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Abstract

Although state-of-the-art LLMs can solve math
problems, we find that they make errors on
numerical comparisons with mixed notation:
“Which is larger, 5.7×102 or 580?” This raises
a fundamental question: Do LLMs even know
how big these numbers are? We probe the hid-
den states of several smaller open-source LLMs.
A single linear projection of an appropriate hid-
den layer encodes the log-magnitudes of both
kinds of numerals, allowing us to recover the
numbers with relative error of about 2.3% (on
restricted synthetic text) or 19.06% (on scien-
tific papers). Furthermore, the hidden state af-
ter reading a pair of numerals encodes their
ranking, with a linear classifier achieving over
90% accuracy. Yet surprisingly, when explicitly
asked to rank the same pairs of numerals, these
LLMs achieve only 50–70% accuracy, with
worse performance for models whose probes
are less effective. Finally, we show that incor-
porating the classifier probe’s log-loss as an
auxiliary objective during finetuning brings an
additional 3.22% improvement in verbalized
accuracy over base models, demonstrating that
improving models’ internal magnitude repre-
sentations can enhance their numerical reason-
ing capabilities.

1 Introduction

Large language models (LLMs) are increasingly
used in mathematical (Jiang et al., 2023), scientific
(Taylor et al., 2022; Zhang et al., 2025), financial
(Wu et al., 2023), and engineering (Jimenez et al.,
2024) domains. In these domains, numeracy—the
ability to understand and reason about numbers—is
an essential basic skill.

While LLMs can correctly answer questions
such as “What is 5.7 × 102?” and “Which is
larger, 570 or 580?”, we find that even leading non-
reasoning models like GPT-4.1 make many mis-
takes on cross-notation comparisons like “Which is
larger, 5.7× 102 or 580?” This discrepancy raises
questions: Do LLMs know how big these numbers

Model
Verbalization

Accuracy
Probing

Accuracy

GPT-4.1 94.19 —
GPT-4.1-mini 92.12 —

DeepSeek-R1-Distill-Llama-8B 57.81 95.62
DeepSeek-R1-Distill-Qwen-7B 64.19 97.38
Llama-2-7b 50.81 98.44
Llama-3.1-8B-Instruct 55.06 94.81
Mistral-7B-v0.1 50.00 96.44
OLMo-2-1124-7B 53.44 93.50
Qwen3-8B 70.00 98.88

Table 1: Cross-notation comparison task on held-out
data (see App. B.1 for data details). Verbalization accu-
racy evaluates verbal responses using a one-shot prompt
and no training, while probing accuracy measures per-
formance of a linear classifier trained on hidden states.
All values are percentages without the % sign. Despite
hidden states containing rather accurate comparison in-
formation extractable via linear probes, verbalization
performs substantially worse.

are, representing them internally in a way that sup-
ports intelligent discussion of scientific text? Or
do they lack number sense and are specialized to
specific manipulations of numerals—the textual
representations of numbers—in specific notations?

To study these questions, we first probe the in-
ternal numerical knowledge of smaller LLMs (7B–
8B parameters) by training linear probes on hid-
den states of numeral tokens, following Zhu et al.
(2025). We train and test on two kinds of text: syn-
thetic prompts and real-world arXiv papers. We
find that standard linear regression can success-
fully predict log-magnitudes (§3.1). For example,
layer 31 of Mistral-7B linearly encodes numerals
to ~2.3% median relative error on synthetic data
and ~19.06% on scientific papers.

Second, we show that these smaller LLMs also
internally compare numbers (§3.2). A linear binary
classifier (trained with logistic regression) reveals
which of the two numbers in the question is bigger,
even when the numbers are so close that their pre-
dicted magnitudes (using the previous method) are
too noisy for reliable comparison.
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Figure 1: Scatterplots of predicted vs. true (“golden”) log-magnitudes for Mistral-7B (32 layers) across different
datasets and notation types. “Synth” refers to the synthetic cross-notation data we constructed in §2. Dec/sci/mixed
conditions train and test on decimals only, scientific notation numerals only, and both, respectively. We train and test
a probe at each layer, and then plot performance on held-out test data for only the probe that achieved the highest
R2 on held-out validation data. The parenthesized number is the layer index of that probe.

