large tasks like Transformer hyperparameters for NMT.

Surrogate benchmark

- Zela, et. Al. Surrogate NAS Benchmarks, ICLR2022
- Argues that ranking of NAS methods are similar when comparing true benchmark to surrogate benchmarks (on different external models)







LGBoost

XGBoost

NGBoost

MLP (Path enc.)

 μ -SVR

ϵ-SVR

GIN

RF

0.892

0.832

0.832

0.810

0.709 0.704

0.679

0.675

Discussion: CO2e footprint and energy cost

- AutoML is basically trading human effort with computer time
- What is the cost of compute?
 - We may enjoy the convenience of AutoML, but we should be aware of the cost and potentially inefficiencies
 - To put things in perspective, let's discuss how different HPO/NAS compare in terms of CO2 footprint and energy cost
 - AutoML has the potential to have both positive and negative impact!

Strubell et. al., Energy and Policy Considerations for Deep Learning in NLP, ACL2019

Estimating CO2e footprint

Consumption	CO ₂ e (lbs)
Air travel, 1 person, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000

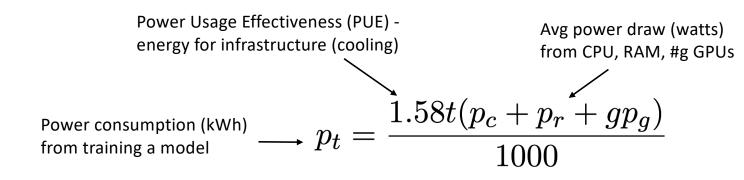
Training one model (GPU)

8	
NLP pipeline (parsing, SRL)	39
w/ tuning & experiments	78,468
Transformer (big)	192
w/ neural arch. search	626,155

Table 1: Estimated CO_2 emissions from training common NLP models, compared to familiar consumption.¹

Strubell et. al., Energy and Policy Considerations for Deep Learning in NLP, ACL2019

Estimating CO2e footprint



CO2e: CO2 equivalent emission (includes other greenhouse gases) $\mathrm{CO}_2\mathrm{e} = 0.954 p_t$

EPA's estimate of avg CO2 (in lb per kWh) based on U.S. non-renewable vs renewable sources

102

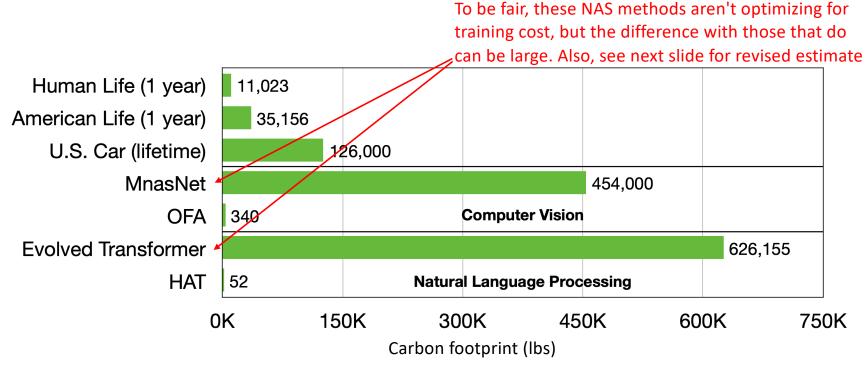
Strubell et. al., Energy and Policy Considerations for Deep Learning in NLP, ACL2019

Estimating CO2e footprint

Model	Hardware	Power (W)	Hours	kWh·PUE	CO_2e	Cloud compute cost
T2T _{base}	P100x8	1415.78	12	27	26	\$41-\$140
$T2T_{big}$	P100x8	1515.43	84	201	192	\$289-\$981
ELMo	P100x3	517.66	336	275	262	\$433-\$1472
$BERT_{base}$	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
$BERT_{base}$	TPUv2x16		96			\$2074-\$6912
NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1		32,623			\$44,055-\$146,848
GPT-2	TPUv3x32		168	_	_	\$12,902-\$43,008

Table 3: Estimated cost of training a model in terms of CO_2 emissions (lbs) and cloud compute cost (USD).⁷ Power and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

AutoML can have both positive and negative impact on carbon footprint



Cai et. Al. Enable Deep Learning on Mobile Devices: Methods, Sytems, and Applications, ACM Trans. Design Automation of Electronic Systems, 2022

Estimating carbon footprint, revisited

- Recommended reading if interested: Patterson, et. al. Carbon Emissions and Large Neural Network Training
 - It's challenging to estimate CO2e retrospectively; ideal for each paper author to measure it
 - Specific data center & time matters
 - Inference may take more energy in the aggregate than training/AutoML
 - Note CO2e for Evolved Transformer is very different from previous papers! —

