Empirical Risk Minimization of Graphical Model Parameters Given Approximate Inference, Decoding, and Model Structure

Veselin Stoyanov, Alexander Ropson and Jason Eisner

Johns Hopkins University, Center for Language and Speech Processing

Motivation

In practice, Probabilistic Graphical Models are used with several approximations:

- Mis-specified model structure
- MAP training
- Approximate inference
- Approximate decisions ("decoding")

How to learn in the presence of these approximations? We could use the same equations as in the exact case, and plug in approximate inference. However, doing this is not theoretically sound:

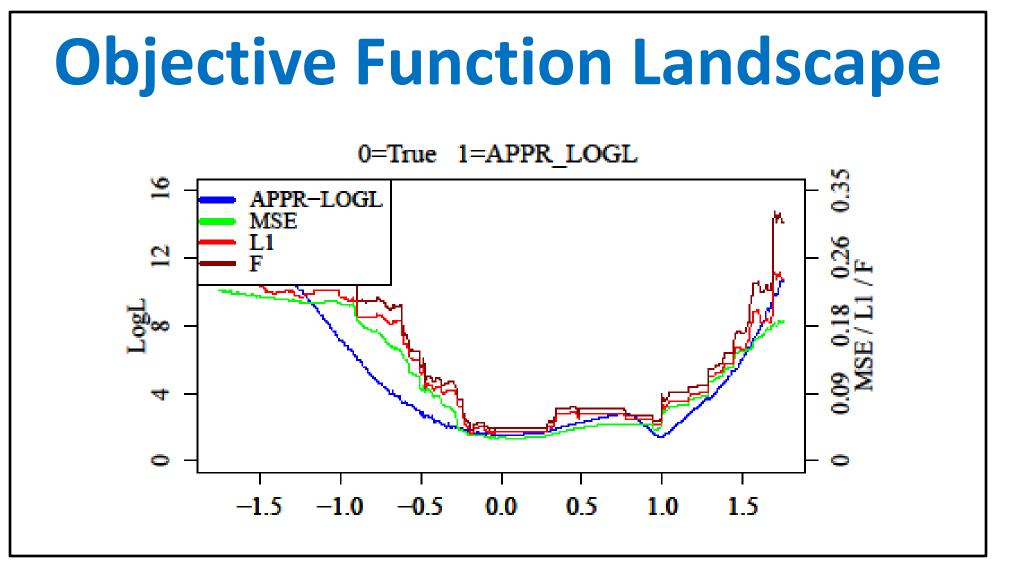
- •It can lead to degenerate settings and divergence of the learner (Kulesza and Pereira, 2008)
- •In the presence of approximations, it can be beneficial to learn an inconsistent model (Wainwright, 2006)
- •It can be beneficial to calibrate the learned parameters with respect to loss on the decision task (Lacoste-Julien et al.,2011)
- •Even when exact inference is tractable, exact loss-based decoding may not be

Our Approach

Consider the whole system (approximations and all) to be a decision rule tuned by parameters Θ .

Use the following method to find Θ that minimizes the empirical risk (like minimizing error in a neural network):

- •Compute gradients of Θ with respect of the loss using back propagation.
- •Use a local optimization method such as Stochastic Meta Descent (Schradoulph, 1999) to minimize loss on training data
- •In practice, we also use pre-training and a continuation method to deal with non-convexity



Experiments

Synthetic data (this paper):

Shows significant improvements across a controlled range of conditions (see bottom). 12 randomly generated CRFs with known structure and parameters. (Up to 200 binary input/output/latent variables; Erdos-Renyi random topology; parameters sampled from a Gaussian.) Train and test using different loss functions: L1, MSE, F-score.

Real-world loopy graphs (follow-up NLP paper): Jointly modeling congressional votes.

Binary variables for the votes.

Conditioned on:

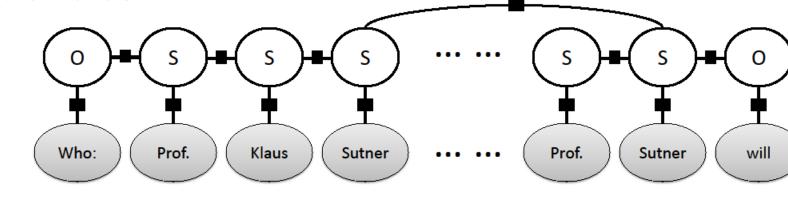
Text of the speeches the representative gave

to other representatives

Context of his/her references The ConVote corpus (Thomas et al., 2006)

Info Extraction from Semi-Structured Text

Extract speaker, location, start time and end-time from seminar announcement emails (Freitag, 1999). Skip-chain CRF models non-local dependencies.



Collective Multi-Label Classification

Assign multiple labels to each document. Use a fully connected CRF with binary edges to model label dependencies. We use Reuters corpus, version 2 (Lewis et al., 2004).

Experimental Results

Synthetic Data

Training for Different Losses $\Delta loss$ | wins APPR-LOGL frac-MSE frac-MSE **.00057** | 12·0·0 APPR-LOGL int-F **.00115** | 10·1· (.06425)int-F-in **.00081** | 11·0·1 APPR-LOGI int-L1-hyb **.00137** | 10·2·0 (.06385)int-L1-in **.00079** 10·2·0

APPR-LOGL

APPR-LOGL

Training with Wrong Model Structure Training for Poor BP Approximation

test	train	Perturbation			
setting	setting	10%	20%	30%	40%
frac-MSE	APPR-LOGL	.00352	.00642	.00622	.01118
	E frac-MSE	.00101	.00316	.00312	.0053
		12.0.0	11.0.1	11.0.1	10.0.2
int-F	APPR-LOGL	.01042	.01928	.01026	.02123
	int-F	.00095	.00472	.00473	.00969
	1110-1	11.0.1	$10 \cdot 1 \cdot 1$	11.0.1	9.0.3
int-L1	APPR-LOGL	.00452	.00748	.00569	.01173
	int-L1	.00147	.00442	.00602	.00945
	1110-171	9.2.1	9.0.3	9.0.3	9.0.3
APPR-LO	GLAPPR-LOGL	3096	0180	0373	1169