Despite having done these computations inter-
nally, these LLMs struggle significantly at verbal-
izing the cross-notation comparison (§3.3). When
prompted to say which of two cross-notation nu-
merals is larger, the models achieve only 50–70%
accuracy—far closer to the 50% random baseline
than their internal knowledge would predict. This
sharp performance gap indicates that LLMs pos-
sess numerical knowledge that they cannot reliably
verbalize through language generation.

Still, probing effectiveness in early layers does
correlate well with verbalized performance (§3.4).
For a probe of either type (applied to the first 3
layers), probe accuracy predicts the accuracy of
verbal output (produced by the last layer) across
diverse 7B–8B LLMs (Figs. 5, 6 and 9).

To test whether this connection is causal, we ex-
periment with adding the classifier probe’s training
loss to the LLM’s log-loss training objective on the
task of verbalized cross-notation comparison (§3.5).
Most LLMs do achieve higher verbalized compari-
son accuracy when fine-tuned with this augmented
objective rather than the standard objective (Ta-
ble 2). This finding suggests that targeting internal
representations is a promising approach to improv-
ing numeracy in LLMs. That is, models know more
than they can say—but improving what they know
improves what they can learn to say.

To summarize our key findings:
• Numerical log-magnitudes and magnitude

comparisons are encoded linearly, for various
LLMs, datasets, and numeral notations.

• Even so, LLMs verbalize cross-notation com-
parisons poorly.

• Tuning a model’s internal representations to
better encode numeric comparisons helps the
model better answer such comparison ques-
tions verbally.
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Figure 2: MSEs in log-space of regression probes on
cross-notation data of each LLM across layers.

2 Experimental Setup

Data We construct a synthetic cross-notation
dataset to support our studies of both regression
and comparison. To study regression probing on
realistic scientific text, we derive an arXiv dataset
from the peS2o dataset (Soldaini and Lo, 2023).
See App. B for details of both datasets.

In cross-notation, numeral pairs are con-
structed so that each pair consists of one numeral
in scientific notation and the other in normal form
(e.g., 5.7× 102 vs. 560).1

For verbalization on cross-notation, we
prompt with a one-shot demonstration since the
model has not been trained for the task (see App. C
for more details):

Q: Which is larger, 9.9 × 10^2 or 100? A: 9.9 × 10^2
Q: Which is larger, {a} or {b}? A:

In contrast, we train and test our cross-notation
probes on a zero-shot prompt (no demonstration),
to better isolate the model’s intrinsic encoding:

Q: Which is larger, {a} or {b}? A:

1We found LLMs can compare numerals of the same nota-
tion with 100% accuracy.
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Figure 3: Accuracy of cross-notation comparison (a
?
> b) versus the relative magnitude of the two numbers

(log2(a/b)). (a) Verbalized comparison using one-shot prompting; (b) Comparison of the two values predicted by
regression; (c) Comparison via a classification probe; (d) Comparison via the log-ratio predicted by regression. Note
that (b)–(d) require access to the hidden states, so they do not include the large closed-source models GPT-4.1 and
GPT-4.1-mini. See Fig. 10 for individual models’ results.

Probing For each layer of the transformer LLM,
we extract hidden states from the zero-shot prompt
and train separate probes. Linear regression probes
are trained on the last tokens of the numerals to
predict their log2 magnitudes and the last token of
the prompt to predict log2(a/b). Linear classifica-
tion probes (using logistic regression) are trained
on the last token of the prompt to predict whether
{a} > {b}. See App. D for details.

Finetuning To investigate whether internal mag-
nitude representations can be leveraged to improve
numerical reasoning, we incorporate auxiliary prob-
ing loss during finetuning on cross-notation.
We add probe heads to a single layer and finetune
on the standard language modeling loss plus the
classification probing loss,2 Ltotal = LLM + βLcls,
where the hyperparameter β controls the strength
of auxiliary supervision. See App. E for details.

Models To ensure that the experimental results
are not specific to a certain model’s architecture
or training procedure, we select a set of widely
used open-weight 7B–8B LLMs, including base
pretrained, instruction-tuned, and distilled models.
We additionally evaluate GPT-4.1 and GPT-4.1-
mini (OpenAI’s non-reasoning frontier models) to
assess whether verbalization difficulties persist in
larger, more capable models.

