Easter Egg Insertion, Detection and Deletion

in Commercial Software

Researcher: Stephen Greenberg

Project Director: George Kalb

Faculty Sponsor: Dr. Guiseppe Antiniese

Johns Hopkins University

Baltimore, Maryland USA

Abstract

An Easter egg is a piece of code inserted into a commercial software product, which is not documented and not meant to be part of the product. It is functionality which is activated by some user action. Eggs and egg coding methods have the potential to cause catastrophic damage to private users, corporations and government systems. Their existence alone shows the possibility for more malicious software in commercial products. They have far reaching scope, being used by millions of users, and are also hard to detect and trace to a source.

This research attempted to answer the following questions:

How do Easter eggs get into commercially available software products, and during what stage of the development process?

How can producers of commercial software products prevent and/or discover and eradicate Easter eggs in their products?

How can consumers detect and eradicate or neutralize Easter eggs in products which they purchase and use?

This paper does not intend to provide a step by step instruction set to complete any of the above, but rather to show how easy these methods are to implement.

Problem Definition

Easter Eggs Defined

While most fans and purveyors of Easter eggs maintain that eggs are simply “all in good fun”, there are many problems associated with Easter egg code inserted into commercial software. These people claim that insertions into software which are malicious are not in fact eggs, but instead Trojan Horses.

Dorothy E. Denning, Professor of Computer Science at Georgetown University, defines a Trojan Horse as “a program that, when activated, performs some undesirable action not anticipated by the person running it” [BIB 1]. Dr. Denning also divides Trojan Horses into two types: time bombs which execute at a specific date and time, and logic bombs which are triggered by some user action.

�Under Dr. Denning’s description, Easter eggs certainly are Trojan Horses and fit under the category of logic bombs. They are triggered by a user’s action and not anticipated. An Easter egg may be amusing, but is not desired. Consumers do not purchase spreadsheet software in order to fly a flight simulator, as in Microsoft Excel 97. Spreadsheet software is purchased in order to create spreadsheets and analyze data. Commercial software producers should not desire to have undocumented code and functionality in their products. They attempt to produce secure products and can be held liable for damage caused by malicious code in them. An egg’s existence in software shows consumers there is a chance of more malicious code; this existence violates an unwritten trust between producers and consumers. Thus, Easter eggs are not desired, nor are their actions.

Following this logic, Easter eggs are a subset of Trojan Horses. There is no requirement for Trojan Horses to be malicious. The name Trojan Horse simply strikes fear in the minds of computer users. It brings to mind malicious behavior, but the definition does not require malicious actions. Similarly, Easter eggs do not have to be malicious, but the potential exists.

The Threat of Eggs

Of the Easter eggs known today, most are simply minor nuisances. They exist mainly as a way for developers to get recognition for their work in a creative manor. These are either viewed as fun or a nuisance by consumers. In a few documented cases, eggs have malfunctioned and caused larger system problems. A user identified as “garrett” attempted to activate the Pinball Easter egg in MS Word 97 and his or her screen settings were corrupted [WEB 7]. At least in documented cases, these types of problems seem to be rather rare.

However, the existence of eggs prove a potential for a much greater amount of destruction. Eggs have the potential to destroy data, compromise security and steal information without ever being seen by the user. Easter eggs are a threat because they exist in a commercial software product. As the number of computer users grows, so will the span of eggs. And as the number of experienced computer users grows, the amount and lethality of Easter eggs will grow, as new developers and programmers will learn egg coding methods.

Unfortunately, for the average consumer it is very hard to identify Easter eggs unless they are already known in advance. The average user, or even experienced user, may not be aware of an egg which was activated on their machine. Activated egg processes can run in the background and never produce any screen output. Threats to individual users carry far beyond a simple formatting of a drive or data loss, to eggs which steal information stored on a users hard drive including passwords, bank account numbers, and other sensitive information. This information can be e-mailed automatically to an anonymous e-mail account or sent elsewhere online for later use by the egg writer.