Number of Parameters (B)	0.064 per	
	model	
Percent of model activated on every token	100%	
Developer		
Deteranter of critical overcriment	Google	
Datacenter of original experiment	Georgia	
When model ran	Dec 2018	
Datacenter Gross CO ₂ e/KWh (kg/KWh when it was run)	0.431	
Datacenter Net CO2e/KWh (kg/KWh when it was run)	0.431	
Datacenter PUE (when it was run)	1.10	
Processor	TPU v2	
Chip Thermal Design Power (TDP in Watts)	280	
Measured System Average Power per Accelerator,	208	
including memory, network interface, fans, host CPU (W)	200	
Measured Performance (TFLOPS/s) ¹²	24.8	
Number of Chips	200	
Training time (days)	6.8	
Total Computation (floating point operations)	2.91E+21	
Energy Consumption (MWh)	7.5	
% of Google 2019 total energy consumption (12.2 TWh	0.00006%	3.2x2200 =
= 12,200,000 MWh) [Goo20]		7040 lbs
Gross tCO ₂ e for Model Training	3.2	\mathbf{N}
Net tCO ₂ e for Model Training	3.2	
Fraction of NAS Estimate in [Str19] (284 tCO2e)	0.011	
Fraction of equivalent jet plane CO₂e round trip San Francisco ↔ New York (~180 t; see Ap. A)	0.018	195
	~ /	r

Section Summary

- Evaluation of HPO/NAS is non-trivial in two aspects
- First, what do you want to look at?
 - Fixed budget, or anytime performance
 - What metric? What datasets?
- Second, can you even run the evaluation in a rigorous fashion?
 - Tabular & Surrogate benchmark
 - NMT example
- Awareness of CO2e footprint discussions, potential of AutoML for positive and negative impact

Roadmap

- 1. Motivation for AutoML
- 2. Hyperparameter Optimization (HPO)
- 3. Neural Architecture Search (NAS)
- 4. Extension to Multiple Objectives
- 5. Evaluation
- 6. Toolkits
- 7. Survey of HPO/NAS in NLP

Software Implementation of AutoML

- HPO/NAS algorithms are in general simple to implement.
- Challenge is the interface with the ML toolkit and the underlying computing infrastructure.
- Design considerations:
 - Automatically submit jobs
 - Automatically check job states
 - Automatically evaluate and collect results
 - Parallelization
 - Maximize the GPU utilization
 - Allow users to customize the AutoML runs by specifying arguments, e.g. #GPU, #configuration, #epochs

Existing AutoML Toolkits

Google Vizier

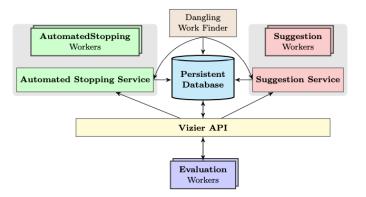
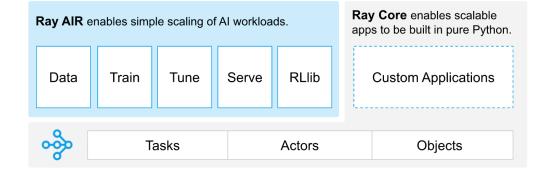


Figure 1: Architecture of Vizier service: Main components are (1) Dangling work finder (restarts work lost to preemptions) (2) Persistent Database holding the current state of all Studies (3) Suggestion Service (creates new Trials), (4) Early Stopping Service (helps terminate a Trial early) (5) Vizier API (JSON, validation, multiplexing) (6) Evaluation workers (provided and owned by the user).

From: Google Vizier: A Service for Black-Box Optimization, Golovin et al. 2017 https://docs.ray.io/en/latest/

Ray Tune



Use existing AutoML toolkits or Implement your own?

• Choice 1:

Take an existing AutoML toolkit, and reimplement your training pipeline.

• Choice 2:

Already have a training pipeline, e.g. Amazon Sockeye for MT, add an AutoML wrapper on top of it.

It's worth implementing AutoML from scratch in this case.

Case Study: Amazon Sockeye with AutoML

• Amazon Sockeye:

An open-source sequence-to-sequence framework for NMT built on PyTorch. <u>https://github.com/awslabs/sockeye</u>

• Sockeye-recipes (Duh et al.):

Training scripts and recipes for the Sockeye toolkit. <u>https://github.com/kevinduh/sockeye-recipes3</u>

• Sockeye-recipes with AutoML:

Automatic hyperparameter search with asynchronous successive halving on top of sockeye-recipes.