3 Experimental Results

3.1 Magnitude Probing
To investigate whether LLMs internally encode nu-
merical magnitude information, we first train linear

2We experimented with adding regression probing losses
but found no improvement in performance (see App. E).

regression probes on hidden states to predict the
log2 values of numerals. Fig. 1 shows scatterplots
of predicted versus true log-magnitudes for Mistral-
7B across different datasets and notation types.

The strong correlation observed in Fig. 1 sug-
gests that, on the cross-notation dataset, log-
magnitudes of decimals and scientific notation nu-
merals are encoded linearly in the LLM’s hidden
representations. Even in mixed probing, where
probes are trained and tested on both decimal and
scientific notation tokens, linear regressors achieve
high performance on cross-notation with R2 >
0.998 (Fig. 1c).

On arXiv (Fig. 1f), the linear probe is not as
precise, though it still achieves a correlation of
ρ = 71% (R2 = 0.51). Numbers in arXiv play
many more different semantic roles (Lo et al., 2020,
App. F). Perhaps these are represented in differ-
ent subspaces, so that a single linear probe is not
powerful enough.

Even so, this latter model can predict magni-
tudes on held-out arXiv data to 19.06% median
relative error. Thus, this layer of Mistral-7B con-
tains a noisy invariant linear representation of each
numeral’s magnitude—which the next layer’s at-
tention mechanism could learn to extract through
linear query/key/value projections, providing “num-
ber sense”. Note that the better 2.3% median rela-
tive error on cross-notation (Fig. 1c) is possible
only because the models are overfitted to very spe-
cific prompt formats.3

3These models are also underdetermined because they have
only seen one kind of data. They do not generalize well
even within the cross-notation dataset: the Fig. 1a model
performs much worse on the Fig. 1b data (R2 = 0.56), and
vice-versa (R2 = 0.34).



3.2 Comparison Probing

Despite the regression probes’ low error in log-
space, their predictions are too noisy to compare
close-by values. In Fig. 3b, we use the regression
probe’s predicted magnitudes to compare the two
numbers in the prompt. We observe across all mod-
els that this method degrades when the absolute
log2-ratio of the two numbers drops below 1 (i.e.,
when the two numbers differ by less than a factor of
2). When | log2(a/b)| < 0.2, the regression probes’
predictions are too noisy to meaningfully compare
the numbers, resulting in random chance accuracy.

However, the LLM’s internal states also seem
to include a comparison of the two numbers.
We additionally train a binary classifier on the
cross-notation dataset. Fig. 4 plots accuracy
as a function of layer depth. Higher layers consis-
tently exceed 95% accuracy. Fig. 3c shows the ac-
curacy with respect to the log-ratio of two numbers.
We observe that, while classifier probes also suffer
when the two numbers are close, they generally
perform better than regression-based comparison—
and much better for 4 of the 7 open-source models.

The internal states encode not only which num-
ber is bigger, but how much bigger it is. We trained
additional regression probes to predict log2(a/b)
from the last hidden state of the prompt. These
achieved overall predictive accuracy similar to the
regression probes of §3.1 (see Fig. 8 in App. G).
Their accuracy may still degrade when a ≈ b,
but as a approaches b, comparison based on pre-
dicted log2(a/b) > 0 (Fig. 3d) does not degrade
quite as quickly as comparison based on predicted
log2(a) > predicted log2(b) (Fig. 3b). Fig. 10
clearly shows that for each model, the log-ratio
comparison method is more accurate at all a/b val-
ues. Indeed, it behaves similarly to direct binary
classification (Fig. 3c)—except for the 4 models
whose binary classifiers are much more robust. Pre-
sumably those models are internally performing the
actual comparison task requested by our prompt.

3.3 Verbalization

Table 1 shows each LLM’s verbalized response on
cross-notation using a one-shot prompt. Across
a variety of 7B–8B open-weight models, the best
model reaches only 70% accuracy; the worst is at
chance (50%). While few-shot prompting improves
performance (cf. App. H), we emphasize one-shot
performance because numeracy should be an innate
ability of LLMs and such basic questions should
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Figure 4: Logistic classifier accuracies on
cross-notation of each LLM across layers.
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Figure 5: Average performance of linear regression
probes at the first 3 layers correlates with model’s ver-
balization accuracy on cross-notation.

require as few examples as possible.
To visualize the pattern of errors, Fig. 3a shows

the verbalized comparison accuracy as log2(a/b)
changes. Though GPT-4.1 and GPT-4.1-mini
achieve over 92% accuracy overall, they have errors
at all ratios and especially when the two numbers
are close. Interestingly, we observe that Llama-
2-7B and Mistral-7B disregard the values of the
numbers and almost always answer with the sec-
ond number. We conduct further experiments in
App. H and show that, in the one-shot setting, those
two models lack awareness of the values of num-
bers and superficially imitate the example in the
one-shot prompt. We present few-shot results and
a more thorough error analysis in App. H.