Corporations could face the same problems as consumers. Private information pertaining to the company and clients could also be compromised. Easter eggs could crash computers or create mass amounts of network traffic bringing the company to a standstill, resulting in huge financial loss. An egg writer could use stolen information for large financial gain, selling the information or making decisions in the stock market based on the information gathered.

In the past twenty years, the gaming industry has seen a huge change from mechanical machines to computerized chips to run their games. A developer at a company which produces software for slot machines could potentially insert code that says “every time a lever is pulled a certain way, have the machine pay off.” Then the developer can go to Las Vegas or Atlantic City and find the machines which they programmed. The result can be a huge financial loss for the Casino.

Government agencies which use commercial software could be subject to breaches of national security. The use of commercial software makes them susceptible to the same problems that face consumers and corporations. However, even software developed in house is susceptible to compromise, as most eggs are inserted by insiders within the development team. With the growing globalization of computer users comes a greater threat from hostile countries. More software products will be developed overseas, possibly in countries which pose a threat to national security. With the growing world population and computer user population, there will be a greater number of computer users with nothing better to do than sit and construct new eggs, and new ways to insert eggs into software products, maybe even from outside the development process.

While tracing eggs to specific people is almost impossible; they can be traced to the company in whose products the eggs were found. Companies will be held liable for damages caused by eggs in their products. Because they are so hard to trace and very few organizations are looking for them, every one of these types of eggs could already exist in the world today. Production companies, government agencies, and consumers must become more aware of the potential threats which eggs cause and must begin to take steps to detect, trace, and eradicate them.

Statement of Approach

The bulk of the information retrieval was centered around web searches. Egg enthusiasts, software developers, educational professionals and computer hackers were also contacted via e-mail.

Because of the nature of hackers, anonymity during the project was essential in order to protect the identities of those involved in the project and the university. Two anonymous e-mail accounts were created for the project using Yahoo and Excite’s free e-mail services. The first id, mindnumbing1@yahoo.com, is totally anonymous and devoid of any information about the project, the participants or the university. The second id, eggresearch@excite.com, was created to openly discuss the project, while still protecting the participants and the university. Also at Excite a free club was created at http://clubs.excite.com/eggresearch. This acted as a central location for research information and for others to post information and look at information which had been collected. This contained places to post links, hold discussions, and announce findings.

Large amounts of information and theory were obtained directly from George Kalb, project director and university lecturer, in the form of presentation materials and discussions. Mr. Kalb provided most of the background information through class slides and discussion, as well as giving direction towards disclosure of the many methods of insertion, detection and removal of Easter eggs.

Results of Research

Egg Discovery

Discovering Easter eggs seems like an almost impossible task. Activation keystrokes are often very bizzare and different from keystrokes used during normal execution of the program. A user identified as David offer the following insight about egg triggers: “They aren't keystrokes you would normally hit in the course of using your keyboard. The more unusual, the more hidden the Egg is” [EML 2]. This seems to suggest that eggs and egg triggers would need to be leaked by someone who knows them. However, some egg afficianodos, like Adrian Collins, maintain eggs are simply stumbled upon or looked for purposely [EML 1].

A user identified as Matthew offered this theory: “The tricky ones come from insiders, and are usually passed on to valuable clients or friends. This helps give them a sense of mastering the application. Some (particularly those in comptuer games) are discovered by accident. Still others can be found by people actively 'hacking' the program, looking for pieces of text in the program binary, that sort of thing.” [EML 3].��Trying different keystroke combinatinos is do-able for average eggs, as developers tend to use the same activation keystrokes in products produced by the same company. For example, many eggs tend to use some combination of the CRTL - ALT - SHIFT keystroke on the “About” screen to activate them. The reason for this is unknown though Matthew theorizes this could be simply in honoring traditions of the past [EML 3]. In other words, the first eggs used this sequence, so new eggs should too. This makes them easier to find by establishing patterns within a product or company. For more obscure activation sequences, trying different combination of keystrokes is probably not the discovery method, though.