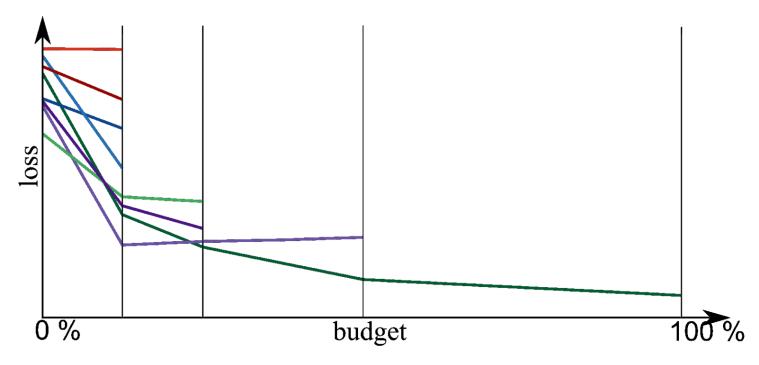
https://github.com/kevinduh/sockeye-recipes3/tree/automl

Outline for Case Study

- Asynchronous Successive Halving (ASHA)
- Software design
- Use case

Recall: Successive Halving (SHA)

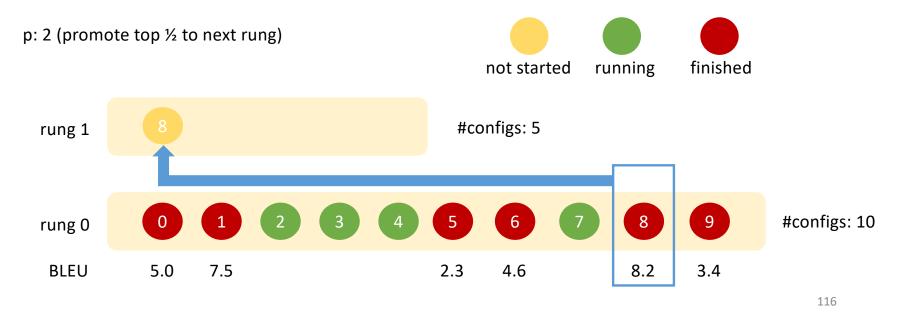
-- multi-armed bandit algorithm to perform early stopping



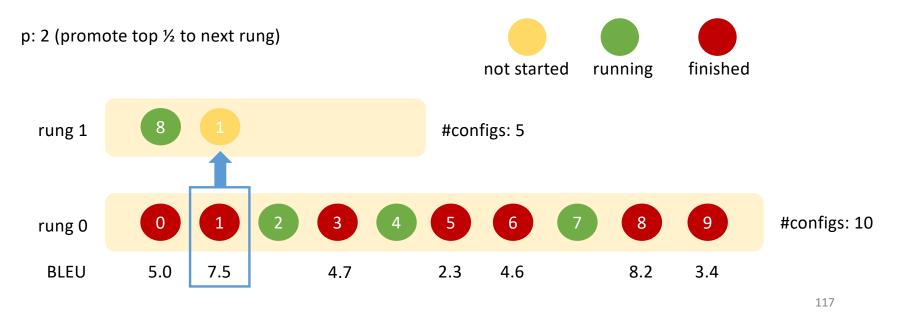
From : automl.org

- In the sequential SHA, the algorithm waits for all configurations in a rung to complete before promoting configurations to next rung.
- ASHA removes the bottleneck created by synchronous promotions.
- It would promote a configuration to next rung when
 - There's an idle worker.
 - There's a configuration that is secured a position in the top 1/p of this rung.
- Parallelization with maximal GPU utilization
- References:
 - Li, et. al., A system for massively parallel hyperparameter tuning https://arxiv.org/pdf/1810.05934.pdf
 - <u>https://blog.ml.cmu.edu/2018/12/12/massively-parallel-hyperparameter-optimization/</u>

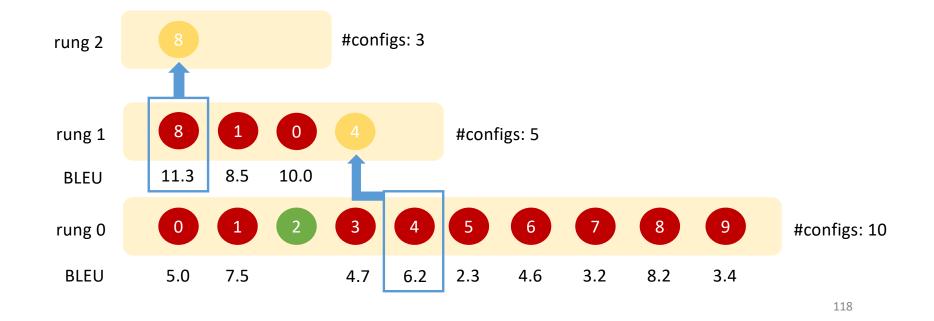
• ASHA promotes a configuration to next rung when there's a configuration that is secured a position in the top 1/p of this rung.