3.4 Correlation
To explore how internal representations relate to
verbalized performance, we investigate the correla-
tion between probe performance and verbal accu-
racy across models.

We observe that for scientific notation numerals,
the best probes (Figs. 1b–1c) are near the top of



Model Base Finetuned
Error Rate
Reduction

Finetuned
with Probing Loss

Further Error
Rate Reduction

DeepSeek-R1-Distill-Llama-8B 57.81 86.69 68.5% 89.69 22.5%
DeepSeek-R1-Distill-Qwen-7B 64.19 84.06 55.5% 95.19 69.8%
Llama-2-7B 50.81 94.44 88.7% 94.56 2.2%
Llama-3.1-8B-Instruct 55.06 96.44 92.1% 95.81 −17.7%
Mistral-7B-v0.1 50.00 95.69 91.4% 99.31 84.0%
OLMo-2-1124-7B 53.44 87.75 73.7% 90.25 20.4%
Qwen3-8B 70.00 96.19 87.3% 99.00 73.8%

Average 57.33 91.61 80.3% 94.83 38.4%

Table 2: Cross-notation comparison accuracy of verbalized responses. Accuracy numbers are percentages without
the % sign. Most errors of the base model are fixed by finetuning. Incorporating probing loss into the finetuning
objective often fixes many of the remaining errors (more than 2

3 of them for 3 of the models).
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Figure 6: Average performance of logistic classification
probes at the first 3 layers predicts the model’s verbal-
ization accuracy on cross-notation.

the transformer. These representations presumably
arrive too late in processing to support the compar-
isons required by the verbalization task. We further
observe that representations that support accurate
linear regression are only available after several
layers (Fig. 2), and representations that support
accurate classification arrive even later (Fig. 4).

We speculate that earlier representations are
more useful for downstream tasks. Indeed, Figs. 5
and 6 reveal a strong correlation across diverse
7B–8B models between the average performance
of probes from the first three layers (even though
that performance is still low) and verbalized com-
parison accuracy on the cross-notation dataset.

This correlation suggests that higher quality of
internal numerical representations is linked with
improved verbalization performance.

3.5 Finetuning

To test whether the link is causal, we incorporate
probing loss as an auxiliary objective during fine-
tuning, i.e., we jointly train the LLM and the probe.
Table 2 compares three conditions: base model,
standard finetuning (β = 0), and finetuning with

probing loss (β = 0.02).4 Through hyperparam-
eter tuning, we select the probe layer depth to be
90%. β > 0 encourages the representations to bet-
ter support the comparison task that will be needed
by verbalization. Through backpropagation, this
affects the representations at earlier layers as well.

Ordinary finetuning fixes > 4
5 of the total errors

made by these 7 models (in the sense of reducing
error rate). But augmenting the finetuning with
probing loss fixes > 1

3 of the total remaining errors.
For the 3 Mistral- and Qwen-based models, aug-
mentation fixes > 2

3 of remaining errors, bringing 2
of them to ≥ 99% accuracy. This suggests the pos-
sibility of improving LLMs’ verbal numeracy by
explicitly improving their internal representations.

4 Conclusion

We study a fundamental question in LLM numeracy
(see App. A for related work): Do language models
know how big numbers are? We found a striking
fact: While LLMs do have strong internal numer-
ical representations that can be exposed by both
regression and classification probes, they struggle
to answer cross-notation comparisons, performing
only marginally above chance.

We demonstrate that early-layer representations
strongly predict verbalized performance, and auxil-
iary probing loss enhances finetuning with an addi-
tional 3.22% improvement. These results suggest
that LLMs possess sophisticated numerical knowl-
edge they cannot reliably access during generation
unless fine-tuned for a task, but also that better
knowledge causally leads to better generation.