Egg Producers

Because eggs reside within commercial software products, they must be placed by people who have access to the commercial product. Eggs need to be produced and inserted by hackers inside of the company. Of the eggs known today, most are written to be discovered. They often pay homage to the software development team. These types of eggs are most likely crafted by “Elites”, hackers who are typically forthcoming with information and want people to view their work. They are not necessarily malicious in intent or nature.

However, with the potential for much greater damage and criminal activity, malicious eggs could be the spawn of “Dark Siders” and involve “Data Brokers”. Dark siders are the real criminals. They try to hide their work and use actions for personal gain. Data brokers are soldiers of fortune; they hack for money. Data brokers often act as intermediaries for large scale criminal activity and data stealing, and would be inclined to hire dark siders to insert eggs which would affect corporations or government. Together, dark siders and data brokers could potentially create the eggs discussed in the problem definition above.

The Software Development Process

Before discussing Easter eggs in depth, it is important to look at how software is developed and the process of creating a usable executable file on a system (figure 1). The process involves the hands on experience of many people. Code is executed and viewed by developers, managers, testers, and even independent testers outside of the company or development team.

A software product goes through many series of tests and retooling before it is allowed to be packaged and sold to consumers. Software code is written by a group of developers and then assembled together into a coherent program. Each new compilation of the software results in heavy testing to locate and eradicate bugs, as well as enhance performance. This testing consists of in house testing, integration testing with hardware, and usually independent testing by outside organizations to assure unbiased results. Every bug found in the code during testing results in a return to the development process where the code is edited and corrected.

�

Figure 1: The Software Development Process. In the first four steps, many people view the source code. Consequently, any extraneous code, like Easter eggs, would be discovered and removed. Extra functionality is more likely added after the independent testing has been completed.

The nature of this process is very important to the insertion of Easter eggs and malicious code. Because the process in the above figure is cyclic in nature, people view the code numerous times. In order to insert extra code, like an egg or Trojan horse, the hacker would need to coordinate this process with the entire development, in house testing, hardware integration, and independent testing teams. This means the cooperation of many people to execute a career limiting, or even ending, plan. Because of this, eggs are not likely to be inserted in the first four stages of this process. They are more likely to be inserted after the final testing and compiling, when the product is no longer in human-readable, source code form.

�Translation from Human Readable to Machine Code

It is also important to look at how human readable code, written in either source code or assembly level code, changes from this form to machine readable code (i.e., ones and zeros) in a binary file, and how this binary file is changed during actual execution of the program (figure 2).

This process starts with human readable code being written by a developer or team of developers. There are many forms of source code (like C++ or Basic code), depending on the language of implementation. Assembly language code is a human representation of machine executable instructions (like pushes and pops from a stack) and can also be used. This code is then either compiled or assembled to produce machine readable, relocatable object code. The term relocatable refers to the fact that the code can be placed anywhere in memory and the internal symbol addresses will be adjusted at loading and execution time. The next step is to link the code with other relocatable code, like system libraries. This is accomplished by a linker and results in a relocatable image, which has references to other objects or functions in other files. This image can still be loaded into any place in memory (in other words, is relocatable). The last step occurs when the program is executed and must be loaded into memory. Here all of the addresses must be converted to absolute addresses based on the physical location into which the program is loaded into memory. This results in an absolute image which is based on a location in memory and would be different from execution to execution.

�

Figure 2: Translation from Human-Readable Code to Machine Code. Source or assembly code is translated into relocatable object code via a compiler or assembler. When executed, the object code is meshed with the system libraries via the linker. This creates a relocatable image in which all system calls have been resolved so that they will function correctly. The loader then loads this image into memory, creating an absolute image with absolute addresses for all symbols.