• ASHA promotes a configuration to next rung when there's a configuration that is secured a position in the top 1/p of this rung.



p: 2 (promote top ½ to next rung)



```
Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G
```

```
If runtime % t == 0 do
For each config do
    state = check_state(config)
    react_to_state(config, state, r, R)
end
If ASHA is finished do
    Return
end
For each idle GPU do
    candidate = get_candidate(configs, p)
    promote(candidate)
    submit_train(candidate, GPU, u)
end
```

end

```
Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G
```

```
If runtime % t == 0 do At each time step, we check the state of each config,
For each config do and submit jobs to idle GPUs
state = check_state(config)
react_to_state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do
candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)
end
```

```
end
```

Input: configurations configs, state checking time interval t, minimum training checkpoints r, checkpoints within each rung u, maximum training checkpoints R, reduction rate p, number of GPUs G

```
If runtime % t == 0 do
For each config do
    state = check_state(config)
    react_to_state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do
    candidate = get_candidate(configs, p)
    promote(candidate)
    submit_train(candidate, GPU, u)
end
```

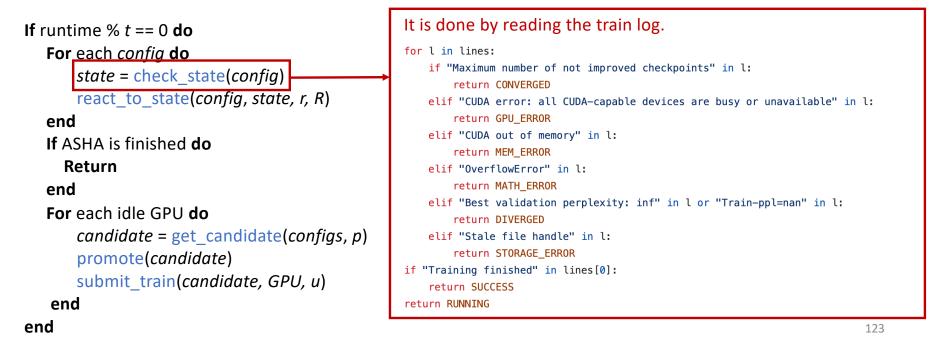
end

```
Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G
```

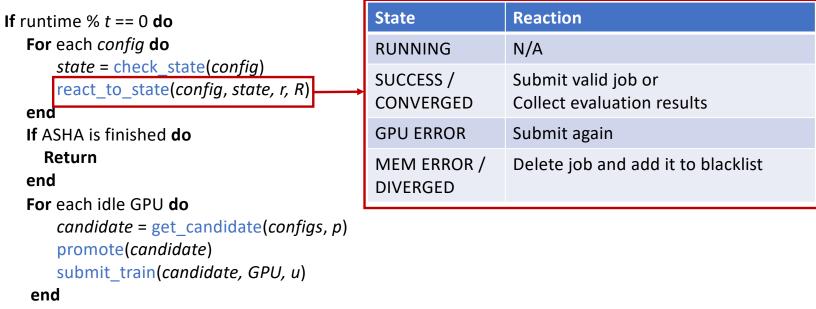
```
If runtime % t == 0 do
For each config do
state = check_state(config)
react_to_state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do
candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)
end
For each
```

end

Input: configurations configs, state checking time interval t, minimum training checkpoints r, checkpoints within each rung u, maximum training checkpoints R, reduction rate p, number of GPUs G



Input: configurations configs, state checking time interval t, minimum training checkpoints r, checkpoints within each rung u, maximum training checkpoints R, reduction rate p, number of GPUs G



end

```
Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G
```

```
If runtime % t == 0 do
  For each config do
      state = check_state(config)
      react to state(config, state, r, R)
  end
  If ASHA is finished do
     Return
  end
  For each idle GPU do
                                                  Get configs that are ready to move to next rung.
      candidate = get_candidate(configs, p)
                                                   (ASHA: no need to wait till all the configs in
      promote(candidate)
                                                   current run to finish.)
      submit train(candidate, GPU, u)
   end
end
```

```
Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G
```

```
If runtime % t == 0 do
For each config do
state = check_state(config)
react_to_state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do
candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, r, u, R)
end
```