APPR-LOGL .00710 .00301 .00816 .02461 frac-MSE .00057 .00072 .00063 .00064 12.0.0 11.0.1 12.0.0 12.0.0APPR-LOGL .01170 .00476 .01276 .03085 int_F .00081 .00126 .00058 .00091 APPR-LOGL .00751 .00344 .01087 .02984 int-L1 .00079 .00101 .00078 .00096 10·2·0 10·0·2 10·2·0 12·0·0 APPR-LOGL APPR-LOGL -.3161 -.1823 -.2422 -.1104

Real-World Data

Congressional Votes

Method	Accuracy			
Majority baseline	58.37			
supp-opp baseline	62.67			
Thomas et al. (2006)	71.25			
Greene (2007)	74.19			
CRF models				
APPR-LOGL	79.42			

LOSS-BASED

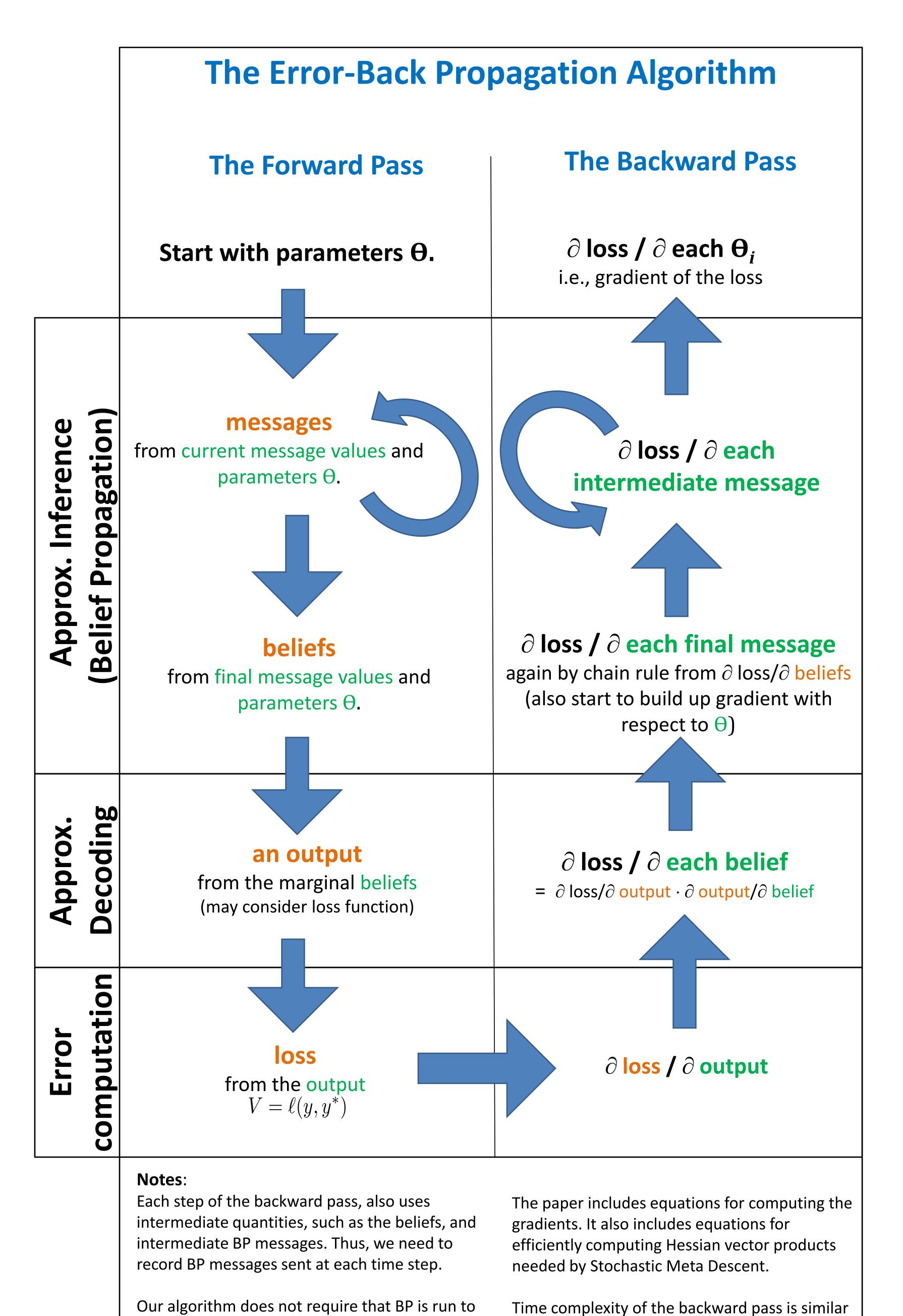
84.42

Multi-Label Classification

Method	Accuracy	F-measure
MaxEnt	96.32	81.62
CRF	96.42	84.04
CRF-Accuracy	96.50	83.20
CRF-F-measure	96.50	84.60

Information Extraction

Method	F-measure				
	spkr	loc	stime	etime	combine
CRF	77.64	87.44	95.21	92.96	87.25
CRF-F	78.17	88.36	95.21	92.96	87.60
SC-CRF	84.68	89.68	96.80	96.80	90.99
SC-CRF-F	85.99	90.62	96.84	96.80	91.67



convergence.

to the complexity of the forward pass.