Here, it is also important to differentiate between static and dynamic linking. The process above describes static linking using static system libraries and is accomplished before runtime. The other method of dynamic linking uses dynamic link libraries and a method of linking at runtime. This results in longer execution times, but smaller programs as only called functions are resolved.

�Binary Objects and Executable File Formats

A binary object is some piece of a program, in binary format, like a function or a method. This is part of an executable file, the relocatable object code described above (figure 2). Binary objects are files in machine code, which no longer exist in human readable form. These files have set formats and properties and adhere to certain standards, making them human-modifyable with the use of a few freely available tools.

In order for executable file formats to be supported by operating system manufacturers, the standards for executable formats must be made public to ensure that products will be developed to run on common hardware and operating systems. Today there are many industry standard file formats which are publicly defined, including exe, a.out, IEEE, and elf [WEB 2]. While these formats all differ in their rules and structure, they all have the same basic components (figure 3). These components may not exist in the same order as in figure 3 or under the same name, but they do exist in some form.

�

Figure 3: Basic Executable File Format. Every executable file contains some or all of the following: a header containing a list of relocatable address list, a symbol table, a code segment, and a data segment. It is relevant to note that the symbol table is a list of all of the symbols (including function names) in the executable and the corresponding location of the function code in the code segment.

Every executable file contains some or all of the following components [WEB 2]: a header space, symbol table information, a code segment, and a data and constant segment. The header contains information about the program including the size of the file, the type of file, and various values including a checksum, which is used to verify the integrity of the file. The relocatable address list contains a list of all addresses in the file which can be relocated. Symbol tables link program symbols (like function names) with a location in the code segment of the file. The code segment is the actual code of the program and contains the instructions which are executed during program execution. The data and constants segment contains hard coded constants and data, such as strings.

Executable files are in binary format, but this does not mean that humans cannot look at, decode, and even modify these files. There are at least ten different freely available editors which read binary code form and present it as hexadecimal code for ease of readin. These include WinHex [WEB 6] and Hackman [WEB 5]. The later product additionally has a built in disassembler which will convert a binary file back into the human readable assembly language. This allows hackers to get a better idea of what is happening in the program and even allows reverse engineering of the product.

As stated above, file formats need to be standardized to ensure that production companies will produce products and support products according to those standards. These are defined online, and can be viewed by anyone in order to figure out the specific format of the files that user is dealing with [WEB 2]. Once this information is obtained, a hacker can view the file with a hexadecimal editor and differentiate the parts. Parts can be divided by looking at the standards and by looking at nop (pronounced “no op”) instructions which are a space filler in the program during which the processor does nothing. Different sections in the executable are usually separated by large numbers of nop instructions or spaces.

Being able to locate and interpret the different parts of the file, specifically the symbol table, makes these file formats very susceptible to intrusion. This information will be exploited in the following methods, as it allows a hacker to view all of the symbols and functions in a program and access the addresses of the actual functions in the call.

Software Patches

Software patches can lend some insight in to how Easter eggs are inserted into the final commercial product. It has already been established above that eggs probably are not inserted in the source code form, as this would be found during the testing and development process. Instead we look at the relocatable object code and relocatable image. These are binary files consisting of ones and zeros. Patches are written and compiled and then the binary files are changed in a byte wise or bit wise fashion (figure 4). This is to avoid the redistribution of the entire software package to the consumers, instead supplying them with a small patch file. Editing binary files byte by byte will become important in the insertion of eggs.

�

Figure 4: A Simple Software Patch. The file on the right is the hexadecimal equivalent of the string “This propram cannot by run in DOS mode”, as shown on the left. The misspelling can be corrected by editing the binary file, instead of rewriting the code and recompiling the file. A small patch file will correct the spelling mistake by changing the ninth byte from 70 to 67, thereby producing the string “This program cannot be run in DOS mode.”

�The Binary File Descriptor

The binary file descriptor (BFD) and BFD library (libbfd) make up a freely available package which exists on most systems or is freely available as part of the GNU project. The BFD package provides a standard set of routines to operate on object files independent of the format of the object file, for use in applications. The BFD provides a standard front end for user and application interface, while the back end decides on which methods to use and how to link the application to the object files [WEB 4].