end

```
Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G
```

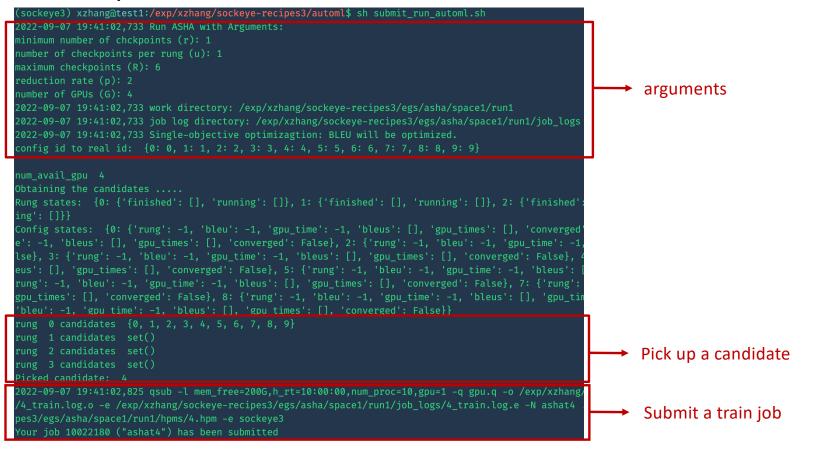
```
If runtime % t == 0 do
  For each config do
      state = check_state(config)
      react to state(config, state, r, R)
  end
  If ASHA is finished do
     Return
  end
  For each idle GPU do
      candidate = get_candidate(configs, p)
      promote(candidate)
                                                   → Submit a train job and let it run for
      submit_train(candidate, GPU, r, u, R)
                                                      min(r, u*rung, R)-min(r, u*(rung-1), R) checkpoints
   end
end
```

Implementation Challenges

- How to get the job state? We check the job log.
- How to automatically check the job state?
 We set up a timer running in a background thread.
- How to interact with the grid / GPU cluster? Besides job states, we also check GPU states. We debug carefully with possible errors.
- How to deal with failed jobs?

We either resubmit it or delete it.

Example Run



Example Run

config id to r config 1 train config 7 train config 6 train	eal id: { _job_state _job_state _job_state	0: 0, 1: : SUCCES : SUCCES : RUNNIM	1, 2: 2, 3 S val_job_ S val_job_ G val_job_	3: 3, 4: _state: _state: _state:	<pre>/xzhang/sockeye-recipes3/egs/asha/space1/run1/ckpt.json 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9} RUNNING train_gpu_state: NOTEXIST val_gpu_state: RUNNING RUNNING train_gpu_state: NOTEXIST val_gpu_state: RUNNING NOTSTARTED train_gpu_state: RUNNING val_gpu_state: NOTEXIST NOTSTARTED train_gpu_state: RUNNING val_gpu_state: NOTEXIST</pre>	Check job state & GPU state
num_avail_gpu 2022-09-07 19:						
Rung 0: Finished Jobs Ids BLEU	2 2 1.7	4 4 2.1	8 8 1.3	9 9 3.1		→ Finished jobs
					xzhang/sockeye-recipes3/egs/asha/space1/run1/ckpt.json	1

Example Run

inished Jobs			2			5	6		8	
ds			2			5	6			
LEU	0.7	2.3		0.7	2.1	1.0		1.8		3.1
ung 1:										
inished Jobs					9					
ds			6		9					
LEU	3.5	3.2	5.1	1.3	5.1					
ung 2:										
inished Jobs										
ds		9								
LEU		7.2								
ung 3:										
inished Jobs										
ds										
LEU	8.3									

ASHA finished successfully. The best config is 6 with 8.3 BLEU score. 131

Roadmap

- 1. Motivation for AutoML
- 2. Hyperparameter Optimization (HPO)
- 3. Neural Architecture Search (NAS)
- 4. Extension to Multiple Objectives
- 5. Evaluation
- 6. Toolkits
- 7. Survey of HPO/NAS in SLP

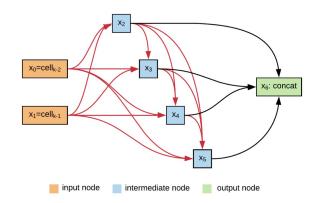


Table 1: Speaker identification and speaker verification performance on VoxCeleb1 dataset. Dimensions indicate the dimensionality of the speaker embedding. N denotes the number of neural cells, and C denotes the number of initial channels.

Method	Top-1(%)	Top-5(%)	EER (%)	Dimensions	Parameters
VGG-M [23]	80.50	92.1	10.20	1,024	67 million
ResNet-18 [8, 29]	79.48	90.97	12.30	512	12 million
ResNet-34 [37, 3, 9]	81.34	94.49	11.99	512	22 million
Proposed ($N = 8, C = 64$)	84.45	94.74	9.13	1,024	5 million
Proposed ($N = 30, C = 64$)	83.45	94.21	9.01	1,024	18 million
Proposed ($N = 8, C = 128$)	87.66	96.01	8.95	2,048	18 million

From: Ding et al., AutoSpeech: Neural Architecture Search for Speaker Recognition, Interspeech 2020