Our work highlights both limitations and oppor-
tunities. Current LLMs know more about numbers
than they can say; and targeted tuning on these two
goals (representation, verbalization) is synergistic.

4See hyperparameter tuning in App. E.



Limitations

• Probing reveals representation, not usage.
Unlike causal tracing approaches (Lindsey
et al., 2025), we did not investigate how the
representations are actually used during infer-
ence. Our intervention trained the model to
produce both better representations (Lcls) and
better text output (LLM). We found a synergy
between these two objectives, but we did not
intervene on the representations directly at in-
ference time to see how this changed the text
output.

• Synthetic-real gap. Most of our core find-
ings—such as probing performance, verbal-
ization failure, and probe-based finetuning
gains—are demonstrated on controlled syn-
thetic data. We do not systematically validate
these results on real scientific text such as
arXiv papers. The extent to which our conclu-
sions generalize to such text (and to other as-
pects of numeracy) remains to be established.

• Linear probes may not be enough. Our tests
on arXiv showed that a single linear probe will
not necessarily be enough to work beyond our
simple synthetic data setting. On real data, we
might try using a two-layer neural network,
or using the minimum loss of several linear
probes that look at different subspaces. Or
perhaps these nonlinearities are unnecessary if
through finetuning a linear probe, we can suc-
cessfully change the internal representations
so that they do support linear probing after
all, even on arXiv. That is, finetuning might
recruit a dimension to encode numeric log-
magnitude, which might improve the model’s
abilities in downstream verbal numeracy tasks.
We leave these questions to future work.

• Probing findings are limited to 7B–8B
LLMs. Our probing results are limited to
7B–8B open-weight models where we can ac-
cess internal representations. We cannot probe
GPT-4.1 and GPT-4.1-mini, so it remains un-
known whether larger models encode numeri-
cal information similarly, or whether the links
between internal numeracy and verbal perfor-
mance are preserved.

• Limited diversity in test examples. Our
synthetic cross-notation dataset has several
constraints. First, all exponents are positive,

but negative exponents like 10−3 are common
in scientific literature. Second, our few-shot
demonstration examples (App. C) did not in-
clude examples where numbers are very close
(e.g., 1234 vs. 1.241× 103); perhaps targeted
demonstrations on such cases would reduce
their error rate. Third, the same prompt tem-
plate and few-shot examples are used for all
test problems, so our results may depend on
those specific ordering and selection patterns.
In retrospect, we should have randomly var-
ied the prompt format and few-shot examples
within the test set.

• Semantic context is not considered. Our
probing methods focus on the magnitudes of
numerals in isolation, without considering
context such as units. In practice, numer-
acy requires contextual understanding—for
instance, 5 miles is greater than 50 meters,
even though 5 < 50, and 50 meters and 50
kg are incomparable. While LLMs likely rep-
resent such contextual information internally,
we leave this aspect for future work.
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A Related Work

There is rich recent literature on internal numerical representations in large language models. Wallace et al.
(2019) demonstrate that numerical information can be extracted from contextual or static word embeddings.
Stolfo et al. (2023) and Hanna et al. (2023) study internal mechanisms of LLMs’ mathematical abilities.
Closely related to our work is Zhu et al. (2025), who provide evidence that language models encode
the value of integers linearly in log-space. Most recently, Lindsey et al. (2025) attempted to recover the
internal procedure through which a specific LLM performs additions of two-digit numbers.

Our work also overlaps with recent LLM numeracy benchmark efforts. Recently, Yang et al. (2025)
designed a comprehensive benchmark for evaluating LLMs’ black-box responses to basic synthetic
numerical questions. However, they did not investigate internal numerical representations. Similarly, Li
et al. (2025) designed a basic numerical benchmark based on real-world datasets, using a similar blackbox
approach. In a similar effort to extract precise numbers from LLM encodings, Tang et al. (2025) and Song
and Bahri (2025) studied whether LLM encodings can be used to tackle classical regression tasks.

B Data Setup

B.1 Synthetic Data

The cross-notation dataset in §2 contains 11,200 comparison problems, with 8,000 samples for training,
1,600 for validation and 1,600 for evaluation. We generate 1,400 numeral pairs for each digit length
between 2 and 9 digits, randomly converting one numeral in each pair to scientific notation while keeping
the other in standard notation.

