CS 600.105, M & Ms: Data Management Homework Due date: Tuesday, 11/15/2011.

1 Question 1: Database Design

In this question, we will use a simple single-table database listing well-known paintings, and the gallery where the painting is on view, with a schema: (Painting, Artist, Year, Gallery)

An example of this database is:

Painting	Artist	Year	Gallery
Madonna Litta	Da Vinci	1490	Hermitage Museum, St. Petersburg
The Last Supper	Da Vinci	1495	Santa Maria delle Grazie, Milan
La Gioconda (Mona Lisa)	Da Vinci	1503	Louvre, Paris
St. George and the Dragon	Raphael	1504	National Gallery of Art, DC
The Fighting Temeraire	Turner	1838	National Gallery, London
Starry Night Over the Rhone	Van Gogh	1888	Musee d'Orsay, Paris
The Scream	Munch	1893	National Gallery, Oslo
The Scream	Munch	1910	The Munch Museum, Oslo
Painting with Troika	Kandinsky	1911	The Art Institute, Chicago
Three Musicians	Picasso	1921	Museum of Modern Art, New York
Composition VIII	Kandinsky	1923	Guggenheim Museum, New York
The Persistence of Memory	Dali	1931	Museum of Modern Art, New York
Guernica	Picasso	1937	Museo Reina Sofia, Madrid
Nighthawks	Hopper	1942	The Art Institute, Chicago
The Snail	Matisse	1953	Tate Gallery, London

Consider the following questions:

- 1. for the above database, what are the candidate keys?
- 2. what are the implications if the entire tuple is the only candidate key?
- 3. how and why would you use multiple tables to represent the above data?
- 4. if you were a museum curator, what additional data would you collect to make a decision on the pieces to include in your gallery's collection?

2 Question 2: Object-Relational Mappings

Database query languages are often used through general-purpose programming languages, for example to build Web services. This question explores the relationship between data represented in a database, and in a programming environment that you may be more familiar with, namely an object-oriented language such as Java. Consider the following simplified Java code:

```
public class MovingObject {
  public double t;
  public double latitude;
  public double longitude;
  public double speed;
  public Moveable o;
  // Remainder of class, e.g. constructors, methods, etc.
public class World {
  MovingObject[] objects;
  // Constructor goes here...
  MovingObject[] getFastObjects() {
   LinkedList<MovingObject> r = new LinkedList<MovingObject>();
   for (MovingObject mo : objects) {
      if ( mo.speed > 60 ) { r.add(mo); }
    }
   return r.toArray(new MovingObject[0]);
}
```

With the above program:

- 1. Considering that the subclasses of Moveable are Car, Bike, Person, what tables and attributes would you use in a database to represent a World?
- 2. With your database, how would you implement the getFastObjects() method in SQL?

3 Question 3: Join Algorithms

In the third lecture of this section, we saw the nested loops join algorithm. A sketch of this algorithm is listed below, and as described in class, its I/O cost in terms of the number of pages read is: $cost = p_R + t_R * p_S$, where p_R and p_S are the number of pages used by two tables R, S respectively, and t_R , t_S the number of records they contain. How would you improve the algorithm to achieve better I/O performance? Assume the total memory in the system is M. (Hint: think about how you could use the available memory)

```
    for each page r in table R:
    read r into memory
    for each tuple i in page r:
    for each page s in table S:
    read s into memory
    for each tuple j in page s:
    if match(i,j) then output(i,j)
```