NAS from Speech Emotion Recognition

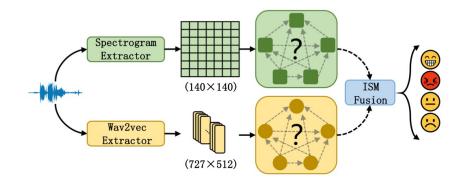
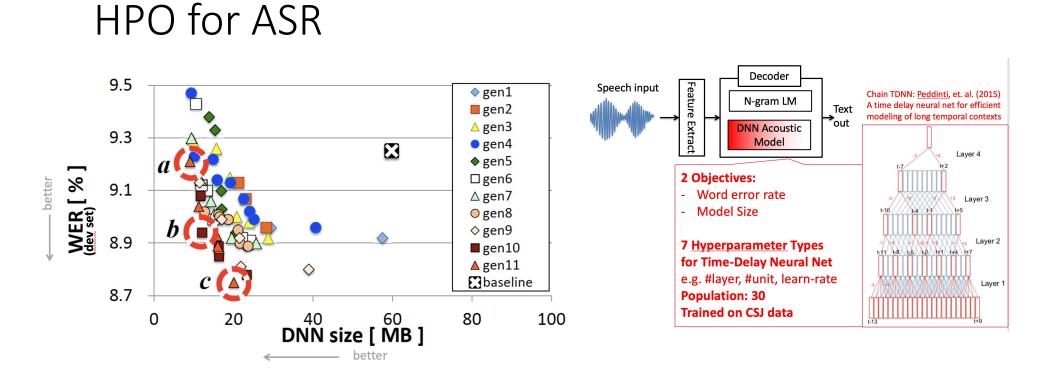


Figure 1: The overall structure of EmotionNAS. It is a twostream architecture that takes spectrogram and wav2vec as the inputs, followed by NAS to design the model automatically. We further fuse the outputs of two branches through ISM to achieve better performance. Table 2: Performance comparison between NAS-based methods and ResNet. * represents our fair comparison by adjusting the model structure with the similar number of parameters.

Spectrogram Branch	Params	UA(%)	WA(%)
ResNet18	11.18M	59.4	60.7
ResNet*	1.23M	55.2	58.4
NAS-C4L3	0.07M	52.1	54.4
NAS-C6L3	0.13M	57.3	63.2
NAS-C8L4	0.35M	58.6	62.2

From: Sun et. al. EmotionNAS: Two-stream Neural Architecture Search for Speech Emotion Recognition, Interspeech23



Moriya et. al. Evolution-Strategy-Based Automation of System Development for High-Performance Speech Recognition, IEEE TASLP 2019

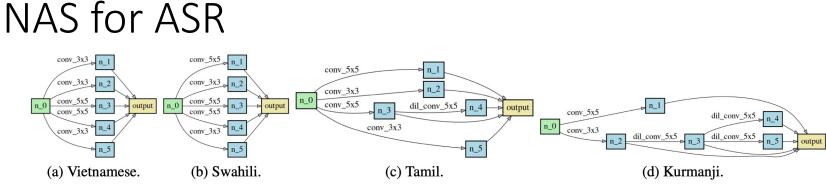


Figure 4: Architectures for different languages found by DARTS-ASR in monolingual ASR.

Table 1: CER (%) results of monolingual ASR using differentCNN modules.

Table 3: CER (%) results of multilingual ASR using differentCNN modules.

Language	VGG-	CN VGG-		DARTS-ASR		Language	VGG-Small	CNN Module VGG-Large	DARTS-ASR
	Small	Large	Full	Only Conv3x3		Vietnamese	45.3	43.2	40.9
Vietnamese	46.0	48.3	40.9	45.7		Swahili	36.3	36.1	32.3
Swahili	39.6	38.3	35.9	36.8		Tamil	55.7	55.0	45.9
Tamil	57.9	60.1	48.0	51.6		Kurmanji	54.5	55.1	53.5
Kurmanji	57.2	56.8	55.5	56.5		ixurmanji	54.5	55.1	55.5

From: Y.-C. Chen, J.-Y. Hsu, C.-K. Lee, and H.-y. Lee, "DARTS- ASR: Differentiable Architecture Search for Multilingual Speech Recognition and Adaptation," in INTERSPEECH, 2020.

Adapting ASR for different populations

Elderly & Dysarthric speech:

- articulatory imprecision
- decreased volume/clarity
- slower speaking rate
- increased disfluencies

Model-based domain adaptation (e.g. fine-tuning) works, but architecture hyperparameters remain unchanged

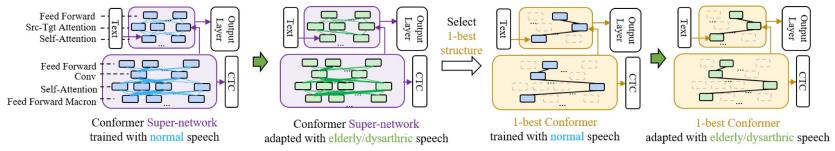


Figure 1: The pipeline of parameter and hyper-parameter domain adaptation of Conformer ASR systems for elderly/dysarthric speech recognition, including adaptation of hyper-parameters inside the super-network model decoupled with standard network parameters (left, blue) from normal speech to elderly/dysarthric speech (green), and parameter adaptation of 1-best domain adapted hyper-parameter based Conformer (right, yellow) with the same source and target speech.