This is an important tool in constructing egg code, as it allows a hacker to develop eggs which interface with other code libraries, in any format they desire. A hacker must only learn to use the front end to BFD, instead of learning many different file formats to interface with. As it will be shown, the more system library integration which an egg uses, the better in terms of detection. These eggs will remain smaller and hold a lower profile during the software development process.

Backdooring Binary Objects

The term backdooring is used to refer to a process of disrupting the execution of the program by adding a call to another piece of code, every time the backdoored object is called [BIB 3]. The process requires that flow of control then be returned to the original function, assuring that the overall functionality of the program remains in tact. In other words, something is changed about the programs execution, without deleting or changing any functionality which existed before.

The “Eggcode” Method

In “Backdooring Binary Objects” [BIB 3], a hacker whom identifies them self as klog, discusses a method of modifying binary objects in order to add functionality to the program and compromise security, refering to the programming method as the “eggcode” method. This method uses the above information to view and modify binary files. Klog very openly states this is not a complete method and leaves out many of the details so that only qualified hackers are able to figure out exactly how to complete the method.

The basic idea of Klog’s method is to redirect to control flow of a function to a different function by changing one functions symbol table address information to point to another function’s address in the code. Then the control is returned to the original function, thereby “backdooring” the function by sneaking in another function behind it. This method allows calling any other method which exists in code somewhere in the product or the libraries.

To accomplish this, a hacker first must obtain access to the executable code which they wish to modify. In terms of Easter eggs, this usually means the hacker is an insider in the company. Next, they must obtain a hexadecimal editor, like WinHex or Hackman, which are free online and thereby extremely easy to obtain. The executable must be dissected by using the definitions of the executable file format as above [WEB 2]. The hacker can then use this information and tools like BFD to carry out the method.

In the executable, first the hacker must locate a symbol (or function) to target. In order to ensure the hacker’s code is executed, the chosen function should be called many times during the program’s execution. A disassembler can be useful in identifying a function which is called very often. Next, the hacker must locate the function’s entry in the symbol table, by viewing the file with a hexadecimal editor. Since function names are usually strings, they will be readable. Once the symbol is decided upon and the new function to call is chosen, one can simply edit the symbol table so that function A = address of function B. This will result in Function B being called instead of Function A.

One problem klog does not address is that of redirection back to Function A. Without this, the execution of the program will be disrupted. George Kalb constructed the code specified in the Phrack article and executed it. While the method had merit, the number of holes resulted in a failed execution. The paper claims that this method will work on all systems. However, this is not the case.

The largest hole in klog’s method exists in the malicious code. This method only describes how to redirect a function call to another already existent function which supposedly is in some code library or the original program. The problem here is that extraneous code, especially malicious, would not exist in code libraries on systems. Even if it did, a compiler would not produce object code for this function if it was never called by any programs. The symbol would not exist in the program, nor would the relocatable code. Klog does not address the actual insertion and therefore this method is very incomplete.

Improved Insertion Method

George Kalb has theorized a more potent, and more probable method of Easter egg or Trojan Horse insertion. The method uses the same steps as above, but is adapted to allow for the insertion of any code the hacker desires. The Kalb method allowes the user to write and compile any code which the hacker wishes to introduce into the executable, and still allows inserting it after the development cycle.

The first few steps of the process are the same. First, the user must obtain the executable file they wish to backdoor. Again, this should be a relocatable file because it will then contain a symbol table. Using any hexadecimal editor, like WinHex, the hacker can then target and identify a specific function name, or symbol, to backdoor as above. This can be done by reading the symbol table information in the executable and locating the address of the function to backdoor.

�

Figure 5: Inserted Function Code. Sample code for the new function which will be inserted into the executable.