We construct two variants of this dataset: int-sci (integer vs. scientific notation) and dec-sci (decimal
vs. scientific notation). In int-sci, both numbers start as integers before one is converted to scientific
notation (e.g., 570 vs. 580 → 5.7× 102 vs. 580). In dec-sci, we first append 0–4 random decimal digits
independently to each number before conversion (e.g., 570.23 vs. 871.6 → 570.23 vs. 8.716 × 102).
When zero decimal digits are selected, we append “.0” to maintain consistent formatting (e.g., 342.0).
These two datasets are functionally interchangeable for our experiments. We report results using dec-sci
in Figs. 3, 10, 11, 13 and 14, with int-sci used for all other experiments on cross-notation.

B.2 Scientific Data

We utilize the peS2o dataset (Soldaini and Lo, 2023), which contains approximately 40 million open-
access academic papers from arXiv that have been cleaned, filtered, and formatted for language model
pre-training. peS2o consists of two subsets: s2orc, which provides full-text papers (Lo et al., 2020), and
s2ag, which contains titles and abstracts only.

To build arXiv data, we only use the s2orc subset. We first shuffle the corpus using terashuf
and select the first 100k articles from s2orc. We then employ regular expressions to extract
numerals in standard decimal notation ((?<!\d\.)\d+\.\d+(?!\.\d)) and in scientific notation
((?:\d+(?:\.\d+)?)\s*×\s*10\s+[-+]?\d+). To avoid overflowing GPU memory, we filter out papers
exceeding 30,000 tokens. We process complete documents through the language models and extract
hidden states at the final token position of each identified numeral. The resulting processed arXiv dataset
contains 5,000 samples, divided into 4,000 training samples and 500 validation samples and 500 evaluation
samples.

C Inference and Prompting Setup

For verbalization tasks, all models are evaluated with temperature 0 (greedy decoding) to ensure determin-
istic and reproducible outputs.

C.1 Open-weight Models

For the 7B–8B open-weight models, we use the Hugging Face Transformers library for decoding.
Prompts are formatted as plain text with “Q:” and “A:” markers. The one-shot demonstration for int-sci
is shown in §2. For dec-sci, we use:



Q: Which is larger, 9.9 × 10^2 or 899.9? A: 9.9 × 10^2
Q: Which is larger, {a} or {b}? A:

For k-shot experiments using int-sci (App. H), where k ∈ [1, 5], we prepend the first k of these
examples:

Q: Which is larger, 9.9 × 10^2 or 100? A: 9.9 × 10^2
Q: Which is larger, 161230 or 7.182 × 10^5? A: 7.182 × 10^5
Q: Which is larger, 713 or 4.78 × 10^2? A: 713
Q: Which is larger, 1.354 × 10^6 or 4906723? A: 4906723
Q: Which is larger, 20834 or 6.5 × 10^3? A: 20834

followed by the usual test question:

Q: Which is larger, {a} or {b}? A:

C.2 GPT Models

GPT-4.1 and GPT-4.1-mini are called via the OpenAI Chat Completions API with the system prompt
“Just answer with a number.” The questions and answers are provided as messages with the user and
assistant roles respectively, rather than being marked with Q: and A: strings. The content of the
few-shot examples is identical to that above.

D Probing Setup

D.1 Obtaining Hidden States

We feed each input into the LLMs and extract the hidden states at every layer. For each layer, we
identify specific token positions corresponding to our target representations and save their hidden states
H ∈ Rn×dmodel for subsequent probing experiments, where n is the number of samples and dmodel is the
hidden dimension.

D.2 Training Regression Probes

For regression probes, we extract hidden states from the last token of each numeral. Given hidden
states H and their corresponding numerical values x ∈ Rn, we train a linear regressor R that predicts
y = Hw + b1, where w ∈ Rdmodel and b ∈ R are the learned parameters.

We apply log2 transformation to compress the numerical range and emphasize relative magnitude
relationships, using an ℓ2 regularizer (λ = 1) for training (i.e., ridge regression):

w∗, b∗ = argmin
w,b

|| log2(x)−Hw − b1||22 + λ||w||22

The trained probe predicts logarithmic magnitudes as y = Hw∗ + b∗ 1.

D.3 Training Classification Probes

For classification probes, we extract hidden states from the last token of the entire prompt after processing
both numerals. We frame the task as binary classification to predict which numeral is larger in a given
pair (a, b).