From: Wang et al. Hyper-parameter Adaptation of Conformer ASR Systems for Elderly and Dysarthric Speech Recognition, Interspeech 2023

Fine-tuning pre-trained models

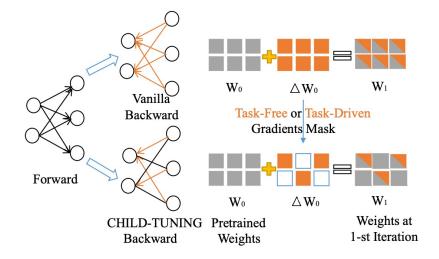


Figure 1: Illustration of the difference between CHILD-TUNING and Vanilla fine-tuning. CHILD-TUNING forwards on the whole network while backwarding on a subset of network (i.e., child network), To achieve this, a task-free or task-driven mask is performed on the gradients of the non-child network, resetting them to zero.

Method	Params	ASR↓	PR↓
FT	94.7M	6.35	2.45
Baseline	0	7.09	7.74
Houlsby	0.60M	5.88	3.00
AdapterBias	0.02M	5.54	4.19
LoRA	0.29M	6.94	8.74
Prefix	0.10M	6.56	4.18
CNN adapter	4.07M	6.32	5.42
CHAPTER	4.67M	6.22	2.95
Weighted-sum	12	6.42	5.41
CHILD-TUNING (p=0.1)	8.5M	6.53	2.45
CHILD-TUNING (p=0.01)	0.85M	6.195	2.76
CHILD-TUNING (p=0.001)	0.085M	5.96	3.10
AD-TUNING (ours)	$\{8.5M, 0.85M, 0.085M\}$	6.01	2.36

Table 2: Performance of different efficient methods in the SUPERB benchmark.

From: AD-TUNING: An Adaptive CHILD-TUNING Approach to Efficient Hyperparameter Optimization of Child Networks for Speech Processing Tasks in the SUPERB Benchmark, Interspeech 2023

Speeding up Speech Synthesis

Model	#Params	CMOS
FastSpeech 2 FastSpeech 2*	27.0M 1.8M	0 -0.230
LightSpeech	1.8M	+0.04

Table 2. The CMOS comparison between LightSpeech (our searched model), FastSpeech 2* (manually designed lightweight FastSpeech 2 model) and FastSpeech 2.

Model #Par	ams Compression Rati	io MACs	Ratio 1	Inference Speed (RTF)	Inference Speedup
FastSpeech 2 27.0)M /	12.50G	/	$6.1 imes 10^{-2}$	/
LightSpeech 1.8	M 15x	0.76G	16x	$9.3 imes10^{-3}$	6.5x

Table 3. The comparisons of model size, MACs and inference speed between LightSpeech and FastSpeech 2. The inference speed is measured in RTF (real time factor) with the same method as in Table 1, using a single thread and a single core on an Intel Xeon CPU E5-2690 v4 @ 2.60 GHz. MACs is measured on a sample with input length 128 and output length 740.

From: R. Luo, X. Tan, R. Wang, T. Qin, J. Li, S. Zhao, E. Chen, and T. Liu, "Lightspeech: Lightweight and fast text to speech with neural architecture search, ICASSP 2021

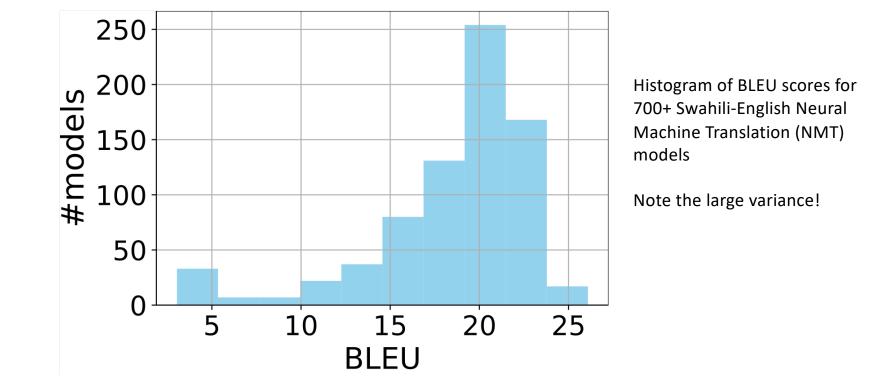
Section Summary

- We briefly illustrate some SLP applications that benefit from HPO/NAS
 - Different problems: Speaker recognition, emotion classification, speech recognition, speech synthesis
 - Different scenarios: Adaptation, Fine-tuning, Speed-up
- There are many more papers out there!