�The difference in methods comes in the writing and inserting of the malicious or extraneous code. The code should be written so that it: listens for the triggering event, contains the instructions to execute (the actual egg), and calls back to the backdoored function (figure 5). The call back is critical as it will ensure that there will not be any break in the regular execution of the program. Once the code is written, it should be compiled and linked (if necessary) just like any other program to create a binary file.

Now the code must be inserted into the executable. It is extremely important that the code not be inserted over any existing code and that it does not break any of the old code. Doing so will change the execution of the program and render some or all of its functionality useless. To prevent this, the hacker can insert the code over areas of nop instructions, or in areas where there is unused space. However, careful attention must be paid to ensure that this is in fact unused space and that the nop instructions are not in the middle of another block of code. In addition, the amount of free space or nop instructions must be large enough to hold all of the code for the new function.

Most executable files contain more than enough free space over which code can be inserted. From a coding point of view, the more the hacker uses functions from the dynamic link libraries, which are part of the operating system libraries, to complete the egg code, the smaller the program will be. This should allow it to be small enough to be inserted over nops or free space in the program. As an example, one egg in Microsoft Excel 97 is a 3-D flight simulator program which allows the user to fly around a fractal created landscape. Normally, this would require the use of a lot of graphics and programming space. However, this was most likely created using. OpenGL which is a 3-D modeling library included in Microsoft Windows operating system environments. This would reduce the size to a few kilobytes instead of many megabytes. It is still possible that there will not be enough free space, in which case the hacker must create and allocate a new segment of memory to store the egg.

Once a space is located, new code must be spliced in. This can be accomplished by cutting and pasting in a hexadecimal editor or creating a patch file. The hacker must then determine the address of the beginning of this new code and change the value of the address of the backdoored function in the symbol table. This will force the call to the backdoored function to be rerouted to the newly inserted function before control is returned to the backdoored function, by the inserted one.

Another element that was not addressed in the Phrack article is the checksum. This is an important variable contained at the end of executable file segments which is simply a number which is the sum of all of the bits in the segment (or a number created by an algorithm which is a function of the bits in that segment) [BIB 2]. Each time the program is executed the checksum is computed by the loader. If the checksum computed does not match the checksums in the file, execution stops and the program will not execute.

By inserting different instructions and changing numbers around (like addresses) the checksum number of the modified segments will be changed. If the hacker stops here, he or she has not done their job but instead rendered the company product totally useless. The checksums must be recomputed; programs like Hackman will compute this number at the press of a button. The values can then be changed in the file. The problem with checksums is that there location is specified in the executable file format definition, as is the algorithm used to compute them.

Recommendations

Most of these recommendations would apply to the software development company, since they would need to be implemented in the development process, but still it is important for consumers to understand the process so that they can demand software which has been protected from malicious code insertion. These recommendations aim at preventing the insertion of Easter eggs into commercial software, as well as detecting and eradicating them.

Production in Private Organizations

For organizations like the Central Intelligence Agency or the National Security Agency that develop custom software products in house, the solution is simple, protect the file format. If they develop their own format for executable files and protect this information, an insider would be unable to use the executable since they would not be able to figure out the parts of the file. Only the compiler writer and operating system interface writers would have access to this information. Combine this with a format that disassemblers cannot disassemble, and which utilities like BFD cannot interact with, and you have a secure executable. Eggs could be inserted into the compiler or the operating system, but new products would be egg-free.

Symbol Table Protection

The above methods of backdooring depend on the use of the symbol table information. It takes advantage of the fact that symbol table information is often easily located and easily read by currently available products. The obvious solution to this problem is to make the symbol table more difficult to read or more difficult to locate. Rudimentary encryption would protect the symbol table from being read. Strings, including function names, would become unreadable. If the loader is programed to handle the decryption at runtime, there will be a very small delay in processing. Additionally, the information will not be decoded until after the program is invoked. The software would be harder to modify before the product is distributed, requiring the decryption to be broken before the table can be read. This will be enough to deter average level hackers.