Given hidden states H = {h1, . . . ,hn} ∈ Rn×dmodel and binary labels y ∈ {0, 1}n (where yi = 1 if
the first numeral is larger), we train a logistic regression model with an ℓ2 regularizer (γ = 1):

w∗, b∗ = argmax
w,b

{
n∑

i=1

yi log(σ(h
⊤
i w + b)) + (1− yi) log(1− σ(h⊤

i w + b))− 1

2γ
∥w∥2

}

where σ is the sigmoid function. Given a hidden state h ∈ Rdmodel , the probe estimates P (a > b) =
σ(h⊤w∗+ b∗). Our binary classifier predicts a > b iff this probability exceeds 1

2 , i.e., iff h⊤w∗+ b∗ > 0.



E Finetuning Setup

The total loss is initially comprised of three terms:

Ltotal = LLM + αLreg + βLcls

We finetune on the training set from App. B.1 using LoRA (Hu et al., 2022) with settings
lora_r=16, lora_alpha=32, lora_dropout=0.1, target_modules=[q_proj, v_proj]. We use
AdamW (Loshchilov and Hutter, 2019) as our optimizer, finetuning for 3 epochs with batch size 16.

We first initialize the probe parameters by fitting them in our usual way (App. D) on the same training
data, before proceeding with finetuning of all parameters as above.

Using the validation set from App. B.1, we perform grid-search on probe and finetuning hyperpa-
rameters: α, β ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}, learning rate ∈ {2e-6, 5e-6,
1e-5, 2e-5, 5e-5, 1e-4, 2e-4}, and probing layer depth ∈ {10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%, 100%}. We select the hyperparameters that achieve the highest verbalization accuracy
on validation data.

These optimal hyperparameters are α = 0, β = 0.02, learning rate = 5e-5, probing layer depth = 90%.
Thus the regression probing loss term is omitted in §2 since including it is suboptimal. In fact, we found
that α > 0 was suboptimal even when β = 0, indicating that attempting to improve regression loss did not
help with the verbalized comparison. Presumably that was because regression on the cross-notation
dataset was already extremely accurate. On a dataset like arXiv, however, there would be more room to
improve regression, and this might benefit the downstream task of verbalized comparison.

F Evaluation Metrics

Mean squared error (MSE) is the average squared difference between probe predictions and actual
values in log space.
Relative error (RE) (reported in our paper abstract) converts the median absolute error in log space to a
relative error as shown below.
Approximate accuracy (AAcc) evaluates whether the predicted number is approximately the same as the
original number in normal (non-log) space, namely with an error margin of < 1%. Higher AAcc indicates
that the number encoding is more likely to be precise.

MSE(y,x) = mean((y − log2 x)
2) (1)

RE(y,x) = 2median(|y−log2 x|) − 1 = median

(
max

(
2y

x
− 1,

x

2y
− 1

))
(2)

AAcc(y,x) =

∣∣∣ |2y − x| < 0.01x
∣∣∣

|x|
(3)

G Additional Probing Results

For a more detailed regression evaluation, we consider the Pearson correlation ρ, the coefficient of
determination R2 (which = ρ2 for linear regression), mean square error (MSE), and approximate accuracy
(AAcc).5 Fig. 7 and Fig. 9 are expanded versions of Fig. 2 and Fig. 5.

The individual models’ results for Fig. 3 can be found in Fig. 10.

H Additional Error Analysis

Here, we present additional experimental results and analysis to complement our discussion in §3.3.

5See App. F for more details about metrics.
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Figure 7: Regression probe performance on cross-notation data of each LLM across layers. Here, we report the
Pearson correlation ρ, the coefficient of determination R2 (which = ρ2 for linear regression), mean square error
(MSE), and approximate accuracy (AAcc). Definitions of MSE and AAcc can be found in App. F. This is the
expanded version of Fig. 2.

One-shot Prompting. We observed in §3.3 and Fig. 3 that Llama-2-7B and Mistral-7B ignore the
values of the numbers and answer only with the second number. This may be because the example that
we provided in the one-shot prompt (see §2 and App. C) placed the correct answer in the second position.
Thus, we tried exchanging the two numbers in the example. Fig. 11 displays the results of the altered
prompt next to the original.