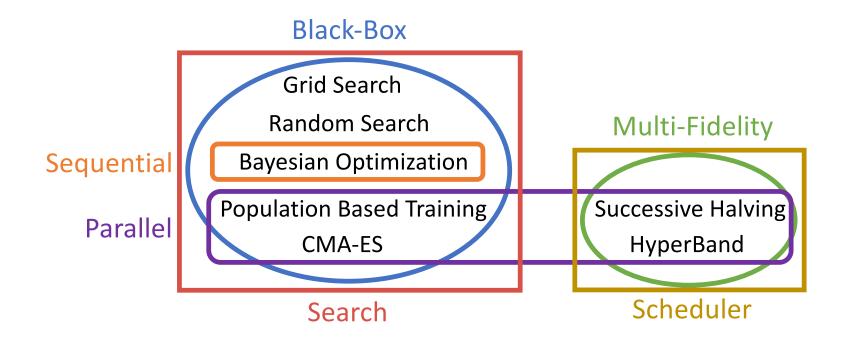
Review

- 1. Motivation for AutoML
- 2. Hyperparameter Optimization (HPO)
- 3. Neural Architecture Search (NAS)
- 4. Extension to Multiple Objectives
- 5. Evaluation
- 6. Toolkits
- 7. Survey of HPO/NAS in SLP

It's important to tune hyperparameters!



Hyperparameter Optimization (HPO)



Neural Architecture Search (NAS)

We discussed:

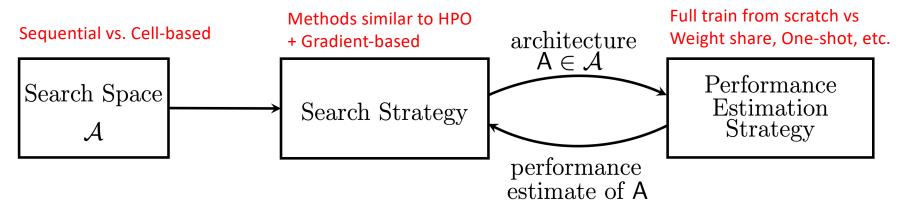
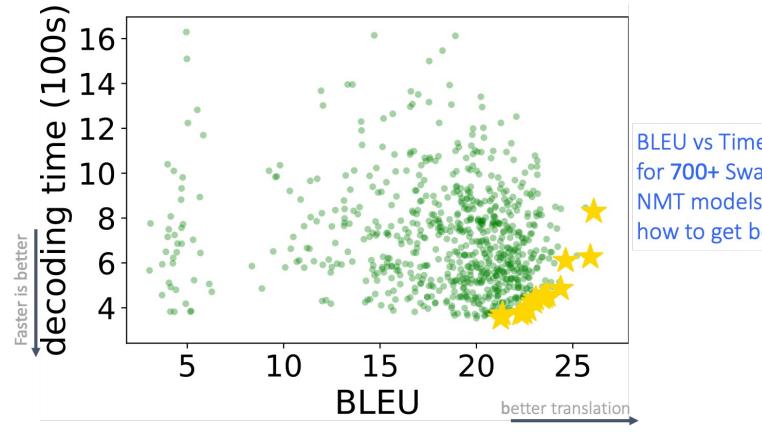


Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy selects an architecture A from a predefined search space \mathcal{A} . The architecture is passed to a performance estimation strategy, which returns the estimated performance of A to the search strategy.

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

When deploying models, we care about multiple objectives. But it's complex.



BLEU vs Time Scatterplot for 700+ Swahili-English NMT models: unclear how to get best tradeoff

Evaluation is hard, so Tabular Benchmark for NMT (Zhang & Duh, TACL2020)

Hyperparameter Type	Possible Values
# BPE Subword Units	1k, 2k, 4k, 8k, 16k, 32k, 50k
# Transformer Layers	1, 2, 4, 6
Word embedding	256, 512, 1024
# Hidden Units	1024, 2048
# Attention Heads	8, 16
Initial Learning Rate for ADAM	3x10 ⁻⁴ , 6x10 ⁻⁴ , 10x10 ⁻⁴

Total: 2245 Transformer models, trained on ~1550 GPU days; record BLEU, train/test time, etc. https://github.com/Este1le/hpo_nmt

Dataset	Domain	#models
zh-en	TED	118
ru-en	TED	176
ja-en	WMT	150
en-ja	WMT	168
sw-en	MATERIAL	767
so-en	MATERIAL	605

Use existing AutoML toolkits or Implement your own?

• Choice 1:

Take an existing AutoML toolkit, and reimplement your training pipeline.

• Choice 2:

Already have a training pipeline, e.g. Amazon Sockeye for MT, add an AutoML wrapper on top of it.

It's worth implementing AutoML from scratch in this case.

Survey of HPO/NAS in NLP

- We surveyed a few papers with promising results in LM, MT, NER, sentence pair classification
- Compared to computer vision & machine learning, little work in NLP
- We think there are many research opportunities in NLP, especially multi-objective HPO/NAS of large models.

Questions or Comments?