Eliminating Consistent Function Addresses

Since the eggcode method uses relative jumps to places in memory to locate functions and code within a library, changing these locations during each execution would render the eggcode useless. One method of eliminating consistent addresses, is not yet viable except in companies with very fast networks. In this scheme, function code is only linked at runtime and when accessed during execution, similar to the idea behind dynamic link libraries. If the function code is all held remotely and transmitted over a secure and encrypted network at runtime, function addresses will be untraceable. This creates a system with no static and repeatable configurations which the insider can hack. In the near future, wireless satellite networks will be able to provide this information to computer users anywhere in the world. Functions can then be controlled by trusted sources.

The problem with both of the above methods is that they require trusted code at some point in the initialization process for the methods. The current product, which was being encrypted or distributed, would need to be completely free of eggs before these methods are used. Because of this, egg detection methods would still need to be used.

Detection of Eggs

Detecting eggs may seem like an impossible process, but it is not. If the development process is changed to include one more step, eggs and other extraneous code can be eliminated relatively quickly. This process will require the use of an emulator, which is a program that runs an executable while mimicking the machine the program is designed to run on. The emulator allows the user to view information about the execution like register values, op codes, and memory accesses while the program executes.

If an executable is suspected of containing an egg or any extra code, it can be run on an emulator. The program can be run with every documented function and the emulator can capture all of the instruction fetches (or memory accesses). There will be some locations in memory which are not called by the program. These could be diagnostic routines which are not documented, nops or blank instructions, or they could be extraneous code like eggs. In figure 5, Function New would be called, but there would be a gap in memory accesses where the “egg code” is located. This is because the triggering event is not documented and would never be invoked. With the amount of potential egg code drastically reduced, these holes can then be disassembled and looked at more closely. If extraneous code is found, it can be removed by locating the backdoored function, changing the address reference back to the correct one, and then deleting the inserted code.

Concluding Remarks

While there still does not exist any publicly known malicious Easter eggs, the potential is there. Companies and consumers are not taking eggs seriously and do not yet view them as a threat. The existence of non-malicious eggs shows this potential. Because the process is relatively easy and all of the products and information are free, eggs are a real threat.

Consumers need to demand protection at the production level. Production companies need to realize the potential threat of eggs in reaching millions of customers whom they are liable for if embedded code from a product turns malicious. The government needs to address the threat of eggs especially with the rise of computer use and software production in Anti-American countries. Eggs are out there in the thousands; they need to be recognized for the potential destruction they may cause.

�Bibliography

Print Resources���[BIB 1]�Denning, Dorothy E. Information Warfare and Security. Addison-Wesley, 1998.��[BIB 2]�Kalb, George E. Software Security for Embedded Systems and Embedded Computer Systems-Vulnerabilities, Intrusions, and Protection Mechanisms. Course Materials. February 29, 2000.��[BIB 3]�Klog, “Backdooring Binary Objects”. Phrack Magazine. http://phrack.infonexus.com/search.phtml?view&article=p56-9.������Un-cited Print Resources���Taylor, Chris. “The Yolks on Us”. Time Magazine Vol. 155. April 10, 2000. http://216.33.236.250/cgi-bin/linkrd?_lang=&lah=487cfd2a03c065509ff3bf0e654f966f&lat=962201920&hm___action=htt%3a%2f%2fwww%2etime%2ecom%2ftime%2fpersonal%2ftechnology%2f0%2c5392%2c42349%2c00@2ehtml.������E-Mail��[EML 1]�Collins, Adrian C. “RE: Easter Egg Research”. June 24, 2000.��[EML 2]�David. “RE: Easter Egg Research.” June 21, 2000.��[EML 3]�Matthew. “RE: Easter Egg Research.” June 19, 2000.������Web Sites����Site�Description��[WEB 1]�http://www.eeggs.com �A very thorough site listing thousands of known Easter eggs. This site also host discussion rooms.��[WEB 2]�http://www.wotsit.org�Definitions of different executable file formats.��[WEB 3]�http://www.wotsit.org/download.asp?f=exe-win�The windows “.exe” file format definitions.��[WEB 4]�http://www.it.uu.se/documentation/programming�Information on BFD, libbfd, and how to use them.��[WEB 5]�http://www.winsite.com/info/pc/win95/programr/hack404.zip�Hackman 4.04