We observe that, out of all models, Llama-2’s response to the change in prompt is the most extreme. In
both prompts, Llama-2 answered exclusively with the same position in which the answer was presented in
the one-shot example. Other models (DeepSeek-R1-Distill-Llama-8B, Mistral) show similar tendencies,
but to a lesser extent. OLMo-2 shows a slight though consistent preference for the second number,
regardless of the one-shot prompt. In contrast, GPT-4.1 and GPT-4.1-mini show minimal sensitivity to the
ordering of the two options in the prompt, maintaining consistent performance across both variations.

Few-shot Prompting. Throughout this work, we have focused on one-shot prompting. We take the
view that numeracy should be an innate capability: models should already exercise basic numeracy
skills—cross-notation comparison being just one example—whenever they read scientific documents. In
lieu of instructions, a single demonstration should be enough to illustrate the intended task and output
format. Nevertheless, we evaluate few-shot performance here for completeness.

Fig. 12 shows the few-shot performance on cross-notation comparison using up to 5 examples (see
specific few-shot prompts in App. C). Overall, all models benefit from additional demonstrations in the
few-shot prompt, with performance improvement plateauing around 5 examples. Still, all models struggle
when the two numbers are close (| log2(a/b)| < 0.1). While the smaller models (7B–8B) perform around
random chance in this regime, GPT-4.1 and GPT-4.1-mini maintain 75–85% accuracy, with additional
demonstrations providing marginal further improvement.

We designed our 5 examples so that the correct answer’s position alternates between the first place
and the second place, in an attempt to eliminate positional bias we observed in Fig. 11. While Llama-2,
OLMo-2 and Mistral’s positional biases are remedied by additional examples, the positional bias of
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Figure 8: Log-ratio regression probe performance on cross-notation data of each LLM across layers. Here, we
report the Pearson correlation ρ, the coefficient of determination R2 (which = ρ2 for linear regression), mean square
error (MSE), and approximate accuracy (AAcc). Definitions of MSE and AAcc can be found in App. F.

Deepseek-R1-Distill-Llama-8B remains.

Number of digits and magnitudes of numbers. Finally, we examine the effect of the number of digits
and magnitudes of numbers on cross-notation comparison via either verbalization or probes. Fig. 13
and Fig. 14 plot accuracy with respect to number of digits and magnitude (measured by log2(a + b)),
respectively. We observe that verbalized comparison accuracy generally deteriorates for numbers that
are larger or have more digits in their surface form. In contrast, comparison accuracy via regression or
logistic classifier remains much higher and does not deteriorate in either case. These observations suggest
that LLMs implicitly understand larger and longer numerals but fail to verbalize their relationship.

I Computational Budget

All our experiments used a single NVIDIA A100 GPU (40GB or 80GB). Extracting hidden states for
the full dataset takes a few hours, training and evaluating probes for one model takes about 40 minutes,
and verbalization evaluation on 1,600 examples takes roughly 25 minutes per model. Finetuning a single
model under one hyperparameter setting takes around 1 hour.
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Figure 9: Average performance of linear regression probes at the first 3 layers correlates with model’s verbalization
accuracy on cross-notation. This is an expanded version of Fig. 5.
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Figure 10: Cross-notation comparison accuracy with varying relative magnitude of two numbers (measured by
log2(a/b)) using different methods. Same as Fig. 3, but with each models’ results displayed separately.
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Figure 11: One-shot verbalized cross-notation comparison accuracy using different examples. (a) Same as Fig. 3(a);
(b) Models’ verbalized response when the numbers in the example are exchanged in positions.
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Figure 12: Few-shot verbalized cross-notation comparison accuracy for different models. In each panel, color-
matched dashed lines indicate the average accuracy of each shot count.
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Figure 13: Cross-notation comparison accuracy vs. number of digits using different comparison methods. (a)
Verbalized comparison using one-shot prompting; (b) Comparison via the predicted value of the regression probe
trained on the hidden states; (c) Comparison using a logistic classification probe trained on the hidden states;
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Figure 14: Cross-notation comparison accuracy vs. log2(a+ b) using different comparison methods. (a) Verbalized
comparison using one-shot prompting; (b) Comparison via the predicted value of the regression probe trained on the
hidden states; (c) Comparison using a logistic classification probe trained on the hidden states.
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