-Free disassembler and hexadecimal editor.��[WEB 6]�http://download.cnet.com/downloads/0-100961001420326.html?tag=st.dl.10000_103_1.lst.td�WinHex

-Shareware version of a popular hexadecimal editor.��[WEB 7]�http://www.eeggs.com/ubb/Forum1/HTML/000007.html�Discussion on the topic of eggs that cause damage.������Non-Cited Sites���http://www.htsoft.com/easter �Old and out of date egg lists.���http://www.dummies.com/eggs�Short list along with short history of eggs.���http://www.madcapps.com/~Writings/every.htm�Self proclaimed list of best eggs in Apple Newton. Out of date.���http://www.easter-eggs.com�French site, relating specifically to eggs in Linux, I think.���http://www.macology.com/easter/�Self proclaimed list of coolest eggs in the Macintosh. ���http://www.hitech.com.au/easter/mac.html�Macintosh eggs.���http://humanum.arts.cuhk.edu.hk/~cmc/

mirror/chngai/easter-eggs/�Macintosh eggs.���http://www.cg.tuwien.ac.at/~scheich/

Newton/Easter.html�Out of date list for eggs in the Apple Newton.���http://www.dvdeastereggs.com/�List of eggs in DVD movies.���http://handel.pacific.net.sg/~panglee/Easter.html�Defunct site.��

Definitions

Backdooring: The process of disrupting the execution of the program by adding a call to another piece of code every time the backdoored object is called. Flow of control is returned to the original function after the redirection. More generally, something is changed about the programs execution, without deleting or changing any functionality which existed before.

Binary File Descriptor (BFD): A freely available package which exists on most systems or is freely available as part of the GNU project. The BFD package provides a standard set of routines to operate on object files independent of the format of the object file, for use in applications. The BFD provides a standard front end for user and application interface, while the back end decides on which methods to use and how to link the application to the object files.

Checksum: A value stored in the header of an executable file which is the total of all of the bits or bytes in a file, or a number created by an algorithm which is a function of the bits in that segment. It is computed during the loading stage of the execution of the program and verified as a method of file integrity. If the checksum computed at loading time is not equal to the value stored in the header, the program will not execute.

Dark Siders: Criminal hackers who perform illegal actions for personal gain. They are interested in the pay off as well as the adrenaline rush of hacking.

Data Brokers: Usually dark siders who do not do the work themselves. They hire dark siders to perform hacks and often act as intermediaries in larger scale operations. Their motivation is primarily financial gain, as they do not want any recognition and fear capture.

Disassembler: A software utility which converts binary code into assembly level code.

Easter Egg: A piece of code inserted into a piece of commercially available software, included in the binary code, which adds functionality not documented by the producer to the product. The functionality is activated by some kind of user action.

Elites: Hackers who develop new processes and post their methods and successes. They seek recognition from their work from peers and sometimes public.

Relocatable Object Code: Binary code that can be loaded into different places in memory and still function correctly.

Symbol Table: A portion of an executable file which identifies the symbols in a program (like method names) and the actual address where they exist in the executable file.

Acknowledgements

The researcher would like to especially thank George Kalb for his dedication to this project. Thank you for your vast knowledge of the software development process and embedded systems, as well as your theories. Without him, this project would not have been possible.

Also, a special thanks to Dr. Joanne Houlahan for initially setting up this project, and to Dr. Giuseppe Ateniese for sponsoring this project.

		

6/29/00	�page * MERGEFORMAT�14�	Copyright 2000, Stephen Greenberg

